首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
LIMITATIONS OF PHOTOSYNTHESIS IN DIFFERENT REGIONS OF THE ZEA MAYS LEAF   总被引:3,自引:0,他引:3  
The progressive development of the photosynthetic apparatus occurring along the length of the Zea mays leaf offers a convenient system with which to examine the limitations to photosynthetic CO2 assimilation during biogenesis of a C4 leaf. Changes in light-induced O2 evolution and CO2 assimilation, chlorophyll content, activity of PEP-carboxylase, NADP-malic enzyme and the 'R5P system' (consisting of d -ribose-5-phosphate-keto isomerase, ATP- d -ribulose-5 phosphate 1-phosphotransferase and d -ribulose-1,5-bisphosphate carboxylase) and fluorescence emission characteristics were examined along the length of the second leaf of 7-day-old plants grown under a diurnal light regime. The results suggest that the major limitation to CO2 assimilation in the leaf sheath lies within the chlorenchyma and is either energy supply for carboxylation or the capacity of key photosynthetic enzymes. In the leaf blade stomatal resistance to CO2 diffusion constitutes a major fraction of the total leaf resistance to CO2 assimilation implicating the stoma as the major limiting factor to photosynthetic CO2 assimilation.  相似文献   

2.
The effects of manganese (Mn) toxicity on photosynthesis in white birch ( Betula platyphylla var. japonica ) leaves were examined by the measurement of gas exchange and chlorophyll fluorescence in hydroponically cultured plants. The net photosynthetic rate at saturating light and ambient CO2 (Ca) of 35 Pa decreased with increasing leaf Mn concentrations. The carboxylation efficiency, derived from the difference in CO2 assimilation rate at intercellular CO2 pressures attained at Ca of 13 Pa and O Pa, decreased with greater leaf Mn accumulation. Net photosynthetic rate at saturating light and saturating CO2 (5%) also declined with leaf Mn accumulation while the maximum quantum yield of O2 evolution at saturating CO2 was not affected. The maximum efficiency of PSII photochemistry (Fv/Fm) was little affected by Mn accumulation in white birch leaves over a wide range of leaf Mn concentrations (2–17 mg g−1 dry weight). When measured in the steady state of photosynthesis under ambient air at 430 μmol quanta m−2 s−1, the levels of photochemical quenching (qP) and the excitation capture efficiency of open PSII (F'v/F'm) declined with Mn accumulation in leaves. The present results suggest that excess Mn in leaves affects the activities of the CO2 reduction cycle rather than the potential efficiency of photochemistry, leading to increases in QA reduction state and thermal energy dissipation, and a decrease in quantum yield of PSII in the steady state.  相似文献   

3.
Ananas comosus L. (Merr.) (pineapple) was grown at three day/night temperatures and 350 (ambient) and 700 (elevated) μ mol mol–1 CO2 to examine the interactive effects of these factors on leaf gas exchange and stable carbon isotope discrimination ( Δ ,‰). All data were collected on the youngest mature leaf for 24 h every 6 weeks. CO2 uptake (mmol m–2 d–1) at ambient and elevated CO2, respectively, were 306 and 352 at 30/20 °C, 175 and 346 at 30/25 °C and 187 and 343 at 35/25 °C. CO2 enrichment enhanced CO2 uptake substantially in the day in all environments. Uptake at night at elevated CO2, relative to that at ambient CO2, was unchanged at 30/20 °C, but was 80% higher at 30/25 °C and 44% higher at 35/25 °C suggesting that phosphoenolpyruvate carboxylase was not CO2-saturated at ambient CO2 levels and a 25 °C night temperature. Photosynthetic water use efficiency (WUE) was higher at elevated than at ambient CO2. Leaf Δ -values were higher at elevated than at ambient CO2 due to relatively higher assimilation in the light. Leaf Δ was significantly and linearly related to the fraction of total CO2 assimilated at night. The data suggest that a simultaneous increase in CO2 level and temperature associated with global warming would enhance carbon assimilation, increase WUE, and reduce the temperature dependence of CO2 uptake by A. comosus .  相似文献   

4.
The effect of drought on CO2 assimilation and leaf conductance was studied in three northern hardwood species: Quercus rubra L., Acer rubrum L. and Populus grandidentata Michx. Leaf gas exchange characteristics at two CO2 levels (320 and 620 μl I−1) and temperatures from 20 to 35°C were measured at the end of a dry period and shortly after 10 cm of rainfall. The effects of drought varied with species, temperature and CO2 level. Calculated values of internal CO2 concentration showed little or no decline during drought. Differences in assimilation, before vs after the rains, were most apparent at the higher CO2 level. These latter two observations indicate nonstomatal disruption of CO2 assimilation during the dry period. In P. grandidentata there was a substantial interaction between drought and temperature, with a resultant shift in the temperature for maximum assimilation to lower temperatures during drought. During drought, internal CO2 concentrations increased sharply in all three species under the combined conditions of high temperatures and the higher CO2 level.  相似文献   

5.

A , carbon assimilation rate
ABA, abscisic acid
Ci , intercellular space CO2 concentration
g , leaf conductance
WUE, water use efficiency

Carbon dioxide and abscisic acid (ABA) are two major signals triggering stomatal closure. Their putative interaction in stomatal regulation was investigated in well-watered air-grown or double CO2-grown Arabidopsis thaliana plants, using gas exchange and epidermal strip experiments. With plants grown in normal air, a doubling of the CO2 concentration resulted in a rapid and transient drop in leaf conductance followed by recovery to the pre-treatment level after about two photoperiods. Despite the fact that plants placed in air or in double CO2 for 2 d exhibited similar levels of leaf conductance, their stomatal responses to an osmotic stress (0·16–0·24 MPa) were different. The decrease in leaf conductance in response to the osmotic stress was strongly enhanced at elevated CO2. Similarly, the drop in leaf conductance triggered by 1 μ M ABA applied at the root level was stronger at double CO2. Identical experiments were performed with plants fully grown at double CO2. Levels of leaf conductance and carbon assimilation rate measured at double CO2 were similar for air-grown and elevated CO2-grown plants. An enhanced response to ABA was still observed at high CO2 in pre-conditioned plants. It is concluded that: (i) in the absence of stress, elevated CO2 slightly affects leaf conductance in A. thaliana ; (ii) there is a strong interaction in stomatal responses to CO2 and ABA which is not modified by growth at elevated CO2.  相似文献   

6.
Highbush blueberry plants ( Vaccinium corymbosum L. cv. Bluecrop) growing in containers were flooded in the laboratory for various durations to determine the effect of flooding on carbon assimilation, photosynthetic response to varying CO2 and O2 concentrations and apparent quantum yield as measured in an open flow gas analysis system. Hydraulic conductivity of the root was also measured using a pressure chamber. Root conductivity was lower and the effect of increasing CO2 levels on carbon assimilation less for flooded than unflooded plants after short-(i-2 days), intermediate-(10–14 days) and long-term (35–40 days) flooding. A reduction in O2 levels surrounding the leaves from 21 to 2% for unflooded plants increased carbon assimilation by 33% and carboxylation efficiency from 0.012 to 0.021 mol CO2 fixed (mol CO2)−1. Carboxylation efficiency of flooded plants, however, was unaffected by a decrease in percentage O2, averaging 0.005 mol CO2 fixed (mol CO2)−1. Apparent quantum yield decreased from 2.2 × 10−1 mol of CO2 fixed (mol light)−1 for unflooded plants to 2.0 × 10−3 and 9.0 × 10−4 for intermediate- and long-term flooding durations, respectively. Shortterm flooding reduced carbon assimilation via a decrease in stomatal conductance, while longer flooding durations also decreased the carboxylation efficiency of the leaf.  相似文献   

7.
During a slow desiccation in photosynthetically fully active leaves of the poikilochlorophyllous desiccation-tolerant (PDT) monocotyledon Xerophyta scabrida (Pax) Th. Dur. et Schinz (Velloziaceae), thylakoid activity, CO2 assimilation and respiration decline and chlorophylls and carotenoids are successively broken down. The initially slow rate of leaf water loss is related to the large reduction in leaf area which is reflected in the decrease of specific leaf area. Chlorophylls are broken down faster than carotenoids. The ratio of the variable chlorophyll fluorescence, an indicator of photosynthetic activity (Rfd690-values), shows that the functionality of thylakoids and chlorophylls is successively lost during desiccation. The decline in net CO2 assimilation in desiccating leaves is largely caused by stomatal closure. The complete cessation of CO2 assimilation, however, is due to the breakdown of chlorophylls and thylakoids. Respiration continued during desiccation and remained active far below -3.2 MPa leaf water potential. The differences during desiccation of the photosynthetic apparatus between poikilochlorophyllous and homoiochlorophyllous desiccation-tolerant plants are discussed.  相似文献   

8.
Abstract. The apparatus described here is a fully portable, steady-state gas exchange system for simultaneous measurements of the CO2 exchange and transpiration of single, attached leaves. The leaf cuvette provides temperature, humidity, and CO2-concentration control. The system is suitable for either surveys or detailed studies of photosynthetic and stomatal responses to environmental variables. Representative data demonstrate the response time characteristics of the system and constitute the first field evidence of stomatal behaviour consistent with a recent hypothesis concerning the optimum pattern of stomatal conductance for the maximization of water-use-efficiency.  相似文献   

9.
Measurements of photosynthesis and respiration in plants   总被引:6,自引:1,他引:5  
Hunt S 《Physiologia plantarum》2003,117(3):314-325
Methods for measuring the rates of photosynthesis and respiration in plants are reviewed. Closed systems that involve manometric techniques, 14CO2 fixation, O2 electrodes and other methods for measuring dissolved and gas phase O2 are described. These methods typically provide time-integrated rate measurements, and limitations to their use are discussed. Open gas exchange systems that use infra-red CO2 gas analysers and differential O2 analysers for measuring instantaneous rates of CO2 and O2 exchange are described. Important features of the analysers, design features of gas exchange systems, and sources of potential error are considered. The analysis of chlorophyll fluorescence parameters for estimating the quantum yield for O2 evolution and CO2 fixation is described in relation to new fluorescence imaging systems for large scale screening of photosynthetic phenotypes, and the microimaging of individual chloroplasts.  相似文献   

10.
We developed and applied an ecosystem-scale model that calculated leaf CO2 assimilation, stomatal conductance, chloroplast CO2 concentration and the carbon isotope composition of carbohydrate formed during photosynthesis separately for sunlit and shaded leaves within multiple canopy layers. The ecosystem photosynthesis model was validated by comparison to leaf-level gas exchange measurements and estimates of ecosystem-scale photosynthesis from eddy covariance measurements made in a coastal Douglas-fir forest on Vancouver Island. A good agreement was also observed between modelled and measured δ 13C values of ecosystem-respired CO2 ( δ R). The modelled δ R values showed strong responses to variation in photosynthetic photon flux density (PPFD), air temperature, vapour pressure deficit (VPD) and available soil moisture in a manner consistent with leaf-level studies of photosynthetic 13C discrimination. Sensitivity tests were conducted to evaluate the effect of (1) changes in the lag between the time of CO2 fixation and the conversion of organic matter back to CO2; (2) shifts in the proportion of autotrophic and heterotrophic respiration; (3) isotope fractionation during respiration; and (4) environmentally induced changes in mesophyll conductance, on modelled δ R values. Our results indicated that δ R is a good proxy for canopy-level C c/ C a and 13C discrimination during photosynthetic gas exchange, and therefore has several applications in ecosystem physiology.  相似文献   

11.
Fruit effects on photosynthesis in Prunus persica   总被引:1,自引:0,他引:1  
Seasonal measurements of net CO2 assimilation, leaf conductance and mesophyll conductance were made in the field on mature, fruiting and defruited Prunus persica L. Batsch trees. During early stages of fruit growth there were no significant differences in leaf gas exchange characteristics between fruiting and defruited trees. During the early part of the last stage of fruit growth, CO2 assimilation rates were 11–15% higher in fruiting trees than defruited trees. These increased assimilation rates corresponded with approximately 30% increases in leaf conductance and only minor changes in mesophyll conductances or leaf CO2 assimilation capacity as indicated by leaf nitrogen content. It is concluded that under the field conditions of this study the fruit effect on photosynthesis is primarily related to stomatal behavior.  相似文献   

12.
The effect of fruit removal on gas exchange, water relations, chlorophyll and non-structural carbohydrate content of leaves from mature, field-grown plum trees ( Prunus domestica L. cv. Stanley) was determined over 2 consecutive growing seasons. Removal of fruits during stage II of fruit development decreased CO2 assimilation rate within 24 h from 12.6 to 8.5 μmol m-2 s-1 in 1986, and from 12.1 to 10.2 μmol m-2 s-1 in 1987. Depression of net photosynthesis persisted for at least 5 days and was greatest in the early afternoon. Recovery of the CO2 assimilation rate to pretreatment levels coincided in defruited trees with vegetative growth that was more than 5-fold that of fruiting trees in the first 6 weeks after fruit removal in 1986. Estimated photorespiration was similar in both fruiting and defruited trees. The stomatal contribution to the decrease of CO2 assimilation rate, calculated from assimilation/intercellular CO2 curves, ranged from 31 to 46%. Defruiting did not affect leaf water potential, but decreased leaf osmotic potential. Leaf levels of chlorophyll, fructose, glucose, sorbitol and sucrose were not affected by defruiting, whereas starch content increased up to 51% in leaves of defruited trees within 24 h after fruit removal. However, because of the small starch pool present in plum leaves (<1.9% dry weight) it is unlikely that starch accumulation was responsible for the observed decline in CO2 assimilation rate after fruit removal. The decrease of CO2 assimilation rate is discussed in relation to the hypothesis of assimilate demand regulating photosynthesis through a feedback mechanism.  相似文献   

13.
Abstract. Two experiments are described which test the normal correlations that arise between stomatal conductance, net CO2 assimilation rate, and intercellular CO2 concentration (Ci), using whole shoots of Commelina communis L. In the first, conductance increased with decreasing Ci, at four different quantum flux densities, such that there was no unique relationship between conductance and quantum flux density or Ci, In the second, conductance increased hyperbolically with increasing quantum flux density while Ci was held constant at 466, 302, and 46 μmiolmol−1, and the response differed at each Ci. In neither experiment was conductance consistently related to net CO2 assimilation rate in the mesophyll. In both experiments high Ci suppressed the response of conductance to light, while there was a large response of conductance to light at low Ci, indicating an interaction between the effects of light and CO2 on stomata. The results show that the parallel responses of assimilation and conductance to light result in constant intercellular CO2 concentrations, and not that stomata maintain a 'constant Ci'.  相似文献   

14.
The effect of long-term water stress on photosynthetic carbon metabolism in Casuarina equisetifolia Forst. & Forst. was analysed by measuring CO2 assimilation, stomatal conductance, the quantum yield of photosystem II ( Φ PSII), enzyme activities, and the levels of photosynthetic intermediates and carbohydrates. CO2 assimilation decreased under water stress while the intercellular CO2 concentration ( C i) as estimated by gas exchange measurements remained high. However, the estimates of C i from measurements of Φ PSII suggest that the decrease in photosynthesis can be explained in terms of stomatal closure. Water stress decreased total stromal fructose-1,6-bisphosphatase activity and did not alter the activities and activation states of ribulose bisphosphate carboxylase oxygenase and NADP-dependent malate dehydrogenase (NADP-MDH). The concentration of photosynthetic metabolites, glucose, fructose and sucrose decreased, whereas starch concentrations increased under drought conditions.  相似文献   

15.
Relationship between photosystem II activity and CO2 fixation in leaves   总被引:9,自引:2,他引:7  
There is now potential to estimate photosystem II (PSII) activity in vivo from chlorophyll fluorescence measurements and thus gauge PSII activity per CO2 fixed. A measure of the quantum yield of photosystem II, ΦII (electron/photon absorbed by PSII), can be obtained in leaves under steady-state conditions in the light using a modulated fluorescence system. The rate of electron transport from PSII equals ΦII times incident light intensity times the fraction of incident light absorbed by PSII. In C4 plants, there is a linear relationship between PSII activity and CO2 fixation, since there are no other major sinks for electrons; thus measurements of quantum yield of PSII may be used to estimate rates of photosynthesis in C4 species. In C3 plants, both CO2 fixation and photorespiration are major sinks for electrons from PSII (a minimum of 4 electrons are required per CO2, or per O2 reacting with RuBP). The rates of PSII activity associated with photosynthesis in C3 plants, based on estimates of the rates of carboxylation (vo) and oxygenation (vo) at various levels of CO2 and O2, largely account for the PSII activity determined from fluorescence measurements. Thus, in C3 plants, the partitioning of electron flow between photosynthesis and photorespiration can be evaluated from analysis of fluorescence and CO2 fixation.  相似文献   

16.
The effects of the ratio of Rubisco activase to Rubisco (activase/Rubisco ratio) on light dependent activation of CO2 assimilation were investigated during leaf aging of rice. Changes of photosynthetic CO2 gas exchange rates in relation to step increases of light intensity from two photon flux densities of 60 µmol m−2 s−1 (low initial PFD) and 500 µmol m−2 s−1 (high initial PFD) to saturated PFD of 1 800 µmol m−2 s−1 were measured. These photosynthetic activation processes were considered to be limited by the Rubisco activation rate when analyzed by the relaxation method. The relaxation time of low initial PFD gradually declined from 3 to 33 days after leaf emergence and showed high and negative correlation to the activase/Rubisco ratio. The initial rate of Rubisco activation under low initial PFD linearly correlated to the amounts of Rubisco activase, whereas these were almost constant from 3 to 23 days after leaf emergence. But these correlations could not be recognized in the case of high initial PFD. Moreover, the relaxation times were more sensitive to intercellular CO2 concentration (Ci) under high initial PFD than under low initial PFD, especially, at Ci below 300 µl l−1. These results suggest the involvement of the activase/Rubisco ratio in the photosynthetic activation under relatively low initial PFD, and the limitation of photosynthetic activation under relatively high initial PFD by Rubisco carbamylation during leaf aging of rice.  相似文献   

17.
To test the prediction that elevated CO2 increases the maximum leaf area index (LAI) through a stimulation of photosynthesis, we exposed model herbaceous communities to two levels of CO2 crossed with two levels of soil fertility. Elevated CO2 stimulated the initial rate of canopy development and increased cumulative LAI integrated over the growth period, but it had no effect on the maximum LAI. In contrast to CO2, increased soil nutrient availability caused a substantial increase in maximum LAI. Elevated CO2 caused a slight increase in leaf area and nitrogen allocated to upper canopy layers and may have stimulated leaf turnover deep in the canopy. Gas exchange measurements of intact communities made near the time of maximum LAI indicated that soil nutrient availability, but not CO2 enrichment, caused a substantial stimulation of net ecosystem carbon exchange. These data do not support our prediction of a higher maximum LAI by elevated CO2 because the initial stimulation of LAI diminished by the end of the growth period. However, early in development, leaf area and carbon assimilation of communities may have been greatly enhanced. These results suggest that the rate of canopy development in annual communities may be accelerated with future increases in atmospheric CO2 but that maximum LAI is set by soil fertility.  相似文献   

18.
Abstract: Chlorophyll fluorescence imaging is a powerful tool to monitor temporal and spatial dynamics of photosynthesis and photosynthesis-related metabolism. In this communication, we use high resolution chlorophyll fluorescence imaging techniques under strictly controlled conditions to quantify day courses of relative effective quantum yield (φPSII) of an entire leaf of the crassulacean acid metabolism (CAM) plant Kalanchoë daigremontiana at different light intensities. Careful interpretation of the combined gas exchange and fluorescence data, in combination with micro malate samples, allow the interpretation of underlying metabolic properties, such as leaf internal CO2 concentration (ciCO2) and energy demand of the cells. Spatial variations of φPSII, which occur as running wave fronts at the transition from phase III to phase IV of CAM, may reflect spatial differences of ciCO2, which are preserved in the tightly packed mesophyll cells of K. daigremontiana. An endogenous rhythm is driven by a master switch which mediates between malate storage and malate release to and from the vacuole, however, using fluorescence techniques, four different metabolic states can be distinguished which also account for the activity of phosphoenolpyruvate carboxylase.  相似文献   

19.
Soybean ( Glycine max cv. Clark) was grown at both ambient (ca 350 μmol mol−1) and elevated (ca 700 μmol mol−1) CO2 concentration at 5 growth temperatures (constant day/night temperatures of 20, 25, 30, 35 and 40°C) for 17–22 days after sowing to determine the interaction between temperature and CO2 concentration on photosynthesis (measured as A, the rate of CO2 assimilation per unit leaf area) at both the single leaf and whole plant level. Single leaves of soybean demonstrated increasingly greater stimulation of A at elevated CO2 as temperature increased from 25 to 35°C (i.e. optimal growth rates). At 40°C, primary leaves failed to develop and plants eventually died. In contrast, for both whole plant A and total biomass production, increasing temperature resulted in less stimulation by elevated CO2 concentration. For whole plants, increased CO2 stimulated leaf area more as growth temperature increased. Differences between the response of A to elevated CO2 for single leaves and whole plants may be related to increased self-shading experienced by whole plants at elevated CO2 as temperature increased. Results from the present study suggest that self-shading could limit the response of CO2 assimilation rate and the growth response of soybean plants if temperature and CO2 increase concurrently, and illustrate that light may be an important consideration in predicting the relative stimulation of photosynthesis by elevated CO2 at the whole plant level.  相似文献   

20.
Existing methods to estimate the mesophyll conductance to CO2 diffusion ( g m) are often based on combined gas exchange and chlorophyll fluorescence measurements. However, estimations of average g m by these methods are often unreliable either because the range of usable data is too narrow or because the estimations are very sensitive to measurement errors. We describe three method variants to estimate g m, for which a wider range of data are usable. They use curve-fitting techniques, which minimise the sum of squared model deviations from the data for A (CO2 assimilation rate) or for J (linear electron transport rate). Like the existing approaches, they are all based on common physiological principles assuming that electron transport limits A . The proposed variants were far less sensitive than the existing approaches to 'measurement noise' either created randomly in the generated data set or inevitably existing in real data sets. Yet, the estimates of g m from the three variants differed by approximately 15%. Moreover, for each variant, a stoichiometric uncertainty in linear electron transport-limited photosynthesis can cause another 15% difference. Any estimation of g m using gas exchange and chlorophyll fluorescence measurements should be considered with caution, especially when g m is high.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号