首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This note describes a simple tray in which large numbers of radiolabeled nucleic acid samples mounted on paper or glass-fiber disks can be subjected to various treatments prior to counting by liquid scintillation spectrometry. The tray is useful for analysis of samples from ultracentrifugal fractionation of nucleic acids, for direct sampling of RNA or DNA polymerase assays in vitro, and for analysis of nucleic acid labeling in bacterial cultures.  相似文献   

2.
3.
Isolating high-quality RNA from latex of H. brasiliensis is a prerequisite to elucidating the molecular mechanisms of rubber biosynthesis and its regulation. Here, an improved protocol was developed for latex collection, transportation, storage, and RNA isolation. Compared with existing ones, our protocol eliminated liquid nitrogen for latex collection and subsequent low-temperature (− 70 °C) condition for latex storage, making it more convenient and feasible when latex was collected in remote sampling sites, and latex storage and RNA isolation were conducted in poorly-equipped laboratories. Different methods (UV absorbance scans, denaturing gel electrophoresis, autoradiograph monitoring of cDNA synthesis) were used to confirm the high quality of the RNA prepared with this protocol, whose usefulness was further verified by several practical applications, including construction of one high-quality cDNA library, cloning of the full-length cDNAs of 3 novel Hevea sucrose transporter genes, and semi-quantitative RT-PCR analysis of two rubber-biosynthesis essential genes and one sucrose transporter gene.  相似文献   

4.
The implementation of nucleic acid amplification technology (NAT) for detection of HCV, HIV-1 and HBV has undoubtedly contributed to the viral safety of blood, reducing the window period. One important matter related to the stability of RNA/DNA is the effect of the storage conditions on samples. In a previous work, we studied the stability of HCV RNA in plasma samples after storage at different temperatures. This work is an update on the follow-up of a sample containing 100 IU/ml HCV RNA for 5 years at -20 degrees C, showing no decrease in the initial titre. The nucleic acid stability of other viruses, such as HIV-1 and HBV, has also been studied. At -20 degrees C, samples containing HIV-1 were followed up for approximately 3 years and the results obtained show no decay in HIV-1 RNA detectability. Regardless of the HIV-1 RNA concentration, samples stored at 5 degrees C maintain their titre for at least 14 days. At 25 degrees C, the HIV-1 RNA half-life was determined at nearly 7 days. The HBV DNA, at 5 degrees C and 25 degrees C, is stable for at least 28 days, regardless of the initial titre.  相似文献   

5.
The mechanisms that allow broadly distributed aquatic plants to inhabit variable resource environments are unclear, yet understanding these mechanisms is important because broad environmental tolerance is often linked to invasiveness in terrestrial and aquatic plants. In an experimental stream, we examined the effects of different nutrient concentrations on the growth rate, biomass, and foliar nutrient concentrations of a cosmopolitan and potentially invasive aquatic plant, Nasturtium officinale (R. Br.). Nasturtium seedlings were grown under six nutrient treatment levels ranging from 0.64 μm N:0.09 μm P to 1531 μm N:204.13 μm P, for 8 weeks. Absolute and relative growth rates, and biomass of seedlings increased along a gradient of increasing nutrient concentrations but the effect of nutrient concentration was dependent on growing time. Seedling biomass varied among nutrient treatments in weeks 4 through 8 of the experiment, but did not differ in week 2. By week 8, the two highest nutrient treatments had greater biomass than the two lowest nutrient treatments. Foliar nitrogen concentration increased, whereas carbon concentration and C:N ratios decreased in response to increasing nutrients. Nasturtium grows slowly in nutrient-poor conditions but rapidly increases its growth, biomass accrual, and nitrogen storage as conditions become nutrient-rich. The response of Nasturtium to enhanced nutrient conditions may indicate how aquatic nuisance species successfully invade and dominate plant communities in streams, where resources often vary both temporally and spatially.  相似文献   

6.
The petroleum industry has an increasing interest in understanding the microbial communities driving biofouling and biocorrosion in reservoirs, wells, and infrastructure. However, sampling of the relevant produced fluids from subsurface environments for microbiological analyses is often challenged by high liquid pressures, workplace regulations, operator liability concerns, and remote sampling locations. These challenges result in infrequent sampling opportunities and the need to store and preserve the collected samples for several days or weeks. Maintaining a representative microbial community structure from produced fluid samples throughout storage and handling is essential for accurate results of downstream microbial analyses. Currently, no sample handling or storage recommendations exist for microbiological analyses of produced fluid samples. We used 16S rRNA gene sequencing to monitor the changes in microbial communities in hypersaline produced water stored at room temperature or at 4?°C for up to 7 days. We also analyzed storage at ?80?°C across a 3-week period. The results suggest ideal handling methods would include placing the collected sample on ice as soon as possible, but at least within 24?h, followed by shipping the samples on ice over 2–3?days, and finally, long-term storage in the ?20?°C or ?80?°C freezer.  相似文献   

7.
The purpose of this study is to evaluate whether sample preservation can affect the yield of nucleic acid extracts from environmental samples. Storage of microbial samples was studied using three sediment types of varying carbon contents (10–57% carbon of dry weight). Four different storage solutions were tested at three temperatures. Freezing of samples at ?20 °C or ?80 °C, either without preservative or in phenol–chloroform solution, retained nucleic acid quantities very efficiently. Storage of samples in phenol–chloroform solution at +4 °C also gave good yields except for sediment with extremely high-carbon content. Ethanol and RNAlater® preservation decreased nucleic acid yields drastically at all temperatures. To study how sample preservation may affect the result of microbial community analysis, one type of sediment was selected for length heterogeneity-PCR analysis and PCR cloning of the 16S rRNA genes. Ethanol and RNAlater® preservation caused a slight bias towards certain microbial types in the community analyses shown by underrepresentation of Bacteroidetes, Betaproteobacteria and Gammaproteobacteria-affiliated peak sizes and overrepresentation of Actinobacteria, Chloroflexi and Alphaproteobacteria-affiliated peak sizes. Based on the results of this study, preservation in phenol–chloroform solution can be recommended as an alternative storage method when freezing is not possible such as during extended field sampling; however, ethanol and RNAlater® may cause serious problems when used as preservatives for environmental samples containing humic acids.  相似文献   

8.
Abstract: An increase in the number of culturable organisms and a decrease in the diversity of recoverable microbiota have been reported in deep subsurface materials after storage perturbation. The magnitude of the microbial community shift in stored samples was more pronounced at 4°C compared to −20°C. Phospholipid fatty acid analyses and acridine orange direct counts indicated that biomass did not increase significantly throughout storage. Changes in the types of fatty acid methyl esters determined over the time course indicated that some of the microbial community shift was due to bacterial proliferation. However, the recovery of new bacterial types only after the storage process suggested that some of the increase in culturable cell count was due to the resuscitation of dormant microorganisms, possibly activated by some aspect of sampling, sample handling, and/or storage. Comparison of acridine orange direct counts with phospholipid and diglyceride fatty acid content suggested that much of the biomass may have been non-living at early time points; however, after 30 days of storage most of the bacterial biomass was viable.  相似文献   

9.
The effective and robust separation of biomolecules of interest from patient samples is an essential step in diagnostic applications. We present a platform for the fast extraction of nucleic acids from clinical specimens utilizing paramagnetic PMPs, an oil-water interface, a small permanent magnet and a microfluidic channel to separate and purify captured nucleic acids from lysate in less than one minute, circumventing the need for multiple washing steps and greatly simplifying and expediting the purification procedure. Our device was able to isolate influenza RNA from clinical nasopharyngeal swab samples with high efficiency when compared to the Ambion® MagMAXTM Viral RNA Isolation Kit, sufficiently separating nucleic acid analytes from PCR-inhibiting contaminants within the lysate while also critically maintaining high integrity of the viral genome. We find that this design has great potential for rapid, efficient and sensitive nucleic acid separation from patient sample.  相似文献   

10.
Direct isolation of nucleic acids from the environment may be useful in several respects, including the estimation of total biomass, detection of specific organisms and genes, estimations of species diversity, and cloning applications. We have developed a method that facilitates the concentration of microorganisms from aquatic samples and the extraction of their nucleic acids. Natural water samples of 350 to greater than 1,000 ml are concentrated on a single cylindrical filter membrane (type SVGS01015; Millipore Corp., Bedford, Mass.), and cell lysis and proteolysis are carried out within the filter housing. Crude, high-molecular-weight nucleic acid solutions are then drawn off the filter. These solutions can be immediately analyzed, concentrated, or purified, depending on the intended application. The method is simple, rapid, and economical and provides high-molecular-weight chromosomal DNA, plasmid DNA, and speciated RNAs which comigrate with 5S, 16S, and 23S rRNAs. The methods presented here should prove useful in studying both the ecology and the phylogeny of microbes that resist classical culture methods.  相似文献   

11.
One important issue related to Hepatitis C virus (HCV) RNA nucleic acid amplification testing (NAT) is the storage conditions of plasma samples in order to obtain reliable results. Many authors have reported that the storage conditions could affect the RNA stability and, hence, HCV RNA detection. We have studied HCV RNA stability in plasma samples after storage at different temperatures (-70, -20, 5 and 25 degrees C). Samples containing different HCV titres were stored and analysed by qualitative or quantitative NAT techniques at defined time points. At -20 degrees C, samples containing high HCV RNA titres were followed-up during approximately 2.6-2.7 years, samples with intermediate concentrations during approximately 1 year and samples with 100 International Units/millilitre (IU/ml) during 2.5 years. Independently of the HCV RNA concentration, the results show absence of decay in HCV RNA detectability. Samples stored at 25 degrees C maintain their HCV RNA titre during 14 days and samples at 5 degrees C were stable for at least 3 months.  相似文献   

12.
Thirty-one species of microsporidia, isolated from insects and stored in liquid nitrogen for up to 25 yr, were infectious when removed from liquid nitrogen. The natural hosts of all of these microsporidia were terrestrial insects, representing six different insect orders: Coleoptera, Diptera, Hemiptera, Hymenoptera, Lepidoptera, and Orthoptera. All microsporidia from terrestrial insects that were tested survived storage in liquid nitrogen, while Nosema algerae , a microsporidium from aquatic mosquito hosts did not survive freezing in liquid nitrogen. A Nosema species from the alfalfa weevil, Hypera postica , lost some infectivity in a water storage medium after 25 yr in liquid nitrogen. Liquid nitrogen storage of microsporidian spores in 50% and 100% glycerol media reduced loss of infectivity and is recommended for extended storage of microsporidia from terrestrial insect hosts.  相似文献   

13.
RNA sequencing is a popular next‐generation sequencing technique for assaying genome‐wide gene expression profiles. Nonetheless, it is susceptible to biases that are introduced by sample handling prior gene expression measurements. Two of the most common methods for preserving samples in both field‐based and laboratory conditions are submersion in RNAlater and flash freezing in liquid nitrogen. Flash freezing in liquid nitrogen can be impractical, particularly for field collections. RNAlater is a solution for stabilizing tissue for longer‐term storage as it rapidly permeates tissue to protect cellular RNA. In this study, we assessed genome‐wide expression patterns in 30‐day‐old fry collected from the same brood at the same time point that were flash‐frozen in liquid nitrogen and stored at ?80°C or submerged and stored in RNAlater at room temperature, simulating conditions of fieldwork. We show that sample storage is a significant factor influencing observed differential gene expression. In particular, genes with elevated GC content exhibit higher observed expression levels in liquid nitrogen flash‐freezing relative to RNAlater storage. Further, genes with higher expression in RNAlater relative to liquid nitrogen experience disproportionate enrichment for functional categories, many of which are involved in RNA processing. This suggests that RNAlater may elicit a physiological response that has the potential to bias biological interpretations of expression studies. The biases introduced to observed gene expression arising from mimicking many field‐based studies are substantial and should not be ignored.  相似文献   

14.
The ability to archive biological samples for subsequent nucleic acid analysis is essential for tissue specimens and forensic samples. FTA Card is a chemically treated filter paper designed for the collection and room temperature storage of biological samples for subsequent DNA analysis. Its usefulness for the preservation of biological samples for subsequent RNA analysis was tested. Here, we demonstrate that RNA in biological samples stored on FTA Cards is stable and can be used successfully for RT-PCR and northern blot analysis. RNA stability depends on the storage temperature and the type of biological specimen. RNA in mammalian cells stored on FTA Cards is stable for over one year at temperatures at or below -20 degrees C and for two to three months in samples stored at room temperature. For plant leaf, longer storage times (> 5 days) require temperatures at or below -70 degrees C following sample application. FTA Cards may constitute a method not only for convenient collection and storage of biological samples but also for rapid RT-PCR analysis of tissue and cell samples.  相似文献   

15.
DNA stable-isotope probing   总被引:3,自引:0,他引:3  
Stable-isotope probing is a method used in microbial ecology that provides a means by which specific functional groups of organisms that incorporate particular substrates are identified without the prerequisite of cultivation. Stable-isotope-labeled carbon (13C) or nitrogen (15N) sources are assimilated into microbial biomass of environmental samples. Separation and molecular analysis of labeled nucleic acids (DNA or RNA) reveals phylogenetic and functional information about the microorganisms responsible for the metabolism of a particular substrate. Here, we highlight general guidelines for incubating environmental samples with labeled substrate and provide a detailed protocol for separating labeled DNA from unlabeled community DNA. The protocol includes a modification of existing published methods, which maximizes the recovery of labeled DNA from CsCl gradients. The separation of DNA and retrieval of unlabeled and labeled fractions can be performed in 4-5 days, with much of the time being committed to the ultracentrifugation step.  相似文献   

16.
The atomic C:N ratio in photolithotrophs is a function of their content of nucleic acids, proteins, lipids, polysaccharides, and other organic materials, and varies from about 5 in some protein-rich microalgae to much higher values in macroalgae and in higher plants with relatively more structural and energy storage materials. These differences in C:N ratios among organisms means that there is more N assimilation by photosynthetic organisms in the oceans than on land despite the near equality of global photosynthetic C assimilation rates in the two environments. Aquatic organisms obtain inorganic C and inorganic N from the surrounding water. Terrestrial photolithotrophs obtain inorganic C, dinitrogen (by diazotrophy) and some combined N from the atmosphere, with the remaining combined N coming from the soil. The nitrogen cost of growth (biomass production rate per unit plant N) varies with the C:N ratio and specific growth rate of the organism. The C:N ratio of plants can be increased with no, or minimal, decrease in growth rate by switching from N-containing to N-free solutes involved in, for example, UV-B screening or by reducing the content of particular proteins. The water cost of growth (water lost per unit biomass gain) in terrestrial plants is a function of N supply and of C supply; water cost is lower with higher N and C availability. Water supply is also important in determining denitrification rates on land and on N (and C) fluxes from terrestrial to aquatic systems.  相似文献   

17.
We have developed a new method for mounting nucleic acids and nucleic acidprotein complexes for high-resolution electron microscopy, and have used it to characterize the interaction between ribosomal protein S1 and single-stranded nucleic acids. We find that SI unwinds most, but not all of the secondary structure present in MS2 RNA and øX174 viral DNA. The binding of S1 to DNA and RNA is not highly co-operative, and has a stoichiometry of one S1 per 10 to 15 nucleotides. We have not observed any tendency for S1 nucleic acid complexes to form aggregates in either 0·01 m-Na+ or 0·1 m-Na+. An analogous protein isolated from the 30 S ribosomal subunit of Caulobacter crescentus is indistinguishable from Escherichia coli S1 in these studies. The mono-N-ethylmaleimide derivative of E. coli S1 will bind to both MS2 RNA and øX174 viral DNA with a stoichiometry of one N-ethylmaleimide-S1 per 10 to 15 nucleotides, but will not unwind the secondary structure of either of them.  相似文献   

18.
19.
酿酒酵母菌核糖体RNA沉降系数的初步研究   总被引:1,自引:0,他引:1  
为研究酿酒酵母菌核糖体RNA(rRNA)的沉降系数,用酶解法和液氮研磨法裂解酿酒酵母菌的细胞壁,Trizol Reagent提取其总RNA,同时提取小白鼠和斑马鱼的总RNA进行比较.经紫外分光光度计检测和甲醛琼脂糖变性胶电泳后,RNA纯度好,条带清晰,无弥散或降解现象.试验发现,与酶解法相比,用液氮研磨法破碎酿酒酵母菌细胞壁提取总RNA所用的成本低,时间少,产率和纯度高,适用于少量样品RNA的提取.同时,酿酒酵母菌与斑马鱼和小白鼠总RNA电泳图谱表明,三者的"18S rRNA"在条带大小方面差异较小,而"28S rRNA"差异较大.利用分析型离心机测得的酿酒酵母菌两个较大rRNA的沉降系数分别为24.7S和18.1S.研究结果表明了真核生物rRNA种类的多样性.  相似文献   

20.
The soil microbiome is inherently complex with high biological diversity, and spatial heterogeneity typically occurring on the submillimetre scale. To study the microbial ecology of soils, and other microbiomes, biomolecules, that is, nucleic acids and proteins, must be efficiently and reliably co‐recovered from the same biological samples. Commercial kits are currently available for the co‐extraction of DNA, RNA and proteins but none has been developed for soil samples. We present a new protocol drawing on existing phenol–chloroform‐based methods for nucleic acids co‐extraction but incorporating targeted precipitation of proteins from the phenol phase. The protocol is cost‐effective and robust, and easily implemented using reagents commonly available in laboratories. The method is estimated to be eight times cheaper than using disparate commercial kits for the isolation of DNA and/or RNA, and proteins, from soil. The method is effective, providing good quality biomolecules from a diverse range of soil types, with clay contents varying from 9.5% to 35.1%, which we successfully used for downstream, high‐throughput gene sequencing and metaproteomics. Additionally, we demonstrate that the protocol can also be easily implemented for biomolecule co‐extraction from other complex microbiome samples, including cattle slurry and microbial communities recovered from anaerobic bioreactors, as well as from Gram‐positive and Gram‐negative pure cultures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号