首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
卢训令  赵海鹏  孙金标  杨光 《生态学报》2019,39(9):3133-3143
农业景观中的鸟类多样性对生态系统功能和服务的形成与维持具有重要作用。黄淮平原区是我国最重要的农业景观区之一,为探讨区域内农业景观中鸟类多样性特征和不同生境间的差异,在研究区农业景观不同生境中布设样点,调查繁殖期鸟类多样性特征。结果显示:(1)共记录到32科、49属、66种的10044只个体,但优势科属明显;(2)物种丰富度、多样性和均匀度均表现出在沟渠、湖泊生境中较高,农田和村庄生境中相对较低,但物种多度呈现出村庄生境中最高,其次是沟渠和农田生境,湖泊生境中最低;(3)在区系分布上,各生境中均以广布种为主,生态类群上,鸣禽在各生境中均占绝对优势,涉禽和游禽主要分布在沟渠和湖泊生境中,从居留型来看,留鸟是各生境中的主导类群,候鸟、旅鸟和迷鸟比例很低;(4)鸟类群落异质性分析显示,各生境间的相似性总体上较高,表明区域内农业景观中鸟类组成具有较高的重叠性。研究显示农业景观中湖泊和沟渠的存在能有效的提高区域鸟类的丰富度和多样性,而沟渠的存在能有效的提高鸟类个体多度,农田和村庄有助于特定类群多度的增加,因此在未来的区域持续农业景观的构建中一方面要重视自然、半自然非农生境的作用,另一方面也不能忽视不同生物类群对景观异质性响应和对生境特征需求的差异。  相似文献   

2.
A major conservation challenge in mosaic landscapes is to understand how trait‐specific responses to habitat edges affect bird communities, including potential cascading effects on bird functions providing ecosystem services to forests, such as pest control. Here, we examined how bird species richness, abundance and community composition varied from interior forest habitats and their edges into adjacent open habitats, within a multi‐regional sampling scheme. We further analyzed variations in Conservation Value Index (CVI), Community Specialization Index (CSI) and functional traits across the forest‐edge‐open habitat gradient. Bird species richness, total abundance and CVI were significantly higher at forest edges while CSI peaked at interior open habitats, i.e., furthest from forest edge. In addition, there were important variations in trait‐ and species‐specific responses to forest edges among bird communities. Positive responses to forest edges were found for several forest bird species with unfavorable conservation status. These species were in general insectivores, understorey gleaners, cavity nesters and long‐distance migrants, all traits that displayed higher abundance at forest edges than in forest interiors or adjacent open habitats. Furthermore, consistently with predictions, negative edge effects were recorded in some forest specialist birds and in most open‐habitat birds, showing increasing densities from edges to interior habitats. We thus suggest that increasing landscape‐scale habitat complexity would be beneficial to declining species living in mosaic landscapes combining small woodlands and open habitats. Edge effects between forests and adjacent open habitats may also favor bird functional guilds providing valuable ecosystem services to forests in longstanding fragmented landscapes.  相似文献   

3.
Land-use intensification and loss of semi-natural habitats have induced a severe decline of bee diversity in agricultural landscapes. Semi-natural habitats like calcareous grasslands are among the most important bee habitats in central Europe, but they are threatened by decreasing habitat area and quality, and by homogenization of the surrounding landscape affecting both landscape composition and configuration. In this study we tested the importance of habitat area, quality and connectivity as well as landscape composition and configuration on wild bees in calcareous grasslands. We made detailed trait-specific analyses as bees with different traits might differ in their response to the tested factors. Species richness and abundance of wild bees were surveyed on 23 calcareous grassland patches in Southern Germany with independent gradients in local and landscape factors. Total wild bee richness was positively affected by complex landscape configuration, large habitat area and high habitat quality (i.e. steep slopes). Cuckoo bee richness was positively affected by complex landscape configuration and large habitat area whereas habitat specialists were only affected by the local factors habitat area and habitat quality. Small social generalists were positively influenced by habitat area whereas large social generalists (bumblebees) were positively affected by landscape composition (high percentage of semi-natural habitats). Our results emphasize a strong dependence of habitat specialists on local habitat characteristics, whereas cuckoo bees and bumblebees are more likely affected by the surrounding landscape. We conclude that a combination of large high-quality patches and heterogeneous landscapes maintains high bee species richness and communities with diverse trait composition. Such diverse communities might stabilize pollination services provided to crops and wild plants on local and landscape scales.  相似文献   

4.
Å. Berg 《Bird Study》2013,60(2):153-165
CapsuleThe amount of forest (at local and landscape scales) and occurrence of residual habitats at the local scale are shown to be the major factors influencing bird community composition in farmland–forest landscapes in central Sweden.

Aims To investigate the importance of local habitat and landscape structure for breeding birds in farmland–forest landscapes in central Sweden.

Methods Breeding birds were censused at 292 points. A detailed habitat mapping was made within 300 m of the points. Within a 300–600 m radius only two major habitats (forests and arable fields) were identified.

Results Cluster analyses of bird communities identified three site types that also differed in habitat composition: (i) partially forested sites in forested landscapes; (ii) heterogeneous sites with residual habitats in mosaic landscapes; and (iii) field-dominated farmland sites in open landscapes. A total of 19 of 25 farmland bird species (restricted to farmland or using both farmland and forest) had the highest abundance in farmland sites with mosaics of forest and farmland, while only six farmland species had the highest abundance in field-dominated sites. The bird community changed from being dominated by farmland species to being dominated by forest species (common in forest landscapes without farmland) at small proportions (10–20%) of forest at the local scale. A major difference in habitat composition between heterogeneous and field-dominated sites was the occurrence of different residual habitats (e.g. shrubby areas and seminatural grasslands). These habitats seemed to influence bird community composition more than land-use, despite covering <10% of the area. Seminatural grasslands were important for bird community composition and species-richness, but grazing seemed to be less important. Among different land-use types, cereal crops were the least preferred fields. Set-asides with tall vegetation and short rotation coppices were positively associated with species-richness of farmland birds.

Conclusion In general, the composition of the landscape was important for bird community composition, although amount and distribution of forests, occurrence of residual habitats and land-use of fields at the local scale had the strongest influence on bird community composition. The possible implications of these patterns for managing farmland–forest landscapes are discussed.  相似文献   

5.
Rice fields are common throughout the agricultural landscape of Southeast Asia and sustain various bird species. These birds can provide ecosystem services, such as pest control, that improve agricultural yields whilst minimising the use of agrochemicals. This study quantified avian biodiversity in rice production landscapes during three farming stages in Peninsular Malaysia. In Malaysia, rice fields can be an important habitat for migrating birds due to Malaysia’s position on the East-Asian–Australasian Flyway. We determined bird abundance, species richness, and composition in rice field landscapes and compared these during different stages of rice growing. Wetland and terrestrial birds were counted in rice fields using the point-count method. Sixty sampling points were randomly established in three locations, from which 3447 individual birds of 46 species and 26 families were recorded. There was a significant difference in total bird abundance and species richness between the three different stages of rice growing. The growing stage supported greater bird abundance and species richness compared to the pre-harvest and post-harvest stages. Rice-growing provides temporary habitats to different bird species in this managed aquatic landscape. This implies the presence of abundant food, such as small fish and amphibians. The evidence from this study suggests that biodiversity-friendly agricultural practices should be implemented to improve habitat quality for birds in rice production landscapes.  相似文献   

6.
Agriculture intensification has drastically altered farmland mosaics, while semi-natural grasslands have been considerably reduced and fragmented. Bird declines in northern temperate latitudes are attributed to habitat loss and degradation in farmed landscapes. Conversely, landscape-modification effects on grassland/farmland bird communities are less studied in the South American temperate grasslands. We investigated how bird communities were influenced by landscape characteristics in the Rolling Pampa (Argentina). We sampled bird communities in 356 landscapes of 1-km radius that varied in cover and configuration of pastureland, flooding grassland and cropland. Using generalized linear models, we explored the relationship between both bird species richness and abundance, and landscape structure. Analyses were carried out for all species, and open-habitat, grassland and aquatic species. Pasture area was far the most important factor, followed by landscape composition, in predicting species richness and abundance, irrespective of specific habitat preferences, followed by partially-flooded grassland cover and its mean shape index. Grassland fragmentation did not affect species richness or abundance. When comparing the effects of landscape variables on bird richness and abundance (using mean model coefficients), pasture and grassland area effects were on average more than four times greater than those of compositional heterogeneity, and about ten times greater than shape effects. To conserve species-rich bird communities persisting in Rolling Pampa farmland, we recommend the preservation of pasture and grassland habitats, irrespective of their fragmentation level, in intensively managed farmland mosaics.  相似文献   

7.
Landscape effects on crop pollination services: are there general patterns?   总被引:2,自引:0,他引:2  
Pollination by bees and other animals increases the size, quality, or stability of harvests for 70% of leading global crops. Because native species pollinate many of these crops effectively, conserving habitats for wild pollinators within agricultural landscapes can help maintain pollination services. Using hierarchical Bayesian techniques, we synthesize the results of 23 studies – representing 16 crops on five continents – to estimate the general relationship between pollination services and distance from natural or semi-natural habitats. We find strong exponential declines in both pollinator richness and native visitation rate. Visitation rate declines more steeply, dropping to half of its maximum at 0.6 km from natural habitat, compared to 1.5 km for richness. Evidence of general decline in fruit and seed set – variables that directly affect yields – is less clear. Visitation rate drops more steeply in tropical compared with temperate regions, and slightly more steeply for social compared with solitary bees. Tropical crops pollinated primarily by social bees may therefore be most susceptible to pollination failure from habitat loss. Quantifying these general relationships can help predict consequences of land use change on pollinator communities and crop productivity, and can inform landscape conservation efforts that balance the needs of native species and people.  相似文献   

8.
Only few studies have analysed the relationship between biodiversity and ecosystem function at the landscape scale although relationships and mechanisms known from experimental studies might be different in natural systems. We quantified bird diversity and seed removal from 38 wild cherry trees (Prunus avium) along a human land-use gradient from forest to structurally diverse to simple agricultural systems. High human land-use intensity led to low species richness and total abundance of the local bird community around wild cherry trees, as expected from previous studies. Nevertheless, trees in structurally simple agroecosystems were visited as frequently as trees in structurally complex landscapes and in forests. Furthermore, the number of seeds removed per tree did not decline with increasing human land-use intensity. Thus, ecosystem function was robust in spite of locally reduced bird diversity. The reason might be that movement behaviour and movement distances of birds changed along the human land-use gradient. It appears that birds moved longer distances to forage in fruiting cherry trees in structurally simple agroecosystems. This suggests that for systems where ecosystem function is mediated by highly mobile organisms, movement behaviour and distances are of considerable importance. Increases in movement distances with increasing human land-use intensity might also be common in other systems in which ecosystem function depends on mobile links.  相似文献   

9.
Agricultural intensification in Europe has affected farmland bird populations negatively, both during summer and winter. Although the migratory period poses separate challenges on birds than breeding and wintering, the consequences of farming practices for birds during migration remain poorly investigated. We monitored abundance and species richness of migratory birds in autumn at matched pairs of organic and conventional farms situated either in intensively farmed open plains (homogeneous landscapes) or in small‐scale farming landscapes (heterogeneous landscapes) in southern Sweden. Total bird density did not differ between landscape types but was marginally higher on organic compared to conventional farms. When including taxonomic status in the model (passerines vs non‐passerines), we found significantly more birds on organic farms, and more non‐passerines in the homogeneous landscapes. The effect of farming practice and landscape type on density differed between functional groups. Omnivore density was higher in the homogeneous landscapes, and invertebrate feeders were marginally more abundant on organic farms. The effects of farming practice on the overall species richness and on the density of granivorous birds were landscape dependent. In the homogeneous landscapes, organic farms held a higher number of species and density of granivorous birds than conventional farms, but there was no such difference in the heterogeneous landscapes. Thus, organic farming can enhance abundance and species richness of farmland birds during migration, but the effect differs between landscape types and species. The effectiveness of organic farming was highest in the homogeneous landscape making it important to promote organic farming there. However, for some species during migration, increased heterogeneity in homogeneous landscapes may have negative effects. We propose that migratory bird diversity in homogeneous landscapes may be best preserved by keeping the landscape open, but that a reduced agricultural intensity, such as organic farming, should be encouraged.  相似文献   

10.
  1. The expansion of intensive agriculture has severely altered landscapes, a process that has been aggravated by the increase of greenhouse agriculture. However, few studies have considered the combined effects of habitat loss/degradation and greenhouse farming on insect visitors to native plants.
  2. We analysed how habitat loss/degradation and greenhouse farming are related to the composition, abundance, and richness of the insect assemblages visiting flowers in a semiarid keystone shrub (Ziziphus lotus) in southeast Spain, home to Europe's largest area of greenhouses. We studied 21 populations distributed across a gradient of greenhouse intensification and habitat loss.
  3. The composition, abundance, and richness of the Ziziphus insect assemblage substantially varied between populations and were differently affected by natural habitat-remnant and landscape degradation and population isolation.
  4. Insect abundance was negatively affected by habitat loss at population level but positively affected at individual Ziziphus scale. Honey-bee relative abundance increased in highly degraded landscapes and isolated populations, being positively associated with hoverflies and negatively with ants and bee-flies. Wild bees, carrion flies, and wasps remain neutral along the degradation axes. Insect visitor abundance per plant affected positively the flower visitation rate, which was also favoured by the relative abundance of honey bees, wild bees, and hoverflies. Species richness was not influenced by anthropogenic degradation, and did not affect flower visitation rate.
  5. Our results highlight the fragility of wild pollinator communities to landscape and habitat degradation, and the need to regulate intensive farming practices to preserve wild insect pollinator assemblages in semiarid habitats.
  相似文献   

11.
Sustainable agricultural landscapes by definition provide high magnitude and stability of ecosystem services, biodiversity and crop productivity. However, few studies have considered landscape effects on the stability of ecosystem services. We tested whether isolation from florally diverse natural and semi-natural areas reduces the spatial and temporal stability of flower-visitor richness and pollination services in crop fields. We synthesised data from 29 studies with contrasting biomes, crop species and pollinator communities. Stability of flower-visitor richness, visitation rate (all insects except honey bees) and fruit set all decreased with distance from natural areas. At 1 km from adjacent natural areas, spatial stability decreased by 25, 16 and 9% for richness, visitation and fruit set, respectively, while temporal stability decreased by 39% for richness and 13% for visitation. Mean richness, visitation and fruit set also decreased with isolation, by 34, 27 and 16% at 1 km respectively. In contrast, honey bee visitation did not change with isolation and represented > 25% of crop visits in 21 studies. Therefore, wild pollinators are relevant for crop productivity and stability even when honey bees are abundant. Policies to preserve and restore natural areas in agricultural landscapes should enhance levels and reliability of pollination services.  相似文献   

12.
Increasing landscape complexity can mitigate negative effects of agricultural intensification on biodiversity by offering resources complementary to those provided in arable fields. In particular, grazed semi-natural grasslands and woody elements support farmland birds, but little is known about their relative effects on bird diversity and community composition. In addition, the relative importance of local habitat versus landscape composition remains unclear. We investigated how the presence of semi-natural grasslands, the number of woody elements and the composition of the wider agricultural landscape affect bird species richness, true diversity (exponential Shannon diversity) and species composition. Bird communities were surveyed four times on 16 paired transects of 250 m each with 8 transects placed between a crop field and a semi-natural grassland and 8 transects between two crop fields with no semi-natural grasslands in the vicinity. The number of woody elements around transects was selected as an important predictor in all models, having a positive effect on species richness and true diversity, while the local presence of semi-natural grasslands was not selected in the best models. However, species richness and true diversity increased with increasing cover of ley and semi-natural grasslands, whereas species composition was modified by the coverage of winter wheat at the landscape scale. Furthermore, bird species richness, true diversity and species composition differed between sampling dates. As bird diversity benefited from woody elements, rather than from the local presence of semi-natural grasslands as such, it is important to maintain woody structures in farmland. However, the positive effect of grassland at the landscape scale highlights the importance of habitat variability at multiple scales. Because species richness and true diversity were affected by different landscape components compared to species composition, a mosaic of land-use types is needed to achieve multiple conservation goals across agricultural landscapes.  相似文献   

13.
European agricultural landscapes are mosaics of intensively cultivated areas and semi-natural elements. Although comprising only a small fraction of the total area, semi-natural elements provide habitat for most of the landscape biodiversity. Agricultural intensification has increasingly fragmented semi-natural elements and species numbers are in decline. Insights into the effects of landscape structure on species’ distributions within and among semi-natural habitats are needed to conserve biodiversity in agricultural landscapes more effectively. We investigated the landscape- and habitat-specific diversity partitions of wild bees, true bugs, and carabid beetles in two differently structured agricultural landscapes in Switzerland. In each landscape, we partitioned the total species diversity (γ) into its additive components within (P) and among patches (βP) and among habitats (βH). In the landscape characterized by a patchy, isolated distribution of habitat elements, among-patch diversity (βP) explained 44% of the total species richness (γ) and was significantly higher than expected under a random distribution of samples among habitat patches; in the landscape with higher habitat connectivity, among-patch diversity (βP) comprised 32% of the total species richness (γ) and did not differ from the random expectation. Habitat-specific within-patch contributions to species richness were similarly low across habitat types (P=23–24%) in the patchy landscape, whereas in the more connected landscape within-patch partitions tended to be higher and differed among habitat types (P=22–38%). Functionally different groups of bees, true bugs, and carabids also responded differently to landscape structure in a manner that was consistent with known differences in resource specialization and dispersal ability. Differences in diversity partitions among landscapes and taxa indicate the need for flexible conservation strategies. Conservation of habitat-specific diversity may require more habitat patches in landscapes that have lower habitat connectivity and low within-patch diversity (P) than in landscapes with higher within-patch diversity (P).  相似文献   

14.
Local species richness of butterflies can be expected to benefit from both local habitat properties as well as the availability of suitable habitats and source populations in the surrounding landscape. Whether local species richness is dependent on local or landscape factors can be assessed by examining the relationship between local and landscape species richness. Here we studied how local species richness is related to landscape‐level species richness in landscapes differing in agricultural intensity. The relationship was linear for field boundaries in intensively cultivated landscapes and non‐linear in less‐intensively cultivated landscapes. In landscapes containing semi‐natural grasslands (on average 4% of overall land‐use), the relationship was non‐linear for field boundaries, but linear when considering local species richness of the grasslands themselves. These results show that local factors are more important than landscape factors in determining local species richness in landscapes which contained semi‐natural grasslands. Local species richness was limited by landscape factors in intensively cultivated landscapes. This interpretation was supported by the relationship between local species richness and landscape‐scale average mobility and generalist percentage of butterfly assemblages. We conclude that the management of field boundary habitat quality for butterflies is expected to be most effective in landscapes with semi‐natural grasslands, the species composition of which in turn is dependent on the regional occurrence of grasslands. Based on our results, managing non‐crop habitats for the conservation of habitat specialists and species with poor mobility will be most efficient in regions where patches of semi‐natural grasslands occur.  相似文献   

15.
Carabid beetle assemblages were studied to assess how diversity and community structure varied along a gradient of land-use. This gradient was composed of six 1 km2 quadrats with an increasing proportion of agricultural land reflecting the anthropogenic fragmentation and intensification of landscapes. Carabid species richness and abundance was predicted to peak in the most heterogeneous landscape, in accord with the intermediate disturbance hypothesis (IDH), and then decline as agricultural intensification increased. It was also predicted that the different landscapes would support beetle communities distinct from each other. The IDH was unsupported-in both years of this study carabid species richness and abundance was greatest in the most intensively managed, agricultural sites. Detrended correspondence analysis revealed a clear separation in beetle community structure between forested and open habitats and between different forest types. Canonical correspondence analysis revealed a significant correlation between beetle community structure and the environment, showing distinct beetle assemblages to be significantly associated with specific edaphic and botanical features of the land-use gradient. This study adds to increasing evidence that landscape-scale patterns in land-use significantly affect beetle community structure producing distinct assemblages.  相似文献   

16.
The composition of plant species in fragmented landscapes may be influenced by the pattern of visitation by birds to fruiting trees and by the movement of seeds among and within fragments. We compared bird visitation patterns to two tree species (Dendropanax arboreus, Araliaceae; Bursera simaruba, Burseraceae) in continuous forest and remnants of riparian vegetation in a region dominated by pasture in Los Tuxtlas, Veracruz, Mexico. We quantified frequency of visitation, fruit consumption, consistency of visitation (percentage of total tree observation periods during which a given bird species was recorded), and species composition of birds at individuals of both tree species in continuous forest and riparian remnants. Bird visitation rate, species richness, and fruit consumption rates were similar within both tree species in the two habitats. Species assemblages at D. arboreus were different between continuous forest and remnants. Species assemblages at B. simaruba did not differ by habitat. Our results demonstrate that habitat disturbance may influence avian visitation patterns, which may in turn affect subsequent recruitment patterns in some tree species. Our results, however, were not consistent between the tree species, suggesting that it is difficult to generalize concerning the effects of forest disturbance on avian species assemblages in fruiting trees.  相似文献   

17.
Landscape context and habitat quality may have pronounced effects on the diversity of flower visiting insects. We investigated whether the effects of landscape context and habitat quality on flower visiting insects interact in agricultural landscapes in the Netherlands. Landscape context was expressed as the area of semi-natural habitats or the density of linear landscape features, and was quantified at spatial scales ranging from 250 to 2000 m. Habitat quality was determined as flower abundance. Species richness and abundance of hoverflies and bees were determined along 16 stream banks experiencing similar environmental conditions but situated in areas with contrasting landscape context. Only flower abundance and the area of semi-natural habitats within 500–1000 m were significantly related to species richness of hoverflies and bees and these factors had interacting effects on both species groups. Our results suggest that the regional area of semi-natural habitats had a positive effect on hoverfly species richness when flower abundance was relatively high, but not when flower abundance was low. Moreover, flower abundance had positive effects on hoverfly species richness only in areas with relatively many semi-natural habitats. Contrastingly, flower abundance had a more positive effect on bee species richness in landscapes with few semi-natural habitats compared to landscapes with more semi-natural habitats. Our results suggest that the importance of landscape context for the species richness of flower visiting insects depends upon the quality of the habitat patches.  相似文献   

18.
Farmland bird populations are in a deep crisis across Europe. Agri-environment schemes (AES) were implemented by the European Union to stop and reverse the general decline of biodiversity in agricultural landscapes. In Germany, flower strips are one of the most common AES. Establishing high-quality perennial wildflower strips (WFS) with species-rich native forb mixtures from regional seed propagation is a recent approach, for which the effectiveness for birds has not yet been sufficiently studied. We surveyed breeding birds and vegetation on 40 arable fields with WFS (20 with single and 20 with aggregated WFS) and 20 arable fields lacking WFS as controls across Saxony-Anhalt (Germany). Additionally, vegetation composition, WFS quantity and landscape structure (e.g. distance to nearest woody element) were considered in our analyses. All WFS were established with species-rich native seed mixtures (30 forbs) in agricultural practice as AES. Arable fields with WFS had a higher species richness and territory density of birds than controls, confirming the effectiveness of this AES. A forb-rich vegetation was the main driver promoting birds. Flower strip quantity at the landscape level had positive effects only on bird densities, but also single WFS achieved benefits. A short distance from WFS to woody elements increased total bird species richness. However, the density of farmland birds, which are target species of these AES, were negatively affected by the proximity and proportion of woody elements in the vicinity. The effect of the proportion of non-intensively used open habitats and overall habitat richness was unexpectedly low in the otherwise intensively farmed landscape. Species-rich perennial WFS significantly promoted breeding birds. Successful establishment of WFS, resulting in high-quality habitats, a high flower strip quantity as well as implementation in open landscapes were shown to maximise the effectiveness for restoring declining and AES target farmland birds.  相似文献   

19.
Agricultural intensification typically leads to changes in bird diversity and community composition, with fewer species and foraging guilds present in more intensively managed parts of the landscape. In this study, we compare bird communities in small (2–32 ha) brigalow (Acacia harpophylla) remnants with those in adjacent uncultivated grassland, previously cultivated grassland and current cropland, to determine the contribution of different land uses to bird diversity in the agricultural landscape. Twenty remnant brigalow patches and adjacent agricultural (‘matrix’) areas in southern inland Queensland, Australia were sampled for bird composition and habitat characteristics. The richness, abundance and diversity of birds were all significantly higher in brigalow remnants than in the adjacent matrix of cropping and grassland. Within the matrix, species richness and diversity were higher in uncultivated grasslands than in current cultivation or previously cultivated grasslands. Forty-four percent of bird species were recorded only in brigalow remnants and 78% of species were recorded in brigalow and at least one other land management category. Despite high levels of landscape fragmentation and modification, small patches of remnant brigalow vegetation provide important habitat for a unique and diverse assemblage of native birds. The less intensively managed components of the agricultural matrix also support diverse bird assemblages and thus, may be important for local and regional biodiversity conservation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号