首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Dendroprovenancing studies frequently use site chronologies to identify the origin of archaeological and historical timber. However, radial growth (tree-ring width, TRW) of tree species is influenced by both local and regional climate scales. Here we investigate how the use of annually-resolved Blue Intensity (BI) measurements can enhance dendroprovenancing precision of black pine (Pinus nigra Arn.) and Scots pine (P. sylvestris L.) on the Iberian Peninsula. Principal Component Gradient Analyses (PCGA) was used to assess geographical patterns of annual variation in different TRW and BI proxies of pine trees from two mountain ranges in the Central System and Andalusia in Spain. Local climate-growth relationships were quantified to identify underlying causes of identified groups with diverse growth patterns. Two distinct elevational groups were observed when performing PCGA on latewood BI time series with the response to summer drought as the main factor causing the differences. Both P. nigra and P. sylvestris BI time series were found to be more related to summer drought at low-elevation sites showing an increase in sensitivity at lower latitudes. PCGA of TRW time series allowed to discriminate between trees from Andalusia and Central System within the elevation groups. February and October temperatures were found to be the main climatic factors causing the differences in TRW time series among the high- elevation sites, whereas for low-elevation trees it was the average winter temperature influencing TRW. A subsequent leave-one-out analyses confirmed that including latewood BI time series improves the precision of dendroprovenancing of pine wood in the Iberian Peninsula.  相似文献   

2.
In this study, we provide a detailed analysis of tree growth and water status in relation to climate of three major species of forest trees in lower regions of Bavaria, Southern Germany: Scots pine (Pinus sylvestris), Norway spruce (Picea abies) and common oak (Quercus robur). Tree-ring chronologies and latewood δ13C were used to derive measures for drought reaction across trees of different dimensions: growth reduction associated with drought years, long-term growth/climate relations and stomatal control on photosynthesis. For Scots pine, growth/climate relations indicated a stronger limitation of radial growth by high summer temperatures and low summer precipitation in smaller trees in contrast to larger trees. This is corroborated by a stronger stomatal control on photosynthesis for smaller pine trees under average conditions. In dry years, however, larger pine trees exhibited stronger growth reductions. For Norway spruce, a significantly stronger correlation of tree-ring width with summer temperatures and summer precipitation was found for larger trees. Additionally, for Norway spruce there is evidence for a change in competition mode from size-asymmetric competition under conditions with sufficient soil water supply to a more size-symmetric competition under dry conditions. Smaller oak trees showed a weaker stomatal control on photosynthesis under both dry and average conditions, which is also reflected by a significantly faster recovery of tree-ring growth after extreme drought events in smaller oak trees. The observed patterns are discussed in the context of the limitation-caused matter partitioning hypothesis and possible species-specific ontogenetic modifications.  相似文献   

3.
Fennoscandia is one of the most prominent regions in the world for dendroclimatological research. Yet, millennium-long tree-ring chronologies in this region have mainly been developed from Scots pine (Pinus sylvestris L.). To explore the possibility of building long-term chronologies using other dominating tree species in the region, this paper presents the first two millennia-long Norway spruce (Picea abies (L.) Karst.) ring-width chronology from Northern Europe. The chronology is composed of living trees and subfossil wood and covers the period from BCE 115 to 2012 CE. A sufficiently replicated and robust chronology is built for the past 360 years back to 1649 CE. Further back in time, the common growth signal is reduced, and hence the reliability of the earlier section of the chronology is lower. The climate calibration results show that the spruce ring-width correlation with June-July mean temperatures over the period 1901–2012 is positive and significant (r = 0.6, p < 0.01) and representing the temperature variability of a spatial domain covering west-central Scandinavia. These results show the ability of Norway spruce to serve as a proxy for paleoclimatic research and the possibility of extending the chronology far back in time in the region, and therefore present an opportunity for carrying out new inter-and intraregional proxy analyses.  相似文献   

4.
Scots pine tree-ring width (TRW) data from Jämtland in the Central Scandinavian Mountains has been used to reconstruct summer temperatures back to 1630 BC. However, it was recently shown that this reconstruction was of limited spatial importance. In this paper, we aim to explain this limitation in the TRW data as a temperature proxy, as well as assess the temperature information from new maximum latewood density (MXD) data. Furthermore, the effect of two standardization methods is evaluated: regional curve standardization (RCS) and a more traditional standardization, termed “non-RCS” standardization. Three TRW and two MXD sites were analyzed. Our results showed that despite the proximity to the Norwegian Sea, the MXD data is a powerful temperature proxy. Difference among sites in TRW data, especially on decadal timescales, together with a lower temperature association, suggests that other factors, such as changes in the local climate regimes, weakens the temperature signal. In general the RCS method overestimates pine growth trends in the latter half of the twentieth century, a feature not seen when using “non-RCS” standardization. This is likely due to an age-bias of older trees in most recent parts of the tree-ring chronologies. This effect will have consequences when reconstructing climate with tree-ring data. To overcome this problem, all age-classes should be represented throughout a chronology. If this is not possible, the use of “non-RCS” standardization is recommended, although this method results in a loss of low-frequency variability.  相似文献   

5.
The spatial coverage of tree-ring chronologies in tropical South America is low compared to the extratropics, particularly in remote regions. Tree-ring dating from such tropical sites is limited by the generally weak temperature seasonality, complex coloration, and indistinct anatomical morphology in some tree species. As a result, there is a need to complement traditional methods of dendrochronology with innovative and independent approaches. Here, we supplement traditional tree-ring methods via the use of radiocarbon analyses to detect partial missing rings and/or false rings, and wood anatomical techniques to precisely delineate tree-ring boundaries. In so doing we present and confirm the annual periodicity of the first tree-ring width (TRW) chronology spanning from 1814 to 2017 for Juglans boliviana (‘nogal’), a tree species growing in a mid-elevation tropical moist forest in northern Bolivia. We collected 25 core samples and 4 cross-sections from living and recently harvested canopy-dominant trees, respectively. The sampled trees were growing in the Madidi National Park and had a mean age of 115 years old, with certain trees growing for over 200 years. Comparison of (residual and standard) TRW chronologies to monthly climate variables shows significant negative relationships to prior year May-August maximum temperatures (r = −0.54, p < 0.05) and positive relationships to dry season May-October precipitation (r = 0.60, p < 0.05) before the current year growing season. Additionally, the radial growth of Juglans boliviana shows a significant positive trend since 1979. Our findings describe a new and promising tree species for dendrochronology due to its longevity and highlight interdisciplinary techniques that can be used to expand the current tree-ring network in Bolivia and the greater South American tropics.  相似文献   

6.
The plasticity of climate-growth relationships of trees is one of the main factors determining the climate-induced changes in forest productivity and composition. In this study, high-frequency variation of tree-ring width (TRW) of four native and three alien tree species and two hybrids of Populus L. growing in Latvia (hemiboreal zone) was compared using a principal component analysis based on TRW indices for the period 1965–2009. The effect of climatic factors was assessed using a bootstrapped correlation analysis. Influence of common climatic factors related to the length of the vegetation season, winter temperature, and water regime in summer was traced in the TRW of the studied species and hybrids. The combination and effect of the identified factors differed by species (and hybrids), to a certain extent explaining the diversity of TRW patterns. Nevertheless, some similarities among the species were also observed, suggesting the plasticity of growth response. Scots pine was generally sensitive to winter temperatures, but Norway spruce was mainly sensitive to summer water regime, while black alder was sensitive to winter temperatures and precipitation in spring. In contrast, silver birch showed the lowest sensitivity to the tested climatic factors (demonstrating sensitivity to winter precipitation in a few sites), suggesting tolerance to weather fluctuations. The TRW of the alien species was primarily sensitive to climatic factors related to water regime in the summer of the year preceding the formation of tree-ring, implying differences in mechanisms regulating wood increment. Nevertheless, temperature in the dormant period was significant for European larch in a few sites, suggesting sensitivity to cold damage. The variation of TRW of Populus hybrids diverged from others, as their growth was negatively correlated with the temperature in autumn, spring, and summer and positively correlated with water balance. Although the annual water balance in Latvia is positive, the effect of water deficit on tree growth was apparent.  相似文献   

7.
The blue intensity (BI) technique provides opportunities to obtain surrogates to tree-ring density for reconstructing summer temperatures in high-latitude regions. In this study, we compare latewood BI (LBI) and delta BI (DBI), with the conventional X-ray maximum latewood density (MXD) and tree-ring width (TRW) data using 178 living trees of black spruce (Picea mariana (Mill.) B.S.P.), one of the most dominant species of conifers in the Northern Hemisphere, from 17 sites across the eastern Canadian taiga. The regional LBI and DBI chronologies are highly correlated to that of MXD (Pearson’s r = 0.97 and 0.92, respectively), while DBI is also similar to TRW (Pearson’s r = 0.67). Both LBI and DBI exhibit stronger responses to the May–August temperatures than TRW over larger time and spatial scales. However, only DBI is comparable to MXD data from inter-annual to decadal timescales. Low-frequency components of LBI data are likely distorted by color biases even if no obvious discoloration is present, as well as by the potentially low measurement resolution, leading to an overall weaker temperature sensitivity compared to the MXD data. Resampling experiments suggest that a minimum replication of 10 trees is needed to retain ≥90 % of the optimal temperature signal for MXD, LBI, and DBI data, and a minimum of 20 trees is required for TRW data.  相似文献   

8.
Tree-ring width (TRW) chronologies have been widely and long-time used to reconstruct past climate variations in the Andes in South America. The use of tree-ring isotopic chronologies is still not widespread in this region although they have proved to be very efficient climate proxies. Araucaria araucana (Molina) K. Koch is a conifer tree species with some multi-century-old individuals that offers an excellent opportunity to measure stable carbon (δ13C) and oxygen (δ18O) isotopes in cellulose from long tree-ring records. Here, we explore whether current or stored carbohydrates are used for A. araucana radial growth and we assess the potential of a tree-ring isotopic record of to study past climate variability. Eleven A. araucana cores from a dry and high-elevation forest at the northern border of Patagonia, Argentina (38°55’S, 70°44’W) were selected for stable isotopes analyses. The strong correlation between the isotopic composition of the first and second parts of the same ring, but also the strong relationships between δ13C and δ18O records with climate parameters of the current growing season such as temperature, show that tree-rings are built mostly with carbohydrates produced during the current growing season with little or no supply from storage or reserves. This finding leads to reconsidering the interpretation of the legacy effect (i.e. ecological memory effects) based on the previously described strong negative correlation between A. araucana TRW chronologies and previous growing season temperature and suggests a dependence of radial tree growth on the level of development of organs. Regarding climate sensitivity, the A. araucana tree-ring δ13C chronology is strongly related to current summer temperature (r = 0.82, p < 0.001), vapour pressure deficit (VPD; r = 0.79, p < 0.001), precipitation (r = −0.53, p < 0.001) and SPEI2 (r = −0.73, p < 0.001). These strong relationships support the use of δ13C of A. araucana tree-ring cellulose to reconstruct past temperature variations at regional scale in relation with large-atmospheric drivers of climate variability such as the Southern Annular Mode. The A. araucana tree-ring δ18O chronology is also correlated with temperature (r = 0.42, p < 0.01) and VPD (r = 0.45, p < 0.01) of the winter preceding the growing season. This suggests that trees are using water from precipitation infiltrated in the soil during the previous recharge period (autumn-winter). The weak correlations of δ18O with current summer atmospheric conditions and the decoupling between δ18O and δ13C, may be due to a high rate of oxygen exchange between sugars and xylem water (Pex) during cellulose synthesis, which dampens evaporative isotopic fractionation.  相似文献   

9.
We propose a technique for separating the climatic signal which is contained in two tree-ring parameters widely used in dendroclimatology. The method is based on the removal of the relationship between tree-ring width (TRW) and maximum latewood density (MXD) observed for narrow tree rings from high latitudes. The new technique is tested on data from three larch stands located along the northern timberline in Eurasia. Correlations were calculated between the temperatures of pentads (five consecutive days), TRW chronologies and MXD chronologies calculated according to the standard and proposed methods. The analysis confirms the great importance of summer temperature for tree radial growth and tree-ring formation. TRW is positively correlated with the temperature of four to eight pentads (depending on the region) at the beginning of the growth season, but MXD as obtained by the standard technique is correlated with temperature over a much longer period. For maximum density series from which the relationship between MXD and TRW has been removed (MXD′), there is a clear correlation with temperatures in the second part of the growing season. These results are consistent with the known dynamics of tree-ring growth in high latitudes and mechanisms of tree-ring formation.  相似文献   

10.
While the forest-tundra zone in Siberia, Russia has been dendroclimatologically well-studied in recent decades, much less emphasis has been given to a wide belt of northern taiga larch forests located to the south. In this study, climate and local site conditions are explored to trace their influence on radial growth of Gmelin larch (Larix gmelinii (Rupr.) Rupr.) trees developed on permafrost soils in the northern taiga. Three dendrochronological sites characterized by great differences in thermo-hydrological regime of soils were established along a short (ca. 100 m long) transect: on a river bank (RB), at riparian zone of a stream (RZ) and on a terrace (TER). Comparative analysis of the rate and year-to-year dynamics of tree radial growth among sites revealed considerable difference in both raw and standardized tree-ring width (TRW) chronologies obtained for the RZ site, characterized by shallow soil active layer depth and saturated soils. Results of dendroclimatic analysis indicated that tree-ring growth at all the sites is mostly defined by climatic conditions of a previous year and precipitation has stronger effect on TRW chronologies in comparison to the air temperatures. Remarkably, a great difference in the climatic response of TRW chronologies has been obtained for trees growing within a very short distance from each other. The positive relation of tree-ring growth with precipitation, and negative to temperature was observed in the dry site RB. In contrary, precipitation negatively and temperature positively influenced tree radial growth of larch at the water saturated RZ. Thus, a complicate response of northern Siberian larch forest productivity to the possible climate changes is expected due to great mosaic of site conditions and variability of environmental factors controlling tree-ring growth at different sites. Our study demonstrates the new possibilities for the future dendroclimatic research in the region, as various climatic parameters can be reconstructed from tree-ring chronologies obtained for different sites.  相似文献   

11.
Tree ring-based temperature reconstructions are preferably derived from maximum latewood density (MXD) compared to tree-ring width (TRW). Although temperature signals in MXD are less dependent on site ecology, systematic analyses of the effects of elevation and slope aspect on ring formation are still lacking. Here, we assess the climate sensitivity of MXD and TRW chronologies from six larch (Larix decidua Mill.) sites across the Simplon valley in the southwestern Swiss Alps, representing elevations from 1400 to 2150 m asl on both north- and south-facing slopes. We find decreasing temperature signals with decreasing elevation in MXD and TRW, though correlation coefficients are generally higher for MXD and on the warmer and dryer south exposed slopes. While the greatest temperature signals are found for MJJA at highest elevations with r = 0.71 for MXD and r = 0.57 for TRW (both p < 0.05 and for the 1928–2009 common period), MXD still correlates significantly positive at the lowest elevation site that is ~750 m below the treeline. Our findings indicate the suitability of MXD over TRW for temperature reconstructions when using historical wood sources of unknown origin.  相似文献   

12.
We investigated whether vessel time series of Holm oak (Quercus ilex L.), a diffuse to semi-ring-porous species, can record a climatic signal which differs from the signal encoded in tree-ring width (TRW). The study was conducted in ten Q. ilex trees from a coppice stand in northeast Spain. Chronologies of TRW, mean vessel area (MVA) and maximum vessel area (MAX) were developed and correlated with climate data, for the period 1985–2004 (20 years). Our results indicate that vessel features contain environmental information that is different from that stored in TRW. MAX chronologies correlate better to early spring precipitation (April–May) than TRW chronologies, and so does MVA of the largest 20–25 vessels from the first third of the ring with late spring precipitation (May–June). Also, the combination of MVA and TRW is a better predictor of summer precipitation. This explorative study clearly shows that vessel features can complement the climatic signal of TRW increasing the resolution of the climate reconstructions for the Mediterranean region.  相似文献   

13.
Clanwilliam cedar (Widdringtonia cedarbergensis; WICE), a long-lived conifer with distinct tree rings in Cape Province, South Africa, has potential to provide a unique high-resolution climate proxy for southern Africa. However, the climate signal in WICE tree-ring width (TRW) is weak and the dendroclimatic potential of other WICE tree-ring parameters therefore needs to be explored. Here, we investigate the climatic signal in various tree-ring parameters, including TRW, Minimum Density (MND), Maximum Latewood Density (MXD), Maximum Latewood Blue Intensity (MXBI), and stable carbon and oxygen isotopes (δ18O and δ13C) measured in WICE samples collected in 1978. MND was negatively influenced by early spring (October-November) precipitation whereas TRW was positively influenced by spring November-December precipitation. MXD was negatively influenced by autumn (April-May) temperature whereas MXBI was not influenced by temperature. Both MXD and MXBI were negatively influenced by January-March and January-May precipitation respectively. We did not find a significant climate signal in either of the stable isotope time series, which were measured on a limited number of samples. WICE can live to be at least 356 years old and the current TRW chronology extends back to 1564 CE. The development of full-length chronologies of alternative tree-ring parameters, particularly MND, would allow for an annually resolved, multi-century spring precipitation reconstruction for this region in southern Africa, where vulnerability to future climate change is high.  相似文献   

14.
We present a network of thirteen annual ring-width chronologies from high elevation whitebark pine (Pinus albicaulis Engelm.) sites in the western Canadian Cordillera in order to assess the dendroclimatic potential of this long-lived tree species. The temperature signal within the chronologies is complex and strongly influenced by diverging trends in the summer temperature and ring-width records from across the region. A first differences transformation of the tree-ring and temperature records illustrates a loss of frequency coherence in growth response to summer temperatures following reduced radial growth in the 1950s. Prior to reduced growth, we note a positive association with summer temperatures for both first differenced (rd = 0.60) and traditional (r = 0.50) records. Following reduced growth, the association at first differences is maintained (rd = 0.49) whereas there is a change in the lower frequency component of tree growth response to summer temperatures (r = ?0.34). We suggest the cause of this reduced temperature sensitivity is related to the interaction between diurnal temperature and cloud cover patterns, the hydrological regime of snowpack, and site conditions which have been amenable to the initiation of moisture stress during the latter half of the 20th century. Reduced radial growth is coincident with the arrival of white pine blister rust (Cronatium ribicola J.C. Fisch. ex Raben) into the study region which suggests this infestation may be related to the observed reduction in radial growth. Whitebark pine has considerable potential for the field of dendroclimatology. Unfortunately, the decline of the species due to the combined effects of climate change, white pine blister rust, mountain pine beetle (Dendroctonus ponderosae Hopk.), and forest fire exclusion practices indicate this potential may remain unfulfilled.  相似文献   

15.
Tree-ring widths and stable carbon and oxygen isotopes of five European larch trees from Lötschental, Switzerland were investigated for the period 1900–2004. The objective was to test the suitability of each of these parameters for high-frequency climate reconstructions. This is of special interest with regard to the problem of cyclic larch budmoth (LBM) infestations of alpine larch trees. The results clearly demonstrate that tree-ring width chronologies are not suitable for high-frequency reconstructions because infestations lead to variably reduced tree-ring increments, largely suppressing climate signals. On the other hand, the stable isotope chronologies proved less affected by larch budmoth outbreaks, independent of the strength of the infestations. The correlation of the carbon isotopes with summer temperatures was especially high (r = 0.73) and with precipitation lower but nevertheless significant (r = ?0.43). Oxygen isotopes were also correlated with summer temperature (r = 0.46); however, a certain perturbation of normal oxygen isotope signatures due to LBM outbreaks was evident. Contrary to tree-ring widths, none of the LBM outbreaks caused a significant disturbance of the current year’s isotopic climate signal and, most importantly, there were no delayed effects in the following years. Thus, stable carbon isotopes in tree-ring chronologies of the European larch provide an excellent opportunity for high-frequency temperature reconstructions.  相似文献   

16.
Since the late-19th century, the Middle Volga has played a major role in the supplying grains and other agricultural products to European Russia. The study area is located in the south of sub-boreal forest in the north and in the forest-steppe in the south. Due to large seasonal differences in rainfall, agriculture in the region, especially in its southern part, strongly depends on hydroclimate variability. According to climate model forecasts, the frequency and intensity of droughts in the Middle Volga are expected to increase due to ongoing warming. Here we introduce 16 new Scots pine tree ring width (TRW) chronologies (Pinus sylvestris L.) from the region and use a dendroclimatological approach to determine what climatic factors drive radial growth. Our analysis revealed contrasting climate signals across the network of sites with chronologies from the north showing weak correlation with May temperature and precipitation (r = −0.27 and r = 0.28, respectively), while the southern sites demonstrated stronger relationships with climate in the first half of the vegetation season (May to July temperature, r = −0.26 to −0.43; May and July precipitation, r = 0.29–0.35). The northern sites did not demonstrate a strong growth response to the self-calibrated Palmer drought severity index (scPDSI) whereas the southern group was more drought sensitive had a strong drought response and positively correlates with scPDSI for the period from previous July to the current October (r = 0.27–0.56). Based on this strong relationship between southern TRW and scPDSI we reconstruct June-September scPDSI using the most sensitive sites (T04S, T06S, T08S) for the period from 1830 to 2014. The model explains 31% of variance. Our reconstruction shows droughts in 19th century: in 1831–33, 1851, 1853, 1859, 1863–65, 1880, 1891–92, 1897–98 and in 20–21th centuries: in 1906, 1921, 1936, 1939, 1967, 1975, 1996, 2010.  相似文献   

17.
Tree-ring research in the Altai-Sayan Mountains so far only considered a limited number of well-replicated site chronologies. The dendroecological and palaeoclimatological potential and limitations of large parts of south-central Russia therefore remain rather unexplored. Here, we present a newly updated network of 13 larch (Larix sibirica Ldb.) tree-ring width (TRW) chronologies from mid to higher elevations along a nearly 1000 km west-to-east transect across the greater Altai-Sayan region. All data were sampled between 2009 and 2014. The corresponding site chronologies cover periods from 440 to 860 years. The highest TRW agreement is found between chronologies ≥2200 m asl, whereas the material from lower elevations reveals overall less synchronized interannual to longer-term growth variability. While fluctuations in average June–July temperature predominantly contribute to the growth at higher elevations, arid air masses from Mongolia mainly affect TRW formation at lower elevations. Our results are indicative for the dendroclimatological potential of the Altai-Sayan Mountains, where both, variation in summer temperature and hydroclimate can be robustly reconstructed back in time. These findings are valid for a huge region in central Asia where reliable meteorological observations are spatially scarce and temporally restricted to the second half of the 20th century. The development of new high-resolution climate reconstruction over several centuries to millennia will further appear beneficial for timely endeavors at the interface of archaeology, climatology and history.  相似文献   

18.
Climate change is most evident on the periphery of species distribution ranges. Using four tree-ring chronologies, we identified the most important climatic factors influencing the radial growth of black pine growing along an elevational transect on the eastern slope of Mount Ai-Petri (Crimean Peninsula), at the northernmost part of its range. The relationship between tree-ring width and climate was determined using response function analysis. Results indicate an increase in correlation between radial growth and hydrothermal data along the transect: from a near absence of any correlation at the lowest elevation to r = 0.6 at the top. This change in response was not only caused by differences in climatic variables, but also related to topography, soil, and bedrock features. The currently ongoing aridization may lead to a decrease in the stability and persistence of black pine stands only in the upper parts of Mount Ai-Petri.  相似文献   

19.
Radial growth of boreal tree species is only rarely studied in riparian habitats. Here we investigated chronologies of earlywood, latewood, and annual ring widths and blue intensity (BI; a surrogate to latewood density) from riparian lake shore and upland forest interior pines (Pinus sylvestris L.) growing in boreal forest in eastern Finland. Riparian and upland chronologies were compared to examine differences in the pine growth variability and growth response to climatic variation in the two habitats. It was found that the climatic variables showing statistically significant correlations with the tree-ring chronologies were related to snow conditions at the start of the growing season. Deeper snowpack led to reduced upland pine growth, possibly due to delayed snowmelt and thus postponed onset of the growing season. Warm late winters were followed by increased riparian pine growth because of earlier start of the snow-melt season and thus a lower maximum early summer lake level. Moreover, riparian pines reacted negatively to increased rainfall in June, whereas the upland pines showed a positive response. Latewood growth reacted significantly to summer temperatures. The BI chronology showed a strong correlation with warm-season temperatures, indicating an encouraging possibility of summer temperature reconstruction using middle/south boreal pine tree-ring archives.  相似文献   

20.
Knowledge of tree growth/climate response relationships is important to dendroecological studies and dendroclimatic reconstructions, particularly in the Southeastern Coastal Plain where few such studies have been attempted. To this end, we developed tree-ring chronologies of total ring width, earlywood width, and latewood width from longleaf pine (Pinus palustris Mill.) at three sites in the Southeastern Coastal Plain to examine the climate–growth relationships for this tree species. The length of these chronologies is unprecedented for southern pine chronologies in the Southeast. We compared the tree-ring chronologies to monthly temperature, precipitation, Palmer drought severity index (PDSI), and Palmer hydrological drought index (PHDI) data from the pertinent climate divisions. We found that PDSI and PHDI have the highest correlation with longleaf pine growth, and the strongest relationships between longleaf pine growth and these variables occur between July and November. Precipitation in the spring and summer was also positively related to growth at all sites. The relationship between temperature and growth was the weakest among all climate variables, but warm summer temperatures had a consistent, negative relationship with longleaf pine growth. The climate signal in the latewood was generally more robust than for total ring width and earlywood width.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号