首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated the localization of urate oxidase, peroxisomal fatty acyl-CoA oxidase, and catalase in bovine kidney by immunoblot analysis and protein A-gold immunocytochemistry, using the respective polyclonal monospecific antibodies raised against the enzymes purified from rat liver. By immunoblot analysis, these three proteins were detected in bovine kidney and bovine liver homogenates. Subcellular localization of these three enzymes in kidney was ascertained by protein A-gold immunocytochemical staining of Lowicryl K4M-embedded tissue. Peroxisomes in bovine kidney cortical epithelium possessed crystalloid cores or nucleoids, which were found to be the exclusive sites of urate oxidase localization. The limiting membrane, the marginal plate, and the matrix of renal peroxisomes were negative for urate oxidase staining. In contrast, catalase and fatty acyl-CoA oxidase were found in the peroxisome matrix. These results demonstrate that, unlike rat kidney peroxisomes which lack urate oxidase, peroxisomes of bovine kidney contain this enzyme as well as peroxisomal fatty acyl-CoA oxidase.  相似文献   

2.
A Sonesson  M Berglund  I Staxn    S Widell 《Plant physiology》1997,115(3):1001-1007
The cortical microtubules determine how cellulose microfibrils are deposited in the plant cell wall and are thus important for the control of cell expansion. To understand how microtubules can control microfibril deposition, the components that link the microtubules to the plasma membrane (PM) of plant cells must be isolated. To obtain information on the properties of the tubulin-membrane associations, cauliflower (Brassica oleracea) PM was subjected to Triton X-114 fractionation, and the distribution of alpha- and beta-tubulin was analyzed using immunoblotting. Approximately one-half of the PM-associated tubulin was solubilized by Triton X-114 and 10 to 15% of both alpha- and beta-tubulin was recovered in the detergent phase (indicative of hydrophobic properties) and 30 to 40% was recovered in the aqueous phase. The hydrophobic tubulin could be released from the membrane by high pH extraction with preserved hydrophobicity. A large part of the PM-associated tubulin was found in the Triton-insoluble fraction. When this insoluble material was extracted a second time, a substantial amount of hydrophobic tubulin was released if the salt concentration was increased, suggesting that the hydrophobic tubulin was linked to a high-salt-sensitive protein aggregate that probably includes other components of the cytoskeleton. The hydrophobicity of a fraction of PM-associated tubulin could reflect a direct or indirect interaction of this tubulin with the lipid bilayer or with an integral membrane protein and may represent the anchoring of the cortical microtubules to the PM, a key element in the regulation of cell expansion.  相似文献   

3.
Phase separation of integral membrane proteins in Triton X-114 solution   总被引:371,自引:0,他引:371  
A solution of the nonionic detergent Triton X-114 is homogeneous at 0 degrees C but separates in an aqueous phase and a detergent phase above 20 degrees C. The extent of this detergent phase separation increases with the temperature and is sensitive to the presence of other surfactants. The partition of proteins during phase separation in solutions of Triton X-114 is investigated. Hydrophilic proteins are found exclusively in the aqueous phase, and integral membrane proteins with an amphiphilic nature are recovered in the detergent phase. Triton X-114 is used to solubilize membranes and whole cells, and the soluble material is submitted to phase separation. Integral membrane proteins can thus be separated from hydrophilic proteins and identified as such in crude membrane or cellular detergent extracts.  相似文献   

4.
《The Journal of cell biology》1988,107(6):2679-2688
Cilia were isolated from Tetrahymena thermophila, extracted with Triton X-114, and the detergent-soluble membrane + matrix proteins separated into Triton X-114 aqueous and detergent phases. The aqueous phase polypeptides include a high molecular mass polypeptide previously identified as a membrane dynein, detergent-soluble alpha and beta tubulins, and numerous polypeptides distinct from those found in axonemes. Integral membrane proteins partition into the detergent phase and include two major polypeptides of 58 and 50 kD, a 49-kD polypeptide, and 5 polypeptides in relatively minor amounts. The major detergent phase polypeptides are PAS-positive and are phosphorylated in vivo. A membrane-associated ATPase, distinct from the dynein-like protein, partitions into the Triton X-114 detergent phase and contains nearly 20% of the total ciliary ATPase activity. The ATPase requires Mg++ or Ca++ and is not inhibited by ouabain or vanadate. This procedure provides a gentle and rapid technique to separate integral membrane proteins from those that may be peripherally associated with the matrix or membrane.  相似文献   

5.
Human HepG2 and rat MH1C1 hepatoma cell lines were examined for their response to cetaben, an exceptional type of peroxisome proliferator. Shape change and proliferation of peroxisomes as well as induction of selected peroxisomal enzymes catalase, acyl-CoA oxidase, and peroxisomal bifunctional enzyme, were assessed in response to cetaben. In MH1C1 cells, peroxisomes were seen in clusters displaying typical features of microperoxisomes. Cetaben caused little but reversible proliferation and morphological heterogeneity with the occurrence of dumbbell-shaped and cup-shaped peroxisomal profiles. Peroxisomes in HepG2 cells showed marked variation in size and shape. Cetaben treatment of HepG2 cells caused disintegration of Golgi regions and augmented mitochondrial matrix. Interestingly, MH1C1 cells showed different subunit composition of acyl-CoA oxidase in immunoblot analysis: only subunit A at 72 kDa was detected but not the cleavage products. In situ hybridization underlined the marked morphological heterogeneity observed, and both cell lines revealed different stages of gene expression. Our results indicate that cetaben represents an extraordinary type of peroxisomal proliferator with pleiotropic effects on human and rat hepatoma cells, and, at least in the human hepatoma cell line HepG2, these effects are not restricted to peroxisome proliferation.  相似文献   

6.
The association of liver peroxisomal fatty acyl-CoA beta-oxidizing system (FAOS) with the synthesis of bile acids was investigated. When rats were given clofibrate, a peroxisome proliferator and stimulator of peroxisomal FAOS, the biosynthesis of bile acids was significantly increased. Di(2-ethylhexyl)phthalate, another peroxisome proliferator, also increased the biosynthesis of bile acids. On the other hand, administration of orotate, an inhibitor of mitochondrial FAOS activity, did not affect the biosynthesis. It is known that fatty acyl-CoA oxidase [EC 1.3.99.3] in peroxisomal FAOS conjugates with catalase [EC 1.11.1.6]. When the catalase activity of liver peroxisomes was irreversibly inhibited by administration of 3-amino-1,2,4-triazole (amino-triazole), the biosynthesis of bile acids was suppressed to about one-third, and the serum cholesterol level was increased. However, the bile acid components of the bile obtained from aminotriazole-treated rats were not essentially different from those of control rats, and no accumulation of intermediates of bile acid synthesis was found in this experiment. Peroxisomal FAOS activity of the liver from amino-triazole-treated rats was considerably lower than that of control liver. The above results indicate that liver peroxisomes play a role in the biosynthesis of bile acids in vivo.  相似文献   

7.
Acetylcholinesterase has been isolated from bovine erythrocyte membranes by affinity chromatography using a m-trimethylammonium ligand. The purified enzyme had hydrophobic properties by the criterion of phase partitioning into Triton X-114. The activity of the hydrophobic enzyme was seen as a slow-moving band in nondenaturing polyacrylamide gels. After treatment with phosphatidylinositol-specific phospholipase C, another form of active enzyme was produced that migrated more rapidly toward the anode in these gels. This form of the enzyme partitioned into the aqueous phase in Triton X-114 phase separation experiments and was therefore hydrophilic. The hydrophobic form bound to concanavalin A in the absence of Triton X-100. As this binding was partially prevented by detergent, but not by alpha-methyl mannoside, D-glucose, or myo-inositol, it is in part hydrophobic. Erythrocyte cell membranes showed acetylcholinesterase activity present as a major form, which was hydrophobic by Triton X-114 phase separation and in nondenaturing gel electrophoresis moved at the same rate as the purified enzyme. In the membrane the enzyme was more thermostable than when purified in detergent. The hydrophobic enzyme isolated, therefore, represents a native form of the acetylcholinesterase present in the bovine erythrocyte cell membrane, but in isolation its stability becomes dependent on amphiphile concentration. Its hydrophobic properties and lectin binding are attributable to the association with the protein of a lipid with the characteristics of a phosphatidylinositol.  相似文献   

8.
Peroxisomal beta-oxidation enzyme proteins in the Zellweger syndrome   总被引:12,自引:0,他引:12  
The absence of peroxisomes in patients with the cerebro-hepato-renal (Zellweger) syndrome is accompanied by a number of biochemical abnormalities, including an accumulation of very long-chain fatty acids. We show by immunoblotting that there is a marked deficiency in livers from patients with the Zellweger syndrome of the peroxisomal beta-oxidation enzyme proteins acyl-CoA oxidase, the bifunctional protein with enoyl-CoA hydratase and 3-hydroxyacyl-CoA dehydrogenase activities and 3-oxoacyl-CoA thiolase. Using anti-(acyl-CoA oxidase), increased amounts of cross-reactive material of low Mr were seen in the patients. With anti-(oxoacyl-CoA thiolase), high Mr cross-reactive material, presumably representing precursor forms of 3-oxoacyl-CoA thiolase, was detected in the patients. Catalase protein was not deficient, in accordance with the finding that catalase activity is not diminished in the patients. Thus in contrast to the situation with catalase functional peroxisomes are required for the stability and normal activity of peroxisomal beta-oxidation enzymes.  相似文献   

9.
Triton X-114 solutions separate above 22 degrees C into two immiscible aqueous phases. The more dense phase is enriched in detergent, and the less dense phase is depleted of detergent, relative to the original single phase. This phenomenon has been used to partition proteins according to hydrophobicity. The phase separation temperature is sensitive to the length of the polyoxyethylene headgroup. When Triton X-45, with a shorter headgroup, is mixed with Triton X-114 in various proportions, the phase transition temperature can be adjusted anywhere between 0 and 22 degrees C. Partitioning properties of the resulting mixtures are similar to those of Triton X-114 alone.  相似文献   

10.
Male Wistar rats were given a diet containing 0.05% (w/w) LK-903 (alpha-methyl-p-myristyroxycinnamic acid 1-monoglyceride) for 2 weeks. The activities of four hepatic peroxisomal enzymes involved in the fatty acyl-CoA beta-oxidizing system were determined. The activities of fatty acyl-CoA oxidase, crotonase, beta-hydroxybutyryl-CoA dehydrogenase and thiolase were all increased about three times by administration of LK-903. The intraparticulate localizations of the four enzymes were then investigated by treatment of the purified peroxisomes with Triton X-100, by sonication, and by sucrose-density-gradient centrifugation after Triton X-100 treatment. The results suggest that thiolase is localized in the matrix of peroxisomes, that crotonase and beta-hydroxybutyryl-CoA dehydrogenase are located in the core, and that all or at least part of fatty acyl-CoA oxidase is associated with the core, though its association is weak.  相似文献   

11.
The peroxisomal compartment in mouse liver was investigated using rate sedimentation of liver subfractions on sucrose density gradients. Treatment of mice with clofibrate, a hypolipidemic agent and peroxisome proliferator, resulted in the formation of small particles which were devoid of catalase and urate oxidase, but which were identified as peroxisomal on the basis of content of the clofibrate-induced peroxisomal beta-oxidation enzymes (fatty acyl-CoA oxidase, hydratase/dehydrogenase bifunctional protein, and thiolase) and the 68 kDa peroxisomal integral membrane protein. Immunoelectron microscopy confirmed the membrane-bound organellar nature and enzyme composition of these particles. These particles were absent in normal mice, and were increased to a maximal level within 2 days of clofibrate treatment. These data have been taken as indicative of a role of these particles in the mechanism of drug-induced peroxisome proliferation.  相似文献   

12.
The effects of the nonionic detergent Triton X-114 on the ultrastructure of Treponema pallidum subsp. pallidum are presented in this study. Treatment of Percoll-purified motile T. pallidum with a 1% concentration of Triton X-114 resulted in cell surface blebbing followed by lysis of blebs and a decrease in diameter from 0.25-0.35 micron to 0.1-0.15 micron. Examination of thin sections of untreated Percoll-purified T. pallidum showed integrity of outer and cytoplasmic membranes. In contrast, thin sections of Triton X-114-treated treponemes showed integrity of the cytoplasmic membrane but loss of the outer membrane. The cytoplasmic cylinders generated by detergent treatment retained their periplasmic flagella, as judged by electron microscopy and immunoblotting. Recently identified T. pallidum penicillin-binding proteins also remained associated with the cytoplasmic cylinders. Proteins released by Triton X-114 at 4 degrees C were divided into aqueous and hydrophobic phases after incubation at 37 degrees C. The hydrophobic phase had major polypeptide constituents of 57, 47, 38, 33-35, 23, 16, and 14 kilodaltons (kDa) which were reactive with syphilitic serum. The 47-kDa polypeptide was reactive with a monoclonal antibody which has been previously shown to identify a surface-associated T. pallidum antigen. The aqueous phase contained the 190-kDa ordered ring molecule, 4D, which has been associated with the surface of the organisms. Full release of the 47- and 190-kDa molecules was dependent on the presence of a reducing agent. These results indicate that 1% Triton X-114 selectively solubilizes the T. pallidum outer membrane and associated proteins of likely outer membrane location.  相似文献   

13.
Quantitative immunoelectron microscopy in conjunction with quantitative analysis of immunoblots have been used to study the effects of bezafibrate (BF), a peroxisome-proliferating hypolipidemic drug, upon six different enzyme proteins in rat liver peroxisomes (Po). Antibodies against following peroxisomal enzymes: catalase, urate oxidase, alpha-hydroxy acid oxidase, acyl-CoA oxidase, bifunctional enzyme (hydratase-dehydrogenase) and thiolase, were raised in rabbits, and their monospecificities were confirmed by immunoblotting. Female Sprague-Dawley rats were treated for 7 days with 250 mg/kg/day bezafibrate and liver sections were incubated with the appropriate antibodies followed by the protein A-gold complex. The labeling density for each enzyme was estimated by automatic image analysis. In parallel experiments immunoblots prepared from highly purified peroxisome fractions of normal and BF-treated rats were incubated with the same antibodies. The antigens were visualized by an improved protein A-gold method including an anti-protein A step and silver amplification. The immunoblots were also quantitated by an image analyzer. The results revealed a selective induction of beta-oxidation enzymes by bezafibrate with thiolase showing the most increase followed by bifunctional protein and acyl-CoA oxidase. The labeling density for catalase and alpha-hydroxy acid oxidase was reduced, confirming fully the quantitative analysis of immunoblots which in addition revealed reduction of uricase. These observations demonstrate that hypolipidemic drugs induce selectively the beta-oxidation enzymes while other peroxisomal enzymes are reduced. The quantitative immunoelectron microscopy with automatic image analysis provides a versatile, highly sensitive and efficient method for rapid detection of modulations of individual proteins in peroxisomes.  相似文献   

14.
For the analysis of the molecular mechanism of the action of peroxisome proliferators, we attempted to establish the optimal conditions for obtaining the effects of the chemicals in vitro, employing an established cell line, Reuber rat hepatoma H4IIEC3. Histochemical analyses revealed a marked increase in the number, size, and catalase content of peroxisomes in the cells cultured on a medium containing 0.5 mM ciprofibrate, a peroxisome proliferator. The activity of acyl-CoA oxidase, the initial enzyme of the peroxisomal beta-oxidation system, was increased by more than 10-fold by the same treatment. Catalase was also induced significantly, whereas the activities of glutamate dehydrogenase and lactate dehydrogenase, mitochondrial and cytosolic marker enzymes, did not change upon the treatment. Immunoblotting and RNA-blotting analyses confirmed the increases in the amount of protein and mRNA for all the three enzymes of the peroxisomal beta-oxidation system. Cell fractionation experiments gave a partial separation of peroxisomes from other organelles for the induced culture. Thus, H4IIEC3 cells offer a good in vitro model system of the induction of peroxisomes and peroxisomal beta-oxidation enzymes by peroxisome proliferators.  相似文献   

15.
The thylakoid polypeptides of the cyanobacterium Anacystis nidulans R2 were analyzed by Triton X-114 phase fractionation [C. Bordier (1981) J. Biol. Chem.256, 1604–1607, as adapted for photosynthetic membranes by T. M. Bricker and L. A. Sherman (1982) FEBS Lett.149, 197–202]. In this procedure, polypeptides with extensive hydrophobic regions (i.e., intrinsic proteins) form mixed micelles with Triton X-114, and are separated from extrinsic proteins by temperature-mediated precipitation of the mixed Triton X-114-intrinsic protein micelles. The polypeptide pattern after phase fractionation was highly complementary, with 62 of the observed 110 polypeptide components partitioning into the Triton X-114-enriched fraction. Identified polypeptides fractionating into the Triton X-114 phase included the apoproteins for Photosystems I and II, cytochromes f and b6, and the herbicide-binding protein. Identified polypeptides fractioning into the Triton X-114-depleted (aqueous) phase included the large and small subunits of RuBp carboxylase, cytochromes c550 and c554, and ferredoxin. Enzymatic radioiodination of the photosynthetic membranes followed by Triton X-114 phase fractionation allowed direct identification of intrinsic polypeptide components which possess surface-exposed regions susceptible to radioiodination. The most prominent of these polypeptides was a 34-kDa component which was associated with photosystem II. This phase partitioning procedure has been particularly helpful in the clarification of the identity of the membrane-associated cytochromes, and of photosystem II components. When coupled with surface-probing techniques, this procedure is very useful in identifying intrinsic proteins which possess surface-exposed domains. Phase fractionation, in conjunction with the isolation of specific membrane components and complexes, has allowed the identification of many of the important intrinsic thylakoid membrane proteins of A. nidulans R2.  相似文献   

16.
Extraction systems for hydrophobically tagged proteins have been developed based on phase separation in aqueous solutions of non-ionic detergents and polymers. The systems have earlier only been applied for separation of membrane proteins. Here, we examine the partitioning and purification of the amphiphilic fusion protein endoglucanase I(core)-hydrophobin I (EGI(core)-HFBI) from culture filtrate originating from a Trichoderma reesei fermentation. The micelle extraction system was formed by mixing the non-ionic detergent Triton X-114 or Triton X-100 with the hydroxypropyl starch polymer, Reppal PES100. The detergent/polymer aqueous two-phase systems resulted in both better separation characteristics and increased robustness compared to cloud point extraction in a Triton X-114/water system. Separation and robustness were characterized for the parameters: temperature, protein and salt additions. In the Triton X-114/Reppal PES100 detergent/polymer system EGI(core)-HFBI strongly partitioned into the micelle-rich phase with a partition coefficient (K) of 15 and was separated from hydrophilic proteins, which preferably partitioned to the polymer phase. After the primary recovery step, EGI(core)-HFBI was quantitatively back-extracted (K(EGIcore-HFBI)=150, yield=99%) into a water phase. In this second step, ethylene oxide-propylene oxide (EOPO) copolymers were added to the micelle-rich phase and temperature-induced phase separation at 55 degrees C was performed. Total recovery of EGI(core)-HFBI after the two separation steps was 90% with a volume reduction of six times. For thermolabile proteins, the back-extraction temperature could be decreased to room temperature by using a hydrophobically modified EOPO copolymer, with slightly lower yield. The addition of thermoseparating co-polymer is a novel approach to remove detergent and effectively releases the fusion protein EGI(core)-HFBI into a water phase.  相似文献   

17.
Exposure to low pH triggers an increase in the hydrophobicity of the colicin E3 molecule. Using a [3H] Triton X-100 binding assay we have shown that the amount of detergent (at supramicellar concentrations) associated with colicin E3 increased dramatically at pH 3.8 and below. Interaction of colicin E3 with asolectin vesicles was monitored by following its cross-linking with two different photoactivatable radioactive phospholipid analogues. At neutral pH colicin E3 was cross-linked with the phospholipid probing the membrane surface whereas at pH 4.5 and below, the bacteriocin reacted with the phospholipid probing the hydrophobic core of the bilayer. With the use of phase partitioning of proteins in Triton X-114 it was shown that at acidic pH whole colicin E3 and its immunity protein segregated in the detergent phase. After trypsin digestion of the colicin-immunity complex, the N-terminal portion of E3 (T1) and the immunity partitioned in the detergent phase at low pH. In contrast, the enzymic domain of the colicin (T2) remained in the aqueous phase and was recovered in a highly active form as a consequence of its dissociation from the immunity protein. These results are discussed in relation to the mechanism of entry of colicin E3 into bacterial cells.  相似文献   

18.
35S-Labeled adenovirus type 2 (Ad2) (10 ng/ml) was incubated with 1% Triton X-114 at various pH values varying from 3.0 to 8.0. The detergent phase was separated from the aqueous phase by centrifugation, and the amounts of Ad2 were determined in the two phases. At pH 7.0-8.0, less than 5% of Ad2 was associated with the detergent phase; at pH 5.0 or below, about 60% of Ad2 was associated with the detergent phase. When a mixture of 35S-labeled capsid proteins was used at pH 7.0, 60-70% of the total proteins were associated with the detergent at pH 5.0, but less than 5% of the proteins interacted with detergent at pH 7.0. Among the three major external proteins (hexon, penton base, and fiber), penton base had the highest association with Triton X-114 at pH 5.0. Both intact virus and the capsid proteins that were associated with Triton X-114 at pH 5.0 were released into the aqueous phase on subsequent incubation at pH 7.0. On the basis of these results, it is suggested that mildly acidic pH induces amphiphilic properties in adenovirus capsid proteins and may help Ad2 escape from acidic endocytic vesicles.  相似文献   

19.
We studied the fatty acyl-CoA binding activity of rat liver peroxisomes. After subcellular fractionation of rat liver treated with or without clofibrate, a peroxisome proliferator, the binding activity with [1-(14)C]palmitoyl-CoA was detected in the light mitochondrial fraction in addition to the mitochondrial and cytosol fractions. After Nycodenz centrifugation of the light mitochondrial fraction, the binding activity was detected in peroxisomes. The peroxisomal activity depended on the incubation temperature and peroxisome concentration. The activity also depended on the concentration of 2-mercaptoethanol, and a plateau of activity was unexpectedly found at 2-mercaptoethanol concentrations from 20 to 40 mM. Clofibrate increased the total and specific activity of the fatty acyl-CoA binding of peroxisomes by 7.9 and 2.5 times compared with the control, respectively. In the presence of 20% glycerol at 0 degree C, approximately 90% of the binding activity was maintained for up to at least 3 wk. After successive treatment with an ultramembrane Amicon YM series, about 70% of the binding activity was detected in the M.W. 30,000-100,000 fraction. When the M.W. 30,000-100,000 fraction was added to the incubation mixture of the peroxisomal fatty acyl-CoA beta-oxidation system, a slight increase in the beta-oxidation activity was found. 2-Mercaptoethanol (20 mM) significantly activated the fatty acyl-CoA beta-oxidation system to 1.4 times control. After gel filtration of the M.W. 30,000-100,000 fraction, the peaks of fatty acyl-CoA binding protein showed broad elution profiles from 45,000 to 75,000. These results suggest that fatty acyl-CoA binding activity can be detected directly in peroxisomes and is increased by peroxisome proliferators. The high binding activity in the presence of higher concentrations of 2-mercaptoethanol indicates the importance of the SH group for binding. The apparent molecular weight of the binding protein may be from 45,000 to 75,000.  相似文献   

20.
The phospholipid/protein ratios of rat liver peroxisomes, mitochondria and microsomes were determined and found to be 257 +/- 26, 232 +/- 20 and 575 +/- 20 nmol.mg-1, respectively. After correction for the loss of soluble protein, a peroxisomal ratio of 153 nmol.mg-1 was calculated. Organelle fractions were treated with sodium carbonate, whereafter membrane fragments containing integral membrane proteins were pelleted. For the membrane fractions of peroxisomes, mitochondria and microsomes phospholipid/protein ratios of 1054 +/- 103, 1180 +/- 90 and 1050 +/- 50 nmol.mg-1 were found, whereas 26 +/- 2, 20 +/- 2 and 49 +/- 2% of the organelle protein was recovered in these membrane fractions, respectively. The phospholipid composition of the different organelle fractions were determined, but no large differences were obtained, except for cardiolipin that was found only in the mitochondrial fraction. After sodium carbonate treatment virtually all enzymatic activity of the enzymes tested was lost. Therefore Triton X-114 phase separation was used to obtain the peroxisomal membrane components. In this fraction 42.9 +/- 3.5% of the protein and 90.2 +/- 3.7% of the phospholipid was found. Enzymatic activity of two integral membrane proteins was recovered for over 90% in the membrane fraction, whereas activity of two matrix proteins was mainly found in the soluble fraction. Urate oxidase, the peroxisomal core protein, behaved differently and was recovered mainly with the membrane components. Recoveries of enzymatic activities after the Triton X-114 phase separation varied from 45 to 116%, and together with the good separation that was obtained between soluble proteins and integral membrane proteins this method provides a useful alternative for the isolation of membrane components.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号