首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zong N  Wang CZ 《Planta》2007,226(1):215-224
Plants respond differently to damage by different herbivorous insects. We speculated that sibling herbivorous species with different host ranges might also influence plant responses differently. Such differences may be associated with the diet breadth (specialization) of herbivores within a feeding guild, and the specialist may cause less intensive plant responses than the generalist. The tobacco Nicotinana tabacum L. is the common host plant of a generalist Helicoverpa armigera (Hübner) and a specialist H. assulta Guenée (Lepidoptera, Noctuidae). The induced responses of tobacco to feeding of these two noctuid herbivores and mechanical wounding were compared. The results showed that the feeding of the specialist H. assulta and the generalist H. armigera resulted in the same inducible defensive system, but response intensity of plants was different to these two species. Inductions of jasmonic acid (JA), lipoxygenase (LOX), and proteinase inhibitors (PIs) were not significantly different concerning these two species, but H. assulta caused the less intensive foliar polyphenol oxidase (PPO) increase, more intensive nicotine and peroxidase (POD) increases in tobacco than H. armigera. The defensive response of plant to herbivores with different diet breadth seems to be more complicated than we expected, and the specialist does not necessarily cause less intensive plant responses than the generalist.  相似文献   

2.
Plant secondary compounds not only play an important role in plant defense, but have been a driving force for host adaptation by herbivores. Capsaicin (8-methyl-N-vanillyl-6-nonenamide), an alkaloid found in the fruit of Capsicum spp. (Solanaceae), is responsible for the pungency of hot pepper fruits and is unique to the genus. The oriental tobacco budworm, Helicoverpa assulta (Lepidoptera: Noctuidae), is a specialist herbivore feeding on solanaceous plants including Capsicum annuum, and is one of a very few insect herbivores worldwide capable of feeding on hot pepper fruits. To determine whether this is due in part to an increased physiological tolerance of capsaicin, we compared H. assulta with another specialist on Solanaceae, Heliothis subflexa, and four generalist species, Spodoptera frugiperda, Heliothis virescens, Helicoverpa armigera, and Helicoverpa zea, all belonging to the family Noctuidae. When larvae were fed capsaicin-spiked artificial diet for the entire larval period, larval mortality increased in H. subflexa and H. zea but decreased in H. assulta. Larval growth decreased on the capsaicin-spiked diet in four of the species, was unaffected in H. armigera and increased in H. assulta. Food consumption and utilization experiments showed that capsaicin decreased relative consumption rate (RCR), relative growth rate (RGR) and approximate digestibility (AD) in H. zea, and increased AD and the efficiency of conversion of ingested food (ECI) in H. armigera; whereas it did not significantly change any of these nutritional indices in H. assulta. The acute toxicity of capsaicin measured by injection into early fifth instar larvae was less in H. assulta than in H. armigera and H. zea. Injection of high concentrations produced abdominal paralysis and self-cannibalism. Injection of sub-lethal doses of capsaicin resulted in reduced pupal weights in H. armigera and H. zea, but not in H. assulta. The results indicate that H. assulta is more tolerant to capsaicin than the other insects tested, suggesting that this has facilitated expansion of its host range within Solanaceae to Capsicum after introduction of the latter to the Old World about 500 years ago. The increased larval survival and growth due to chronic dietary exposure to capsaicin suggests further adaptation of H. assulta to that compound, the mechanisms of which remain to be investigated.  相似文献   

3.
Oviposition preference and several measures of offspring performance of Helicoverpa armigera (Hübner) were investigated on a subset of its host plants that were selected for their reputed importance in the field in Australia. They included cotton, pigeon pea, sweet corn, mungbean, bean and common sowthistle. Plants were at their flowering stage when presented to gravid female moths. Flowering pigeon pea evoked far more oviposition than did the other plant species and was the most preferred plant for neonate larval feeding. It also supported development of the most robust larvae and pupae, and these produced the most fecund moths. Common sowthistle and cotton were equally suitable to pigeon pea for larval development, but these two species received far fewer H. armigera eggs than did pigeon pea. Mungbean also received relatively few eggs, but it did support intermediate measures of larval growth and survival. Fewest eggs were laid on bean and it was also the least beneficial in terms of larval growth. Among the host plant species tested, only flowering pigeon pea supported a good relationship between oviposition preference of H. armigera and its subsequent offspring performance. Australian H. armigera moths are thus consistent with Indian H. armigera moths in their ovipositional behaviour and larval performance relative to pigeon pea. The results suggest that the host recognition and acceptance behaviour of this species is fixed across its geographical distribution and they support the theory that pigeon pea might be one of the primary host plants of this insect. These insights, together with published results on the sensory responses of the females to volatiles derived from the different host plant species tested here, help to explain why some plant species are primary targets for the ovipositing moths whereas others are only secondary targets of this polyphagous pest, which has a notoriously broad host range. Handling Editor: Joseph Dickens  相似文献   

4.
Development, survivorship, pupal weight, oviposition, and life table parameters of the oriental tobacco budworm, Helicoverpa assulta Guenée, were evaluated in the laboratory on an artificial diet, pepper (Capsicum frutescens L.), and tobacco (Nicotiana tobacum L.). We found that the average developmental time of immature stages was longest on tobacco (36.2 d), intermediate on pepper (34.4 d), and shortest on artificial diet (33.5 d). Immature survival from egg to pupa varied from 31% on tobacco, 43% on pepper, and 74% on artificial diet. Pupal weight ranged from 197.4 mg/pupa on tobacco, 233.1 mg/pupa on pepper and 253.4 mg/pupa on artificial diet. The average numbers of eggs laid by adults reared as larvae on the artificial diet, pepper, or tobacco were 614, 421 and 334 eggs/female, respectively. Numbers of remaining eggs in ovaries of the adult females reared as larvae on the artificial diet, pepper, or tobacco were 16, 26, and 42 eggs/female, respectively. The longevity of adult females developed from larvae reared on the three diets was not significantly different, whereas the longevity of male adults from the larvae reared on artificial diet was longer (16.8 d) than that for males reared on tobacco (13.8 d) and pepper (13.3 d). The intrinsic, finite, gross, and net rates of increase were highest for females reared as larvae on artificial diet, lowest for females emerging from larvae reared on tobacco, and intermediate for females emerging from larvae reared on pepper. Generation times and doubling time of H. assulta were shortest for larvae fed artificial diet, intermediate from larvae reared on pepper, and longest from larvae reared on tobacco. We concluded that the artificial diet was the most suitable larval diet of H. assulta followed by pepper, and tobacco.  相似文献   

5.
The preference‐performance or ‘mother‐knows‐best’ hypothesis states that female insects choose to oviposit on a host plant that increases the performance of their offspring. This positive link between host plant choice and larval performance is especially important for leaf miners with non‐motile larvae that are entirely dependent upon the oviposition choice of the female for host plant location. Preference and performance of the ash leaf coneroller, Caloptilia fraxinella (Ely) (Lepidoptera: Gracillariidae), a specialist on ash trees, Fraxinus spp. (Oleaceae), were tested in a series of laboratory and field experiments. Female C. fraxinella were exposed to two closely related hosts, black ash, Fraxinus nigra Marshall, and green ash, Fraxinus pennsylvanica Marshall var. subintegerrima (Vahl), in oviposition choice and wind tunnel flight experiments to determine which host is most attractive for oviposition. Caloptilia fraxinella females were inconsistent in host choice, yet performance of larvae was greater on green than black ash. In preference studies, C. fraxinella preferred to oviposit on black ash when leaflets were removed from the tree, but preferred intact green ash over black ash seedlings for oviposition and host location in a wind tunnel. In the field, however, more C. fraxinella visited black ash var. ‘Fallgold’ at leaf flush than green ash at the same sites. Age of the ash leaflet also influences oviposition in this leaf miner and females preferred new over old leaflets for oviposition. Performance of C. fraxinella larvae was evaluated in field and laboratory experiments and was greater on green ash than on black ash in both experiments based on larval survival and development time parameters. The stronger oviposition and host location preference in the field for black ash were not linked to enhanced performance of offspring, as green ash was the superior host, supporting higher larval survival and faster development. A stronger host location preference in the wind tunnel for green ash over black ash, however, suggests that under certain circumstances with this moth species, ‘mother (may) know best’.  相似文献   

6.
The response of generalist egg parasitoids to alternative natural hosts that are present simultaneously is not well known. We investigated the behavior of Trichogramma pretiosum Riley (Hymenoptera: Trichogrammatidae) in relation to two field hosts Helicoverpa armigera Hübner and Spodoptera litura Fabricius, in choice and no choice tests. We quantified the effects of natal host species and post-emergence adult age on the oviposition preference of the parasitoids. H. armigera eggs were consistently preferred over S. litura eggs, regardless of the natal host and adult age. When only S. litura eggs were available as hosts, they were parasitized at statistically similar rates to H. armigera eggs (average of 17 ± 2.7 vs. 13 ± 3.0, H. armigera to S. litura). The adult lifespan and lifetime fecundity of T. pretiosum were variable but were affected by natal host species and/or host species to which they were exposed. Mean lifespan and fecundity of parasitoids that had developed in H. armigera eggs and were exposed to H. armigera eggs for oviposition were 13.9 ± 1.8 days and 98.7 ± 11.0 adult offspring. By contrast, those that developed in S. litura eggs and were exposed to S. litura eggs for oviposition lived for 7 ± 0.9 days and produced 53.8 ± 8.0 adult offspring. The ovigeny index (OI) was significantly lower in the parasitoids exposed to H. armigera eggs than in those exposed to S. litura eggs, regardless of the natal host, indicating that H. armigera eggs sustain the adult parasitoids better than S. litura eggs. These results are used to predict parasitoid behavior in the field when both hosts are available.  相似文献   

7.
The relationship between oviposition preference and offspring performance of herbivores is an essential question in the field of plant–insect interactions and may have important implications on integrated pest management practices. Here, we investigated the preference–performance relationship of a generalist herbivore, the true armyworm, Mythimna unipuncta (Haworth) (Lepidoptera: Noctuidae, Leucaniini). We evaluated the effect of crop species, cultivars, and fertilization rate on host use by adult and larval M. unipuncta in both laboratory and field experiments. Female M. unipuncta preferred to oviposit on cereals (Triticum aestivum L., Hordeum vulgare L., Zea mays L., all Poaceae) compared to oilseed (Brassica napus L., Brassicaceae) or pulse (Pisum sativum L., Fabaceae) crops. The preference–performance relationship was examined further on four cereal crops, spring wheat (T. aestivum cv. CDC Go), winter wheat (T. aestivum cv. CDC Buteo), feed barley (H. vulgare cv. Xena), and malt barley (H. vulgare cv. Copeland). Feed barley was the least preferred cereal by female moths but resulted in the highest larval performance of all tested plants suggesting that females did not select the host on which their offspring performs best, based on nutrient content. In contrast, late-instar larvae selected the hosts, feed barley and malt barley, on which they performed the best, suggesting that larvae have a more active role in host selection for development, compared to adult females. The addition of fertilizer to host plants did not influence adult female oviposition preference. Larvae reared on plants treated with the half (70 mg N) or full (140 mg N) dose of fertilizer resulted in heavier pupae, compared to those reared on unfertilized plants, regardless of crop variety. However, under field conditions fertilization did not enhance larval performance on feed barley plants. The generalist herbivore M. unipuncta does not exhibit the ‘mother knows best’ principle on the tested hosts and potentially employs a bet-hedging strategy instead.  相似文献   

8.
The cotton bollworm (Helicoverpa armigera) prefers the common sowthistle (Sonchus oleraceus L.) to cotton (Gossypium hirsutum L.), sorghum (Sorghum bicolor L.) and maize (Zea mays L.) for oviposition in the field in Australia. Using the common sowthistle and cotton as host plants, we carried out this study to evaluate genetic variation in both oviposition preference and larval growth and genetic correlation between maternal preference and larval performance. There was a significant genetic component of phenotypic variation in both characters, and the heritability of oviposition preference was estimated as 0.602. Helicoverpa armigera larvae survived slightly better and grew significantly faster on common sowthistle than on cotton, but genetic correlation between maternal preference and larval growth performance was not detectable. Instead, larval growth performance on the two hosts changed with families, which renders the interaction between family and host plant significant. As a result, the genetic correlation between mean values of larval growth across the two host species was not different from zero. These results are discussed in the context of the relationship between H. armigera and the common sowthistle and the polyphagous behaviour of this insect in general.  相似文献   

9.
Abstract The cotton bollworm Helicoverpa armigera and the oriental tobacco budworm H. assulta are sibling species, both being important agricultural pests. Morphologically, the two insects are almost indistinguishable at the egg, larval and pupal stages. One of the big challenges in the study of these insects, in particular in integrated pest management, is a timely and dependable identification of these insects at their early stages of development. Here, we report a H. armigera‐specific nuclear DNA marker, and demonstrate that it can be employed to reliably discriminate between H. armigera and H. assulta by simple polymerase chain reaction amplification experiment.  相似文献   

10.
Herbivorous insects use plant metabolites to inform their host plant selection for oviposition. These host‐selection behaviours are often consistent with the preference–performance hypothesis; females oviposit on hosts that maximize the performance of their offspring. However, the metabolites used for these oviposition choices and those responsible for differences in offspring performance remain unknown for ecologically relevant interactions. Here, we examined the host‐selection behaviours of two sympatric weevils, the Datura (Trichobaris compacta) and tobacco (T. mucorea) weevils in field and glasshouse experiments with transgenic host plants specifically altered in different components of their secondary metabolism. Adult females of both species strongly preferred to feed on D. wrightii rather than on N. attenuata leaves, but T. mucorea preferred to oviposit on N. attenuata, while T. compacta oviposited only on D. wrightii. These oviposition behaviours increased offspring performance: T. compacta larvae only survived in D. wrightii stems and T. mucorea larvae survived better in N. attenuata than in D. wrightii stems. Choice assays with nicotine‐free, JA‐impaired, and sesquiterpene‐over‐produced isogenic N. attenuata plants revealed that although half of the T. compacta larvae survived in nicotine‐free N. attenuata lines, nicotine did not influence the oviposition behaviours of both the nicotine‐adapted and nicotine‐sensitive species. JA‐induced sesquiterpene volatiles are key compounds influencing T. mucorea females’ oviposition choices, but these sesquiterpenes had no effect on larval performance. We conclude that adult females are able to choose the best host plant for their offspring and use chemicals different from those that influence larval performance to inform their oviposition decisions.  相似文献   

11.
不同食料植物对棉铃虫生长发育和繁殖的影响   总被引:15,自引:4,他引:11  
阮永明  吴坤君 《昆虫学报》2001,44(2):205-212
报道了棉花、烟草、番茄和辣椒4种植物对棉铃虫Helicoverpa armigera生长发育和繁殖的影响。棉铃虫成虫喜欢在番茄上产卵,在辣椒上的着卵量最少。初孵幼虫喜选食嫩棉叶,选食辣椒嫩叶的虫数最少。4组幼虫取食嫩叶时的平均相对生长速率都有显著差异,顺序为棉叶组>烟叶组>番茄叶组>辣椒叶组。幼虫存活率以取食棉花时最高,取食番茄时最低。棉花组成虫的产卵量最高,烟草组的产卵量最低。取食棉花的棉铃虫种群增长的速度约为取食番茄时的14倍。6龄幼虫能有效利用和转化棉铃、烟草蒴果、辣椒果实,而对番茄果实的利用和转化效率较低。棉铃虫可分别以这4种植物的不同器官为食完成世代循环。其中,棉花是最适宜的寄主,辣椒和番茄是较不适宜的寄主。  相似文献   

12.
The oriental tobacco budworm, Helicoverpa assulta, is a specialist herbivore feeding on a few plants of the Solanaceae family including tobacco. Larval performance and adult oviposition of H. assulta were investigated in a non‐host plant, Phaseolus vulgaris (Fabaceae) in comparison with two solanaceous host plants, Nicotiana tabacum and Datura stramonium. Larvae provided with the P. vulgaris leaf died off at day 15, whereas 50% and 40% of larval populations fed on the leaves of N. tabacum and D. stramonium, respectively, survived at day 15. Larval growth upon feeding showed significant difference between the non‐host plant (P. vulgaris) and the host plants (N. tabacum and D. stramonium), but it was not significantly different between the two host plants. In the no‐choice experiment of oviposition, gravid females laid more eggs in N. tabacum and D. stramonium than in P. vulgaris. When the most likely acceptable host plant, N. tabacum, and the non‐host plant, P. vulgaris, were subjected to the choice experiment of oviposition, H. assulta females preferred to lay eggs in N. tabacum, where eggs were continuously laid during the whole experiment period. However, eggs in P. vulgaris were hardly detected throughout the period. This study showed that the non‐host plant, P. vulgaris, had a negative influence on the larval performance and adult oviposition of H. assulta, implying neonate stage is critical for larval survivorship, and ovipositional preference by the female is highly specialized to host plants. Further investigation is required to identify non‐host factors, which could be applied to the development of alternative pest management strategy against H. assulta.  相似文献   

13.
The diamondback moth, Plutella xylostella L. (Lepidoptera: Plutellidae), is an insect specialized on glucosinolate-containing Brassicaceae that uses glucosinolates in host-plant recognition. We used wild-type and mutants of Arabidopsis thaliana (L.) Heynh. (Brassicaceae) to investigate the interaction between plant glucosinolate and myrosinase content and herbivory by larvae of the generalist Helicoverpa armigera Hübner (Lepidoptera: Noctuidae) and the specialist P. xylostella. We also measured glucosinolate changes as a result of herbivory by these larvae to investigate whether herbivory and glucosinolate induction had an effect on oviposition preference by P. xylostella. Feeding by H. armigera and P. xylostella larvae was 2.1 and 2.5 times less, respectively, on apk1 apk2 plants (with almost no aliphatic glucosinolates) than on wild-type plants. However, there were no differences in feeding by H. armigera and P. xylostella larvae on wild-type, gsm1 (different concentrations of aliphatic glucosinolates compared to wild-type plants), and tgg1 tgg2 plants (lacking major myrosinases). Glucosinolate induction (up to twofold) as a result of herbivory occurred in some cases, depending on both the plant line and the herbivore. For H. armigera, induction, when observed, was noted mostly for indolic glucosinolates, while for P. xylostella, induction was observed in both aliphatic and indolic glucosinolates, but not in all plant lines. For H. armigera, glucosinolate induction, when observed, resulted in an increase of glucosinolate content, while for P. xylostella, induction resulted in both a decrease and an increase in glucosinolate content. Two-choice tests with wild-type and mutant plants were conducted with larvae and ovipositing moths. There were no significant differences in preference of larvae and ovipositing moths between wild-type and gsm1 mutants and between wild-type and tgg1 tgg2 mutants. However, both larvae and ovipositing moths preferred wild-type over apk1 apk2 mutants. Two-choice oviposition tests were also conducted with P. xylostella moths comparing undamaged plants to plants being attacked by larvae of either P. xylostella or H. armigera. Oviposition preference by P. xylostella was unaffected as a result of larval plant damage, even in the cases where herbivory resulted in glucosinolate induction.  相似文献   

14.
Variation in the incidence of diapause in local populations of Helicoverpa armigera (Hübner) and Helicoverpa assulta (Guenée) (Lepidoptera: Noctuidae) was examined in relation to changes in photoperiod and/or temperature during the larval period. Temperate zone populations of H. assulta, a native species in temperate Japan, showed a high incidence of diapause induction when only the photoperiod was decreased during the larval period, even at favorable temperatures. This photoperiod‐dependent response may allow H. assulta to foresee the beginning of autumn well in advance in the temperate zone, where temperature conditions are severe. In contrast, temperate zone populations of H. armigera, an invasive and polyphagous species mainly distributed in the subtropics, showed a high incidence of diapause only when both photoperiod and temperature decreased, whereas subtropical populations showed a very low incidence of diapause under the same conditions. Furthermore, both temperate zone and subtropical populations of H. armigera enter diapause under constant low temperatures at short‐day photoperiod. Thus, there is geographic variation in sensitivity to diapause‐inducing stimuli (changes in photoperiod and temperature) in H. armigera. This variation may be a part of the climatic adaptation achieved by H. armigera in Japan.  相似文献   

15.
The evolution of reproductive isolation is a prerequisite in the formation of new species. Although there are numerous studies on ejaculates in lepidopteran insects, ejaculate comparisons among sibling species have not been adequately addressed to understand possible reproductive barriers to hybridization. Here, we examined the interspecific and intraspecific variations of ejaculates in the sibling noctuid moths Helicoverpa armigera and Helicoverpa assulta. We found that there were considerable variations in the number of apyrene and eupyrene sperm and the length of eupyrene sperm. Male pupal mass explained not only a significant proportion of the variation in apyrene sperm number in both H. armigera and H. assulta, but also a significant proportion of the variation in eupyrene sperm number in H. assulta. There was a significant positive relationship between the number of eupyrene sperm and the number of apyrene sperm in both species. No difference in the length of eupyrene sperm was found between them; however, ejaculates of H. armigera had many more eupyrene sperm than H. assulta had. In H. armigera, large males generally mated with large females. The evolutionary consequences of these differences are discussed in this paper.  相似文献   

16.
17.
1. Both the physiological efficiency (PE) hypothesis and the preference–performance (PP) hypothesis address the complex interactions between herbivores and host plants, albeit from different perspectives. The PE hypothesis contends that specialists are better physiologically adapted to their host plants than generalists. The PP hypothesis predicts that larvae perform best on the host plant preferred by ovipositing females. 2. This study tests components of both hypotheses using the specialist checkerspot, Euphydryas anicia, the generalist salt marsh caterpillar, Estigmene acrea, and host plants in the genus Penstemon, which are defended by iridoid glycosides. 3. In laboratory experiments, the generalist preferred and performed significantly better on the less well defended host plant species. This is consistent with results from a common garden experiment where the less well defended Penstemon species received more damage from the local community of generalists. Larvae of the specialist checkerspot preferred the more chemically defended species in the laboratory, but performed equally well on both hosts. However, field experiments demonstrated that adult checkerspot females preferred to oviposit on the less well defended host plant. 4. Components of the physiological efficiency hypothesis were supported in this system, as the specialist outperformed the generalist on the more iridoid glycoside‐rich host plant species. There was no support for the PP hypothesis, however, as there was no clear relationship between female preference in the field and offspring performance in the laboratory.  相似文献   

18.
Two sibling species, Helicoverpa assulta and Helicoverpa armigera both use (Z)-9-hexadecenal and (Z)-11-hexadecenal as their sex pheromone components but in almost reversed ratios, 93:7 and 3:97, respectively. H. assulta and H. armigera males performed upwind flight in response to the H. assulta sex pheromone blend (93:7). H. armigera responded strongly to the H. armigera blend (3:97), whereas H. assulta males remained inactive upon exposure to this blend. Both species gave clear dose-dependent electrophysiological responses to (Z)-11-hexadecenal. However, (Z)-9-hexadecenal evoked strong dose-dependent electrophysiological responses in H. assulta males but not in H. armigera. The two male F1 hybrids exhibited similar behavioral responses to two sex pheromone blends and electrophysiological responses to two pheromone components as H. armigera males. This indicated that H. armigera genes appear dominant in determining the behavioral response and electrophysiological responses. Behavioral and electrophysiological responses of backcrosses of male F1 hybrids (H. armigera female × H. assulta male) with female H. assulta and H. armigera were close to that of H. assulta and H. armigera, respectively. However, backcrosses of female F1 hybrids (H. assulta female × H. armigera male) with male H. assulta and H. armigera showed reduced behavioral responses but normal electrophysiological responses compared to males of the respective parental line.  相似文献   

19.
Variation in plant communities is likely to modulate the feeding and oviposition behavior of herbivorous insects, and plant‐associated microbes are largely ignored in this context. Here, we take into account that insects feeding on grasses commonly encounter systemic and vertically transmitted (via seeds) fungal Epichloë endophytes, which are regarded as defensive grass mutualists. Defensive mutualism is primarily attributable to alkaloids of fungal origin. To study the effects of Epichloë on insect behavior and performance, we selected wild tall fescue (Festuca arundinacea) and red fescue (Festuca rubra) as grass–endophyte models. The plants used either harbored the systemic endophyte (E+) or were endophyte‐free (E?). As a model herbivore, we selected the Coenonympha hero butterfly feeding on grasses as larvae. We examined both oviposition and feeding preferences of the herbivore as well as larval performance in relation to the presence of Epichloë endophytes in the plants. Our findings did not clearly support the female's oviposition preference to reflect the performance of her offspring. First, the preference responses depended greatly on the grass–endophyte symbiotum. In F. arundinacea, C. hero females preferred E+ individuals in oviposition‐choice tests, whereas in F. rubra, the endophytes may decrease exploitation, as both C. hero adults and larvae preferred E? grasses. Second, the endophytes had no effect on larval performance. Overall, F. arundinacea was an inferior host for C. hero larvae. However, the attraction of C. hero females to E+ may not be maladaptive if these plants constitute a favorable oviposition substrate for reasons other than the plants' nutritional quality. For example, rougher surface of E+ plant may physically facilitate the attachment of eggs, or the plants offer greater protection from natural enemies. Our results highlight the importance of considering the preference of herbivorous insects in studies involving the endophyte‐symbiotic grasses as host plants.  相似文献   

20.
Parasitoids use odor cues from infested plants and herbivore hosts to locate their hosts. Specialist parasitoids of generalist herbivores are predicted to rely more on herbivorederived cues than plant-derived cues. Microplitis croceipes (Cresson)(Hymenoptera: Braconidae) is a relatively specialized larval endoparasitoid of Heliothis virescens (F.)(Lepidoptera: Noctuidae), which is a generalist herbivore on several crops including cotton and soybean. Using M. croceipes/H. virescens as a model system, we tested the following predictions about specialist parasitoids of generalist herbivores:(i) naive parasitoids will show innate responses to herbivore-emitted kairomones, regardless of host plant identity and (ii) herbivore-related experience will have a greater influence on intraspecific oviposition preference than plant-related experience. Inexperienced (naive) female M. croceipes did not discriminate between cotton-fed and soybean-fed H. virescens in oviposition choice tests, supporting our first prediction. Oviposition experience alone with either host group influenced subsequent oviposition preference while experience with infested plants alone did not elicit preference in M. croceipes, supporting our second prediction. Furthermore, associative learning of oviposition with host-damaged plants facilitated host location. I terestingly, naive parasitoids attacked more soybeathan cotton-fed host larvae in two-choice tests when a background of host-infested cotton odor was supplied, and vice versa. This suggests that plant volatiles may have created an olfactory contrast effect. We discussed ecological significance of the results and concluded that both plant- and herbivore-related experiences play important role in parasitoid host foraging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号