首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aim The species‐specific response of tree‐line species to climatic forcing is a crucial topic in modelling climate‐driven ecosystem dynamics. In northern Québec, Canada, black spruce (Picea mariana) is the dominant species at the tree line, but white spruce (Picea glauca) also occurs along the maritime coast of Hudson Bay, and is expanding along the coast and on lands that have recently emerged because of isostatic uplift. Here we outline the present distribution, structure, dynamics and recent spread of white spruce from the tree line up to its northernmost position in the shrub tundra along the Hudson Bay coast. We aimed to obtain a minimum date of the arrival of the species in the area and to evaluate its dynamics relative to recent climate changes. Location White spruce populations and individuals were sampled along a latitudinal transect from the tree line to the northernmost individual in the shrub tundra along the Hudson Bay coast and in the Nastapoka archipelago in northern Québec and Nunavut, Canada (56°06′–56°32′ N). Methods White spruce populations were mapped, and the position, dimension, growth form and origin (seed or layering) of every individual recorded. Tree‐ring analyses of living and dead trees allowed an estimation of the population structure, past recruitment, growth trends and growth rate of the species. A macrofossil analysis was performed of the organic horizon of the northernmost white spruce stands and individuals. Radiocarbon dates of white spruce remains and organic matter were obtained. The rate of isostatic uplift was assessed by radiocarbon dating of drifted wood fragments. Results The first recorded establishment of white spruce was almost synchronous at all sites and occurred around ad 1660. Spruce recruitment was rather continuous at the tree line, while it showed a gap in the northern shrub tundra during the first decades of the 19th century. A vigorous, recent establishment of seedlings was observed in the shrub tundra; only wind‐exposed, low krummholz (stunted individuals) did not show any sexual regeneration. A period of suppressed growth occurred from the 1810s to the 1850s in most sites. A growth increase was evident from the second half of the 19th century and peaked in the 1880s and the 20th century. A shift from stunted to tree growth form has occurred since the mid‐19th century. No sample associated with white spruce remains gave a date older than 300 14C years bp [calibrated age (cal.) ad 1430–1690]. Main conclusions White spruce probably arrived recently in the coastal tundra of Hudson Bay due to a delayed post‐glacial spread. The arrival of the species probably occurred during the Little Ice Age. The established individuals survived by layering during unfavourable periods, but acted as nuclei for sexual recruitment almost continuously, except in the northernmost and most exposed sites. Warmer periods were marked by strong seedling recruitment and a shift to tree growth form. Unlike white spruce, black spruce showed no evidence of an ongoing change in growth form and sexual recruitment. Ecological requirements and recent history of tree‐line species should be taken into account in order to understand the present dynamics of high‐latitude ecosystems.  相似文献   

2.
Aim The objectives of the study are: (1) to evaluate the dynamics of the maritime tree line and forest limit of white spruce, Picea glauca, within the dual framework of primary succession induced by the rapid post‐glacial land emergence on the eastern coast of Hudson Bay and the impacts of recent and past climate changes; and (2) to determine the time lapse between land emergence and seedling, tree, and forest establishment in the context of the primary chronosequence occurring on rising, well‐drained sandy beaches and terraces. Location The study area was located on the eastern coast of Hudson Bay (56°20′ N, 76°32′ W) in northern Québec, Canada. Methods We evaluated the colonization dynamics of white spruce as seedlings, tree‐line trees and primary‐forest trees at eight sites distributed along a 200‐km latitudinal gradient based on a mean land emergence rate of 1.2 m century?1. A 30‐m wide by 140–300‐m long quadrat was positioned at random at the centre of each site. The elevation above sea level, position and age of all individuals of spruce present in the quadrat areas were determined, and the soils of each chronosequence were described. Results The main stages of primary succession along the emerging coast were common to all the sites, regardless of latitude, but occurred at different elevations above sea level (a.s.l.). White spruce seedlings colonized near‐shore beaches 2 m a.s.l., whereas the tree line and forest limit tended to form only at about 3–4 m and 4–8 m a.s.l., corresponding approximately to 180–825 years and 310–1615 years after land emersion, respectively. White spruce establishment at the tree line occurred about 50 years ago. Climatic conditions at this time were probably more favourable to tree colonization than when the species established at the forest limit. Soil formation was influenced primarily by distance from the seashore and elevation above sea level, with podzolization being accelerated by white spruce cover. Main conclusions The current tree‐line and forest‐limit positions on the rising coast of eastern Hudson Bay correspond to ecological limits established during the course of primary succession within a context of changing climatic conditions. The recent establishment of trees at the tree line and forest limit at relatively old coastal sites is associated with warmer conditions over the last 100 years. Although white spruce was present nearby, coastal sites were devoid of trees before the 20th century.  相似文献   

3.
The northern boundary of boreal forest and the ranges of tree species are expected to shift northward in response to climate warming, which will result in a decrease in the albedo of areas currently covered by tundra vegetation, an increase in terrestrial carbon sequestration, and an alteration of biodiversity in the current Low Arctic. Central to the prediction of forest expansion is an increase in the reproductive capacity and establishment of individual trees. We assessed cone production, seed viability, and transplanted seedling success of Picea glauca (Moench.) Voss. (white spruce) in the early 1990s and again in the late 2000s at four forest stand sites and eight tree island sites (clonal populations beyond present treeline) in the Mackenzie Delta region of the Northwest Territories, Canada. Over the past 20 years, average temperatures in this region have increased by 0.9 °C. This area has the northernmost forest‐tundra ecotone in North America and is one of the few circumpolar regions where the northern limit of conifer trees reaches the Arctic Ocean. We found that cone production and seed viability did not change between the two periods of examination and that both variables decreased northward across the forest‐tundra ecotone. Nevertheless, white spruce individuals at the northern limit of the forest‐tundra ecotone produced viable seeds. Furthermore, transplanted seedlings were able to survive in the northernmost sites for 15 years, but there were no signs of natural regeneration. These results indicate that if climatic conditions continue to ameliorate, reproductive output will likely increase, but seedling establishment and forest expansion within the forest‐tundra of this region is unlikely to occur without the availability of suitable recruitment sites. Processes that affect the availability of recruitment sites are likely to be important elsewhere in the circumpolar ecotone, and should be incorporated into models and predictions of climate change and its effects on the northern forest‐tundra ecotone.  相似文献   

4.
Unprecedented rates of climate warming over the past century have resulted in increased forest stress and mortality worldwide. Decreased tree growth in association with increasing temperatures is generally accepted as a signal of temperature‐induced drought stress. However, variations in tree growth alone do not reveal the physiological mechanisms behind recent changes in tree growth. Examining stable carbon isotope composition of tree rings in addition to tree growth can provide a secondary line of evidence for physiological drought stress. In this study, we examined patterns of black spruce growth and carbon isotopic composition in tree rings in response to climate warming and drying in the boreal forest of interior Alaska. We examined trees at three nested scales: landscape, toposequence, and a subsample of trees within the toposequence. At each scale, we studied the potential effects of differences in microclimate and moisture availability by sampling on northern and southern aspects. We found that black spruce radial growth responded negatively to monthly metrics of temperature at all examined scales, and we examined ?13C responses on a subsample of trees as representative of the wider region. The negative ?13C responses to temperature reveal that black spruce trees are experiencing moisture stress on both northern and southern aspects. Contrary to our expectations, ?13C from trees on the northern aspect exhibited the strongest drought signal. Our results highlight the prominence of drought stress in the boreal forest of interior Alaska. We conclude that if temperatures continue to warm, we can expect drought‐induced productivity declines across large regions of the boreal forest, even for trees located in cool and moist landscape positions.  相似文献   

5.
Abstract. Many models that simulate the long-term response of forests to climatic change use the assumption that northern and southern range limits are caused by the deleterious effects of cold and hot air temperatures, respectively, on individual tree growth and that growth declines symmetrically with air temperatures above and below some optimal value in between these extremes. To test the validity of this assumption, we combined physiological data for black spruce, Picea mariana, growing near the treeline in subarctic Quebec with a model of the biophysical and biochemical effects of temperature on photosynthesis. The physiological conditions allow black spruce to grow over a wider range of air temperatures than is reflected in its geographic distribution. In particular, the physiological data suggest that the northern range limit of black spruce is not caused by the direct effects of cold growing-season air temperatures on tree growth and that growth is optimal, with respect to temperature, at the southern range limit. While pollen data indicate large geographic changes in spruce abundance with past climatic changes, the current analyses suggest that the direct effect of air temperature on individual tree growth has not caused these changes. Until we better understand the effects of air temperature on ecological processes, the efficacy of climatic change analyses must be evaluated in terms of model assumptions.  相似文献   

6.
The ongoing climatic changes potentially affect plant growth and the functioning of temperature‐limited high‐altitude and high‐latitude ecosystems; the rate and magnitude of these biotic changes are, however, uncertain. The aim of this study was to reconstruct stand structure and growth forms of Larix sibirica (Ledeb.) in undisturbed forest–tundra ecotones of the remote Polar Urals on a centennial time scale. Comparisons of the current ecotone with historic photographs from the 1960s clearly document that forests have significantly expanded since then. Similarly, the analysis of forest age structure based on more than 300 trees sampled along three altitudinal gradients reaching from forests in the valleys to the tundra indicate that more than 70% of the currently upright‐growing trees are <80 years old. Because thousands of more than 500‐year‐old subfossil trees occur in the same area but tree remnants of the 15–19th century are lacking almost entirely, we conclude that the forest has been expanding upwards into the formerly tree‐free tundra during the last century by about 20–60 m in altitude. This upward shift of forests was accompanied by significant changes in tree growth forms: while 36% of the few trees that are more than 100 years old were multi‐stem tree clusters, 90% of the trees emerging after 1950 were single‐stemmed. Tree‐ring analysis of horizontal and vertical stems of multi‐stemmed larch trees showed that these trees had been growing in a creeping form since the 15th century. In the early 20th century, they started to grow upright with 5–20 stems per tree individual. The incipient vertical growth led to an abrupt tripling in radial growth and thus, in biomass production. Based on above‐ and belowground biomass measurements of 33 trees that were dug out and the mapping of tree height and diameter, we estimated that forest expansion led to a biomass increase by 40–75 t ha?1 and a carbon accumulation of approximately 20–40 g C m?2 yr?1 during the last century. The forest expansion and change in growth forms coincided with significant summer warming by 0.9 °C and a doubling of winter precipitation during the 20th century. In summary, our results indicate that the ongoing climatic changes are already leaving a fingerprint on the appearance, structure, and productivity of the treeline ecotone in the Polar Urals.  相似文献   

7.
High-latitude ecotonal populations at the species margins may exhibit altered patterns of genetic diversity, resulting from more or less recent founder events and from bottleneck effects in response to climate oscillations. Patterns of genetic diversity were investigated in nine populations of the conifer black spruce (Picea mariana [Mill.] BSP.) in northwestern Québec, Canada, using seed-dispersed mitochondrial (mt) DNA and nuclear (nc) DNA. mtDNA diversity (mitotypes) was assessed at three loci, and ncDNA diversity was estimated for nine expressed sequence tag polymorphism (ESTP) loci. Sampling included populations from the boreal forest and the southern and northern subzones of the subarctic forest-tundra, a fire-born ecotone. For ncDNA, populations from all three vegetation zones were highly diverse with little population differentiation (thetaN = 0.014); even the northernmost populations showed no loss of rare alleles. Patterns of mitotype diversity were strikingly different: within-population diversity and population differentiation were high for boreal forest populations [expected heterozygosity per locus (HE) = 0.58 and thetaM = 0.529], but all subarctic populations were fixed for a single mitotype (HE = 0). This lack of variation suggests a founder event caused by long-distance seed establishment during postglacial colonization, consistent with palaeoecological data. The estimated movement of seeds alone (effective number of migrants per generation, NmM < 2) was much restricted compared to that estimated from nuclear variants, which including pollen movement (NmN > 17). This could account for the conservation of a founder imprint in the mtDNA of subarctic black spruce. After reduction, presumably in the early Holocene, the diversity in ncDNA would have been replenished rapidly by pollen-mediated gene flow, and maintained subsequently through vegetative layering during the current cooler period covering the last 3000 years.  相似文献   

8.
Intraspecific assisted migration (ISAM) through seed transfer during artificial forest regeneration has been suggested as an adaptation strategy to enhance forest resilience and productivity under future climate. In this study, we assessed the risks and benefits of ISAM in white spruce based on long‐term and multilocation, rangewide provenance test data. Our results indicate that the adaptive capacity and growth potential of white spruce varied considerably among 245 range‐wide provenances sampled across North America; however, the results revealed that local populations could be outperformed by nonlocal ones. Provenances originating from south‐central Ontario and southwestern Québec, Canada, close to the southern edge of the species' natural distribution, demonstrated superior growth in more northerly environments compared with local populations and performed much better than populations from western Canada and Alaska, United States. During the 19–28 years between planting and measurement, the southern provenances have not been more susceptible to freezing damage compared with local populations, indicating they have the potential to be used now for the reforestation of more northerly planting sites; based on changing temperature, these seed sources potentially could maintain or increase white spruce productivity at or above historical levels at northern sites. A universal response function (URF), which uses climatic variables to predict provenance performance across field trials, indicated a relatively weak relationship between provenance performance and the climate at provenance origin. Consequently, the URF from this study did not provide information useful to ISAM. The ecological and economic importance of conserving white spruce genetic resources in south‐central Ontario and southwestern Québec for use in ISAM is discussed.  相似文献   

9.
Treeline, the ecotone where forest transitions to alpine or tundra ecosystems, is considered the thermal limit to tree growth and survival. Despite temperature increases across mountainous areas and high latitudes globally, there has been no ubiquitous change in treeline position. The process of range expansion must initially depend on increased recruitment at, or beyond current range limits and recruitment limitations have been hypothesized as a mechanism for the variable response of treeline position to climate warming. We conducted a unique series of observational and experimental studies to quantify early-life stage constraints, from seed production to seedling establishment, on black spruce Picea mariana and tamarack Larix laricina recruitment at a model alpine treeline in Newfoundland, Canada. We found recruitment at treeline to be simultaneously seed and establishment limited. The treeline population produced fewer seeds than the forest population and black spruce seeds produced at treeline were less viable. Tamarack was more seed limited than black spruce where seed viability was low regardless of altitudinal position. Post-dispersal seed predation greatly constrained recruitment across the altitudinal gradient; however, black spruce seeds experienced the lowest levels of invertebrate seed predation on the lichen mat at treeline. If seeds were not consumed, individuals at treeline were establishment limited where germination and seedling establishment was both less abundant and delayed on lichen substrate. Our study highlights the need for multiple factors to align temporally for significant recruitment at treeline to occur.  相似文献   

10.
Questions: What was the tree species composition of forests prior to European settlement at the northern hardwood range limit in eastern Québec, Canada? What role did human activities play in the changes in forest composition in this region? Location: Northern range limit of northern hardwoods in the Lower St. Lawrence region of eastern Québec, Canada. Methods: We used early land survey records (1846–1949) of public lands to reconstruct pre‐settlement forest composition. The data consist of ranked tree species enumerations at points or for segments along surveyed lines, with enumerations of forest cover types and notes concerning disturbances. An original procedure was developed to weigh and combine these differing data types (line versus point observations; taxa versus cover enumerations). Change to present‐day forest composition was evaluated by comparing survey records with forest decadal surveys conducted by the government of Québec over the last 30 years (1980–2009). Results: Pre‐settlement dominance of conifers was strong and uniform across the study area, whereas dominance of maple and birches was patchy. Cedar and spruce were less likely to dominate with increasing altitude, whereas maple displayed the reverse trend. Frequency of disturbances, especially logging and fire, increased greatly after 1900. Comparison of survey records and modern plots showed general increases for maple (mentioned frequency increased by 39%), poplar (36%) and paper birch (31%). Considering only taxa ranked first by surveyors, cedar displayed the largest decrease (19%), whereas poplar (15%) and maple (9%) increased significantly. Conclusions: These changes in forest composition can be principally attributed to clear‐cutting and colonization fire disturbances throughout the 20th century, and mostly reflected the propensity of taxa to expand (maples/aspen) or decline (cedar/spruce) with increased disturbance frequency. Québec's land survey archives provide an additional data source to reconstruct and validate our knowledge of North America's pre‐settlement temperate and sub‐boreal forests.  相似文献   

11.
Aim The spruce–moss forest is the main forest ecosystem of the North American boreal forest. We used stand structure and fire data to examine the long‐term development and growth of the spruce–moss ecosystem. We evaluate the stability of the forest with time and the conditions needed for the continuing regeneration, growth and re‐establishment of black spruce (Picea mariana) trees. Location The study area occurs in Québec, Canada, and extends from 70°00′ to 72°00′ W and 47°30′ to 56°00′ N. Methods A spatial inventory of spruce–moss forest stands was performed along 34 transects. Nineteen spruce–moss forests were selected. A 500 m2 quadrat at each site was used for radiocarbon and tree‐ring dating of time since last fire (TSLF). Size structure and tree regeneration in each stand were described based on diameter distribution of the dominant and co‐dominant tree species [black spruce and balsam fir (Abies balsamea)]. Results The TSLF of the studied forests ranges from 118 to 4870 cal. yr bp . Forests < 325 cal. yr bp are dominated by trees of the first post‐fire cohort and are not yet at equilibrium, whereas older forests show a reverse‐J diameter distribution typical of mature, old‐growth stands. The younger forests display faster height and radial growth‐rate patterns than the older forests, due to factors associated with long‐term forest development. Each of the stands examined established after severe fires that consumed all the soil organic material. Main conclusions Spruce–moss forests are able to self‐regenerate after fires that consume the organic layer, thus allowing seed regeneration at the soil surface. In the absence of fire the forests can remain in an equilibrium state. Once the forests mature, tree productivity eventually levels off and becomes stable. Further proof of the enduring stability of these forests, in between fire periods, lies in the ages of the stands. Stands with a TSLF of 325–4870 cal. yr bp all exhibited the same stand structure, tree growth rates and species characteristics. In the absence of fire, the spruce–moss forests are able to maintain themselves for thousands of years with no apparent degradation or change in forest type.  相似文献   

12.
A model simulating the regeneration, growth and death of trees and the consequent carbon and nitrogen dynamics of the forest ecosystem was applied to determine the effect of expected temperature rise on tree species composition and the accumulation of organic matter in the boreal forest ecosystem in Finland (between latitudes 60°–70° N). In the southern and middle boreal zones a temperature rise of 2–3° C (temperature for 2 x CO2) over a period of one hundred years increased the competitive capacity of Scots pine (Pinus sylvestris) and birch species (Betula pendula and B. pubescens), and slowed down the invasion by Norway spruce (Picea abies). In the northern boreal zone a corresponding rise in temperature promoted the invasion of sites by Norway spruce. The accumulation of organic matter was promoted only slightly compared to that taking place in the current climatic conditions.A further doubling of temperature (temperature for 4 x CO2) over an additional period of two hundred years led to the replacement of coniferous stands with deciduous onesin the southern and middle boreal zones. In the northern boreal zone an admixture of coniferous and deciduous species replaced pure coniferous stands with the latter taking over sites formerly classified as tundra woodland. In the southern and middle boreal zones the replacement of coniferous species induced a substantial decrease in the amount of organic matter; this returned to its former level following the establishment of deciduous species. In the northern boreal zone there was no major change in the amount of organic matter such as occurred in the case of the tundra woodland where the amount of organic matter accumulated was nearly as high as in the northern boreal zone.  相似文献   

13.

Aim

We examined whether and how tree radial‐growth responses to climate have changed for the world's southernmost conifer species throughout its latitudinal distribution following rapid climate change in the second half of the 20th century.

Location

Temperate forests in southern South America.

Methods

New and existing tree‐ring radial growth chronologies representing the entire latitudinal range of Pilgerodendron uviferum were grouped according to latitude and then examined for differences in growth trends and non‐stationarity in growth responses to a drought severity index (scPDSI) over the 1900–1993 AD period and also before and after significant shifts in climate in the 1950s and 1970s.

Results

The radial‐growth response of P. uviferum climate was highly variable across its full latitudinal distribution. There was a long‐term and positive association between radial growth and higher moisture at the northern and southern edges of the distribution of this species and the opposite relationship for the core of its distribution, especially following the climatic shifts of the 1950s and 1970s. In addition, non‐stationarity in moisture‐radial growth relationships was observed in all three latitudinal groups (southern and northern edges and core) for all seasons during the 20th century.

Main conclusions

Climate shifts in southern South America in the 1950s and 1970s resulted in different responses in the mean radial growth of P. uviferum at the southern and northern edges and at the core of its range. Dendroclimatic analyses document that during the first half of the 20th century climate‐growth relationships were relatively similar between the southern and northern range edges but diverged after the 1950s. Our findings imply that simulated projections of climate impacts on tree growth, and by implication on forest ecosystem productivity, derived from models of past climate‐growth relationships need to carefully consider different and non‐stationarity responses along the wide latitudinal distribution of this species.  相似文献   

14.
Seed mass is an adaptive trait affecting species distribution, population dynamics and community structure. In widely distributed species, variation in seed mass may reflect both genetic adaptation to local environments and adaptive phenotypic plasticity. Acknowledging the difficulty in separating these two aspects, we examined the causal relationships determining seed mass variation to better understand adaptability and/or plasticity of selected tree species to spatial/climatic variation. A total of 504, 481 and 454 seed collections of black spruce (Picea mariana (Mill.) B.S.P.), white spruce (Picea glauca (Moench) Voss) and jack pine (Pinus banksiana Lamb) across the Canadian Boreal Forest, respectively, were selected. Correlation analyses were used to determine how seed mass vary with latitude, longitude, and altitude. Structural Equation Modeling was used to examine how geographic and climatic variables influence seed mass. Climatic factors explained a large portion of the variation in seed mass (34, 14 and 29%, for black spruce, white spruce and jack pine, respectively), indicating species-specific adaptation to long term climate conditions. Higher annual mean temperature and winter precipitation caused greater seed mass in black spruce, but annual precipitation was the controlling factor for white spruce. The combination of factors such as growing season temperature and evapotranspiration, temperature seasonality and annual precipitation together determined seed mass of jack pine. Overall, sites with higher winter temperatures were correlated with larger seeds. Thus, long-term climatic conditions, at least in part, determined spatial variation in seed mass. Black spruce and Jack pine, species with relatively more specific habitat requirements and less plasticity, had more variation in seed mass explained by climate than did the more plastic species white spruce. As traits such as seed mass are related to seedling growth and survival, they potentially influence forest species composition in a changing climate and should be included in future modeling of vegetation shifts.  相似文献   

15.
* The past and present occurrence of insect disturbance on white spruce (Picea glauca) trees was evaluated at their northern range limit on the eastern coast of Hudson Bay, and its effects on tree growth and population dynamics studied. * Three sites were sampled along an altitudinal gradient. Ring-width chronologies and stem analysis were used to evaluate tree growth. The occurrence of holes in the bark, of resin pockets and blue-stain fungi, and ring-width evidence for growth releases were used to assess the impact of bark beetle. * The white spruce population was established at these sites in the 17th century. Since their establishment, the spruce trees have developed a tree growth form, except at the uppermost site, where severe growth suppression occurred in the 19th century. Bark beetle and blue-stain fungi occurred with different timing and intensity. Their highest occurrence, associated with high mortality rates, was at the lowest site in the late 20th century. In the uppermost sites, biotic disturbance has occurred since the 18th century, associated with evidence for mechanical disturbance. * The simultaneous arrival of white spruce in the area resulted in a synchronous onset of spruce beetle activity driven by tree ageing. Unfavourable climatic conditions affected tree growth severely in the most exposed sites.  相似文献   

16.
Treelines have drawn persistent research interest as they can respond markedly to climate. However, the mechanisms that determine tree seedling recruitment and the response of the forest‐tundra ecotone to environmental changes remain poorly understood. We hypothesise that treeline tree seedling performance depends on the interplay between climatic and soil nutritional changes and facilitative and competitive interactions between trees and shrubs. We conducted a seedling transplantation experiment with Betula pubescens at a subarctic treeline, in northern Sweden, which followed a full factorial design with four treatment factors relating to environmental regimes of stress and resource availability: site (forest vs treeline); temperature (+/? passive warming); shrub presence (+/?Vaccinium myrtillus removal); and nutrient availability (+/? NPK addition). During three growing seasons we assessed the establishment and performance of Betula. The experimental manipulations caused highly significant effects on seedling performance. Although Vaccinium enhanced seedling survival and reduced the effects of excessive solar radiation and insect herbivory, the seedlings growing with the shrub had a poorer performance by the end of the experimental period. Also, seedlings in the forest had a poorer performance than those at the treeline. Betula seedlings showed a very pronounced and positive response to passive warming and to nutrient addition, but such effects were more evident at the treeline site and often interacted with the presence of Vaccinium. This experiment shows that shrub–tree interactions are important drivers of subarctic treeline dynamics and that they vary with time and space. Facilitation, competition, herbivory and environmental changes at the tree seedling stage act as important filters in structuring the forest–tundra ecotone. We demonstrate that changes in this ecotone cannot be simply predicted from changing temperature patterns alone, and that complex interactions need to be considered, not only between shrubs and trees, but also with herbivores and between warming and soil nutrient availability.  相似文献   

17.
The 20th century was a pivotal period at high northern latitudes as it marked the onset of rapid climatic warming brought on by major anthropogenic changes in global atmospheric composition. In parallel, Arctic sea ice extent has been decreasing over the period of available satellite data records. Here, we document how these changes influenced vegetation productivity in adjacent eastern boreal North America. To do this, we used normalized difference vegetation index (NDVI) data, model simulations of net primary productivity (NPP) and tree‐ring width measurements covering the last 300 years. Climatic and proxy‐climatic data sets were used to explore the relationships between vegetation productivity and Arctic sea ice concentration and extent, and temperatures. Results indicate that an unusually large number of black spruce (Picea mariana) trees entered into a period of growth decline during the late‐20th century (62% of sampled trees; n = 724 cross sections of age >70 years). This finding is coherent with evidence encoded in NDVI and simulated NPP data. Analyses of climatic and vegetation productivity relationships indicate that the influence of recent climatic changes in the studied forests has been via the enhanced moisture stress (i.e. greater water demands) and autotrophic respiration amplified by the declining sea ice concentration in Hudson Bay and Hudson Strait. The recent decline strongly contrasts with other growth reduction events that occurred during the 19th century, which were associated with cooling and high sea ice severity. The recent decline of vegetation productivity is the first one to occur under circumstances related to excess heat in a 300‐year period, and further culminates with an intensifying wildfire regime in the region. Our results concur with observations from other forest ecosystems about intensifying temperature‐driven drought stress and tree mortality with ongoing climatic changes.  相似文献   

18.
Fine root acclimation to different environmental conditions is crucial for growth and sustainability of forest trees. Relatively small changes in fine root standing biomass (FRB), morphology or mycorrhizal symbiosis may result in a large change in forest carbon, nutrient and water cycles. We elucidated the changes in fine root traits and associated ectomycorrhizal (EcM) fungi in 12 Norway spruce stands across a climatic and N deposition gradient from subarctic‐boreal to temperate regions in Europe (68°N–48°N). We analysed the standing FRB and the ectomycorrhizal root tip biomass (EcMB, g m?2) simultaneously with measurements of the EcM root morphological traits (e.g. mean root length, root tissue density (RTD), N% in EcM roots) and frequency of dominating EcM fungi in different stands in relation to climate, soil and site characteristics. Latitude and N deposition explained the greatest proportion of variation in fine root traits. EcMB per stand basal area (BA) increased exponentially with latitude: by about 12.7 kg m?2 with an increase of 10° latitude from southern Germany to Estonia and southern Finland and by about 44.7 kg m?2 with next latitudinal 10° from southern to northern Finland. Boreal Norway spruce forests had 4.5 to 11 times more EcM root tips per stand BA, and the tips were 2.1 times longer, with 1.5 times higher RTD and about 1/3 lower N concentration. There was 19% higher proportion of root tips colonized by long‐distance exploration type forming EcM fungi in the southern forests indicating importance of EcM symbiont foraging strategy in fine root nutrient acquisition. In the boreal zone, we predict ca. 50% decrease in EcMB per stand BA with an increase of 2 °C annual mean temperature. Different fine root foraging strategies in boreal and temperate forests highlight the importance of complex studies on respective regulatory mechanisms in changing climate.  相似文献   

19.
The world's southernmost tree has been documented along with the condition and growth pattern of the world's southernmost forest on Isla Hornos, Chile. The distribution of trees at broad scales is strongly influenced by the abiotic environment and determining the position and condition of tree limits around the world is an important way to monitor global change. This offers an ideal way to test the relationship between the biogeography of individual species and the effects of climate/climate change. The limits of trees, as all ecotones, are also useful communication points – easily understood signposts of ecosystems and their change through time. The southernmost trees in the world exist at soil temperatures that correspond to the low range of global treeline temperatures, with a climate analogous to equatorial treeline despite the high latitude (56° S). However, their fine‐scale distribution is strongly influenced by wind exposure rather than simply aspect and/or elevation, as one would expect if temperature were limiting the range. Recent establishment further south was found from core forest areas, however significant dieback along wind‐exposed edges of the contiguous forest was also noted. In contrast to the wide extension of land where boreal or subarctic forests grow in the Northern Hemisphere, in the Southern Hemisphere Isla Hornos represents a single point embedded in the ocean under much milder climatic conditions. Documented shifts in wind intensity and direction as result of larger‐scale climate change will likely continue to strongly shape the condition of these unique forests.  相似文献   

20.
Aim Climate variability may be an important mediating agent of ecosystem dynamics in cold, arid regions such as the central Tianshan Mountains, north‐western China. Tree‐ring chronologies and the age structure of a Schrenk spruce (Picea schrenkiana) forest were developed to examine treeline dynamics in recent decades in relation to climatic variability. Of particular interest was whether tree‐ring growth and population recruitment patterns responded similarly to climate warming. Location The study was conducted in eight stands that ranged from 2500 m to 2750 m a.s.l. near the treeline in the Tianchi Nature Reserve (43°45′?43°59′ N, 88°00′?88°20′ E) in the central Xinjiang Uygur Autonomous Region, northwestern China. Methods Tree‐ring cores were collected and used to develop tree‐ring chronologies. The age of sampled trees was determined from basal cores sampled as close as possible to the ground. Population age structure and recruitment information were obtained using an age–d.b.h. (diameter at breast height) regression from the sampled cores and the d.b.h. measured on all trees in the plots. Ring‐width chronologies and tree age structure were both used to investigate the relationship between treeline dynamics and climate change. Results Comparisons with the climatic records showed that both the radial growth of trees and tree recruitment were influenced positively by temperature and precipitation in the cold high treeline zone, but the patterns of their responses differed. The annual variation in tree rings could be explained largely by the average monthly minimum temperatures during February and August of the current year and by the monthly precipitation of the previous August and January, which had a significant and positive effect on tree radial growth. P. schrenkiana recruitment was influenced mainly by consecutive years of high minimum summer temperatures and high precipitation during spring. Over the last several decades, the treeline did not show an obvious upward shift and new recruitment was rare. Some trees had established at the treeline at least 200 years ago. Recruitment increased until the early 20th century (1910s) but then decreased with poor recruitment over the past several decades (1950–2000). Main conclusions There were strong associations between climatic change and ring‐width patterns, and with recruitments in Schrenk spruce. Average minimum temperatures in February and August, and total precipitation in the previous August and January, had a positive effect on tree‐ring width, and several consecutive years of high minimum summer temperature and spring precipitation was a main factor favouring the establishment of P. schrenkiana following germination within the treeline ecotone. Both dendroclimatology and recruitment analysis were useful and compatible to understand and reconstruct treeline dynamics in the central Tianshan Mountains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号