首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 585 毫秒
1.
The effect of fatty acids (FAs) (C12–C24) on the functioning of winter wheat (Triticum aestivum L.) mitochondria was studied. Such fatty acids as C12:0, C16:0, and C18:0 and unsaturated FAs, such as C18:1 (n-9 cis), C18:1 (n-12 cis), C18:2 (n-9, 12), (18:3, n-3), and C22:1 (n-9 cis) caused efficient uncoupling of oxidative phosphorylation in mitochondria, i.e., an increase in the nonphosphorylating respiration rate and a decrease in the respiratory control value. It was established that C16:0 had the strongest uncoupling effect among all saturated FAs, and C18:3, among unsaturated FAs. The uncoupling effect of saturated FAs is provided by the ADP/ATP-antiporter, while plant uncoupling proteins play an important role in the uncoupling effect of unsaturated FAs. In addition, unsaturated, as well as saturated FAs might serve as oxidative substrates for mitochondria. It was concluded that the role of FAs in energetic metabolism of winter wheat seedlings consisted of uncoupling of oxidative phosphorylation and of serving as substrates for oxidation.  相似文献   

2.
In the present work, we studied the influence of water (osmotic) stress on mitochondrial metabolic activity in etiolated pea (Pisum sativum L.) seedlings. Three-day-old pea seedlings were subjected to stress by placing their roots in 0.6 M mannitol for 48 h. Epicotyl growth was severely suppressed, and tissue water content was decreased. We revealed the negative influence of the water stress on mitochondrial metabolic activity of seedlings, which effect was retained also after organelle isolation. In particular, in the mitochondria of stressed seedlings, the rate of oxidation of malate and other respiratory substrates (in state 3) was severely decreased, as well as respiratory control ratio. The rate of proline oxidation was reduced most seriously (by 70%). The efficiency of oxidative phosphorylation, according to the ADP/O ratio was not changed or was increased as compared to mitochondria in control plants. Activation of CN-resistant oxidase and other alternative pathways of electron transport in the mitochondrial electron-transport chain in stressed plants were not observed. In the epicotyl tissues under water stress, no MDA was accumulated and proline accumulation was insignificant. The role of mitochondria in adaptation responses of young seedlings is discussed.  相似文献   

3.
4.
Divergent abiotic stresses induce osmotic stress on plant cells resulting in an imbalance in water homeostasis which is preserved by aquaporins. Since the plasma membrane aquaporins (PIPs) were shown to be involved in seed development and responses to abiotic stresses, we focused on determining the contribution of mannitol-induced osmotic stress, blue light (BL), and 7B-1 mutation to their gene expression in tomato (Solanum lycopersicum L.) seeds. To assess that, we used a quantitative RT-PCR to determine the expression profiles of genes encoding PIPs. Subsequently, a multiple linear regression analysis was used to evaluate the impact of studied stressors (mannitol and BL) and 7B-1 mutation on PIP gene expressions. We found that mannitol-induced osmotic stress and 7B-1 mutation (conferring the lower responsiveness to osmotic stress- and BL-induced inhibition of seed germination) decreased expression of PIP1;3, PIP2;3 and PIP1;2, PIP2;1 genes, respectively. This might be a way to retain water for radicle elongation and seed germination under the stress conditions. Interestingly, the expression of PIP1;3 gene was downregulated not only by osmotic stress, but also by BL. Altogether, our data indicate the existence of a link between osmotic stress and BL signalling and the involvement of the 7B-1 mutation in this crosstalk.  相似文献   

5.
Plant genebanks often use cryopreservation to securely conserve clonally propagated collections. Shoot tip cryopreservation procedures may employ vitrification techniques whereby highly concentrated solutions remove cellular water and prevent ice crystallization, ensuring survival after liquid nitrogen exposure. Vitrification solutions can be comprised of a combination of components that are either membrane permeable or membrane impermeable within the timeframe and conditions of cryoprotectant exposure. In this study, the osmotic responses of sweet potato [Ipomoea batatas (L.) Lam.] suspension cell cultures were observed after treatment with plant vitrification solution 2 [PVS2; 15% (v/v) dimethyl sulfoxide (DMSO), 15% (v/v) ethylene glycol, 30% (v/v) glycerol, 0.4 M sucrose], plant vitrification solution 3 (PVS3; 50% (v/v) glycerol, 50% (w/v) sucrose), and their components at 25 and 0°C, as well as cryoprotectant solution, PGD (10% (w/v) PEG 8000, 10% (w/v) glucose, 10% (v/v) DMSO) at 25°C. At either 25 or 0°C, sweet potato cells plasmolyzed after exposure to PVS2, PVS3, and PGD solutions as well as the PVS2 and PVS3 solution components. Cells deplasmolyzed when the plasma membrane was permeable to the solutes and when water re-entered to maintain the chemical potential. Sweet potato suspension cells deplasmolyzed in the presence of 15% (v/v) DMSO or 15% (v/v) ethylene glycol. Sweet potato plasma membranes were more permeable to DMSO and ethylene glycol at 25°C than at 0°C. Neither sucrose nor glycerol solutions showed evidence of deplasmolysis after 3 h, suggesting low to no membrane permeability of these components in the timeframes studied. Thus, vitrification solution PVS2 includes components that are more membrane permeable than PVS3, suggesting that the two vitrification solutions may have different cryoprotectant functions. PGD includes DMSO, a permeable component, and likely has a different mode of action due to its use in two-step cooling procedures.  相似文献   

6.
Medicago sativa L. cv. Longzhong is a nutritious forage plant in dryland regions of the Loess Plateau with strong drought tolerance and broad adaptability. To understand the adaptation mechanism of alfalfa (M. sativa L. cv. Longzhong) to drought stress, growth, and physiological parameters including levels of chlorophyll content, osmotic adjustment, reactive oxygen species (ROS), and antioxidant enzymes and antioxidants were measured under simulated levels of drought (? 0.40, ? 0.80, ? 1.20, ? 1.60, and ? 2.00 MPa). The changes in M. sativa L. cv. Longzhong were compared with those of plants of M. sativa L. cv. Longdong control (Variety I) suited to moderate rainfall areas and M. sativa L. cv. Gannong No. 3 (Variety II) suited to irrigated areas. The results showed that root–shoot ratio, the chlorophyll (a + b) and osmolytes contents, the degree of lipid peroxidation and ROS production, and the levels of antioxidative enzymes and antioxidants increased significantly with increasing drought stress, whereas plant height, aboveground biomass, chlorophyll a/b ratio, leaf water potential (Ψ1), and relative water content (RWC) decreased in response to drought. The Longzhong variety responded early to beginning drought stress (between 0 and ? 0.4 MPa) compared with the controls. Under drought stress (between ? 0.4 and ? 2.0 MPa), the Longzhong variety had significantly higher belowground biomass, root–shoot ratio, Ψ1, RWC, catalase (CAT) activity and reduced glutathione content than those of Varieties I and II, but hydrogen peroxide and hydroxyl free radical (OH·) contents were significantly lower. Step regression analysis showed that OH·, CAT, malondialdehyde, superoxide anion-free radical (O 2 ·? ), and superoxide dismutase of Longzhong had the most marked response to drought stress. In conclusion, the stronger drought tolerance of the Longzhong variety might be due to its higher water-holding capacity, root–shoot ratio, and ability to coordinate enzymatic and non-enzymatic antioxidant systems, which coordinate the peroxidation and oxidative systems.  相似文献   

7.
8.
We studied the effect of quinocitrinines on the respiratory activity of yeasts (Yarrowia lipolytica) and bacteria (Arthrobacter globiformis). Quinocitrinines were shown to activate respiration of native cells in both types of organisms. Studies of yeast mitochondria showed that quinocitrinine exerts an uncoupling effect on oxidative phosphorylation, which activates the respiration, reduces the respiratory control, and decreases the ADP/O ratio. Experiments with intact mitochondria and native cells of Arthrobacter globiformis revealed that quinocitrinine decreases the membrane potential. The uncoupling effect likely constitutes a mechanism of the antibiotic activity of quinocitrinines.  相似文献   

9.
10.
In plants, ROS signaling and increase in activities of antioxidants are among defense responses. The present study describes the oxidative stress profiling in model host plant tomato (Solanum lycopersicum L.), during an invasion of the wilt pathogen Fusarium oxysporum f. sp. lycopersici with or without seed priming with Pseudomonas isolates M80, M96 and T109. Tomato seeds were primed with known Pseudomonas isolates M80, M96 and T109 and the forty-day- old plants were challenged with spores of F. oxysporum under greenhouse conditions. Leaf samples were collected at 0, 24, 48 72 and 96 h post fungal challenge and analysed for systemic level of oxidative stress parameters including total phenolics, proline, hydrogen peroxide, lipid peroxidation and enzymatic antioxidants. Disease incidence in the plants under greenhouse conditions was also calculated. Results revealed that priming with Pseudomonas isolates resulted in reduced oxidative stress in the host, during pathogen invasion. M80-priming showed highest antioxidative protection to the host plants during F. oxysporum invasion. The observed reduction in hydrogen peroxide and lipid peroxidation in primed plants was in agreement with the increased activities of the corresponding antioxidant enzymes. Greenhouse results showed that the highest wilt disease symptoms were with M80-priming followed by M96 and T109. The present study gives substantial evidences on the oxidative stress mitigation in response to Pseudomonas-priming on the model tomato-Fusarium interaction system.  相似文献   

11.
12.
Methyl jasmonate (MJ) is an important plant growth regulator, involves in various physiological processes of plants. In the present study, role of MJ in tolerance to oilseed rape (Brassica napus L.) roots under arsenic (As) stress was investigated. The treatments were comprised of three MJ doses (0, 0.1, and 1 µM) and two levels of As (0 and 200 µM). Arsenic stress resulted in oxidative damage as evidenced by decreased root growth and enhanced reactive oxygen species and lipid peroxidation. However, plants treated with MJ decreased the H2O2 and O2 ·? contents in roots and have higher antioxidant activities. Importantly, results showed that MJ enhanced the redox states of AsA and GSH, and the related enzymes involved in the AsA–GSH cycle. Moreover, MJ also induced the secondary metabolites related enzymes (PAL and PPO) activities, under As stress. PAL and PPO expression was further increased by MJ application in the roots of B. napus under As stress. MJ also reduced the total As content compared with As alone treated plants. These findings suggest the role of MJ in mitigation of the As-induced oxidative damage by regulating AsA and GSH redox states and by reducing As uptake in both cultivars.  相似文献   

13.
Dehydrins (DHNs) play vital roles in response to dehydration stress in plants. To examine the contribution of EjDHN to low-temperature stress in loquat (Eriobotrya japonica Lindl.), EjDHN1 was overexpressed in tobacco (Nicotiana tabacum L.). The plant growth of transgenic lines was significantly better than wild type (WT) after 4 d of recovery from cold stress. Cold stress led to membrane lipid peroxidation and reduced photosystem II (PSII) activity in leaves, and these were less severe in transgenic lines. To examine oxidative stress tolerance, the plants were treated with different concentrations of methyl viologen (MV), which inhibited plant growth both in WT and transgenic lines. After exposure to 2.0 μM MV for 10 d, the WT plants had a dramatically lower survival rate. MV treatment in leaf disks confirmed that transgenic lines accumulated less reactive oxygen species (ROS) and suffered less lipid peroxidation. The results suggested that the tolerance of the transgenic plants to cold was increased, and EjDHN1 could protect cells against oxidative damage caused by ROS production under cold stress. It also provided evidences that the enhanced cold tolerance resulted from EjDHN1 overexpression could be partly due to their protective effect on membranes by alleviating oxidative stresses.  相似文献   

14.
Six genotypes of taro (Colocasia esculenta L. Schott) were evaluated under in vitro and in vivo polyethylene glycol (PEG–6000)-mediated osmotic stress conditions. A significant variation in growth response was observed among the taro genotypes under in vitro-induced stress conditions. In vivo results indicated a significant effect of osmotic stress on photosynthetic parameters, such as net photosynthetic rate, transpiration rate, stomatal conductance, stomatal resistance, internal CO2 concentration, carboxylation efficiency, and transpiration efficiency on the tested genotypes at the tuberization stage. Lesser variations in photosynthesis and higher accumulation of proline, phenols, and antioxidative enzymes, namely, superoxide dismutase and guaiacol peroxidase, were associated with yield maintenance under osmotic stress conditions. The genotypes DP–89, IGCOL–4, and Ramhipur showed a higher degree of tolerance towards osmotic stress with a minimum variation in the studied parameters. These genotypes could be lines of interest for intensification of breeding strategies to develop drought-tolerant plants.  相似文献   

15.
16.
Abscisic acid (ABA) is an important signaling molecule for plants under drought tolerance. However, ABA itself has many limitations to be used in agriculture practically. Recently, AM1 (ABA-mimicking ligand) has been found to replace ABA. In this study, we have investigated AM1’s potential role for drought tolerance by growing two contrasting rapeseed (Brassica napus L.) genotypes: Qinyou 8 (drought sensitive) and Q2 (drought resistant) with exogenous ABA or AM1 application under well-watered and drought-stressed conditions. Results demonstrate that drought stress has hampered plant growth (relative height growth rate, plant biomass, leaf area), plant water status (leaf relative water content, root moisture content, leaf water potential), photosynthetic gas exchange attributes like net photosynthesis rate (Pn), stomatal conductance (Gs), intercellular CO2 concentration (Ci), transpiration rate (E); chlorophyll fluorescence parameters like photosynthetic efficiency (Fv/Fm), effective quantum yield of PSII (Φ PSII ), photochemical quenching coefficient (qL), electron transport rate (ETR) and chlorophyll content, especially for Qinyou 8 significantly compared to well-watered plants. Whereas increased root/shoot ratio (R/S), water use efficiency (WUE) and non-photochemical quenching (NPQ) was recorded in both genotypes under drought stress. On the other hand, exogenous ABA or AM1 treatment has regulated all the above parameters in a rational way to avoid drought stress. Chloroplast transmission electron microscope images, especially for Qinyou8, have revealed that oxidative stress induced by drought has blurred the grana thylakoids, increased the size or number of plastoglobules due to lipid peroxidation, and the presence of starch granules depict weak capacity to convert them into simple sugars for osmotic adjustment. However, intact grana thylakoid, few plastoglobules with no or very few starch granules were observed in the chloroplast from ABA- or AM1-treated plants under drought. More importantly, AM1-treated plants under drought stress have responded in an extremely similar way like ABA-treated ones. Finally, it is suggested that AM1 is a potential ABA substitute for plant drought tolerance.  相似文献   

17.
The idea that water deficit strengthening induces concerted changes of plant physiological parameters is rather widespread. However, such changes are often difficult to identify due to challenges in establishments and maintenance of required water stress intensities using solid substrates. Therefore, we exposed Scots pine (Pinus sylvestris L.) seedlings to the range of water potentials from–0.15 to–1.5 MPa in PEG-water culture to identify the series of physiological parameters differently sensitive to water stress. We observed that even mild water stress (–0.15 MPa) inhibited root elongation, which could be one of the main pine seedlings vulnerabilities under drought. Active accumulation of osmolytes was already induced by mild water deficit and further increased with water stress severity. Plant fresh biomass growth sensitivity was more related to changes of relative water content (RWC) than to changes in tissue water content or dry weight accumulation. Plants were able to grow and accumulate dry weight down to–0.5 MPa, but lower medium water potentials (–1.0 and–1.5 MPa) suppressed growth and heavily damaged root cells, as judged from many-fold increase of Ca2+ content in roots. Chlorophyll a content was surprisingly sensitive to water stress, while carotenoids level was increased under severe stress conditions. In conclusion, the experimental system with stepwise water potential values allowed us to analyze the sensitivity scale of a range of P. sylvestris physiological processes to water stress. It was largely similar to those described earlier for other plant species, but its peculiarities were high sensitivity of root elongation, marked resistance of biomass growth to water deficit and well-developed ability to osmotic adjustment.  相似文献   

18.
Proanthocyanidins (PAs) are the main products of the flavonoid biosynthetic pathway in many plants. However, their biological function during environmental stresses in plants is rarely reported. In the present study, the effects of pretreatment with PAs on the response of cucumber (Cucumis sativus L.) seedlings to high irradiance (HI), polyethylene glycol (PEG), and cold stress were investigated. The PAs pretreament alleviated stress-induced oxidative damage in plant cells and increased the activity of alternative oxidase (AOX) and content of abscisic acid (ABA). Furthermore, PAs-pretreated seedlings suffered less damage by the stress conditions, maintained higher content of chlorophyll a+b and AOX proteins in comparison with the control. Therefore, our findings suggest that PAs might contribute to plant tolerance to environmental stresses.  相似文献   

19.
Drought stress occurring at the seedling stage of peanut (Arachis hypogaea L.) plants is a limiting factor resulting in considerable reductions in production. Plants can improve their resistance to subsequent stresses after experiencing an initial stress. The aim of this study was to explore the possible role of drought priming by hypocotyl exposure in alleviating subsequent severe drought stress in peanut. Hypocotyl exposure in peanut seedlings as a drought stimulus induced xerophytophysiological regulation, shown by induced osmotic adjustment, activated antioxidant enzymes, anthocyanin accumulation, up-regulation of Gdi-15 and fewer amyloplasts. The seedlings primed by hypocotyl exposure showed improved leaf water retention and reduced proline content when exposed to subsequent drought stress. The alleviated oxidative damage and lower antioxidant enzyme activities indicated rapid acclimation following past hypocotyl exposure and further defenses against subsequent drought stress by retaining ‘memories’ to enable more rapid or stronger physiological responses. The improved leaf photosynthesis and low photosynthetic hysteresis as drought ended indicated a positive effect of drought priming in peanut seedlings. The peanut seedlings ‘remembered’ the xerophytophysiological responses caused by the prior drought stimulation from hypocotyl exposure and displayed quicker and more potent physiological responses to following drought stress. The results showed that hypocotyl exposure could help peanut seedlings survive the severe environments that occurred in the later growth stages.  相似文献   

20.
Celastrol is an active triterpenoid compound isolated from Tripterygium wilfordii Hook F.. Many reports have highlighted that celastrol is an effective, safe and desirable approach to the treatment of cancers. However, their biological function during environmental stresses in plants is rarely reported. In the present study, the effects of celastrol on the tolerance against high light (HL), polyethylene glycol (PEG) and cold stress in cucumber (Cucumis sativus L.) were investigated. Celastrol pretreatment could enhance cucumber seedlings stress tolerance at a concentration of 1 μg ml–1. The results showed that pretreatment with 1 μg ml–1 celastrol clearly induced the activities of antioxidative enzymes, which subsequently alleviated stress-induced oxidative damage in plant cells. We also provided evidence that celastrol upregulated ABA biosynthetic gene NCED2 expression and ABA accumulation in cucumber seedlings, which resulted to the enhanced tolerance in response to environmental stresses. Furthermore, the celastrol-pretreated seedlings showed less photosystem damaged caused by the stress conditions, when compared with the control. Therefore, our findings provide a novel role of celastrol in plant against environmental stresses and indicate that the celastrol-induced activities of antioxidative enzymes and ABA content might contribute to the stress tolerance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号