首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Bispecific monoclonal antibodies (bsMAbs), due their unique design, have a wide range of potential applications in immunodiagnostics and immunotherapy. One of the major limitations for the use of bsMAbs produced by hybrid–hybridomas is the concomitant production of parental monospecific antibodies. The relative amount of bsMAb secreted may vary between different hybrid–hybridomas. Hence, the purification of the desired bispecific molecule from other forms is crucial. Current purification methods include anion-exchange, HPLC on different matrices, and dual affinity methods. Most of those methods include multiple steps and have limitations on the purity or yield of the desired species. We report here a simple single-step purification method, using inexpensive thiophilic chromatography. This new method can potentially be scaled up, for industrial proposes. Finally, based on the amino acid sequences and assembly of the two heavy chains we attempt to explain the possible mechanism by which thiophilic chromatography was able to resolve the bsMAbs from the monospecific species.  相似文献   

2.
Downstream purification processes for monoclonal antibody production typically involve multiple steps; some of them are conventionally performed by bead-based column chromatography. Affinity chromatography with Protein A is the most selective method for protein purification and is conventionally used for the initial capturing step to facilitate rapid volume reduction as well as separation of the antibody. However, conventional affinity chromatography has some limitations that are inherent with the method, it exhibits slow intraparticle diffusion and high pressure drop within the column. Membrane-based separation processes can be used in order to overcome these mass transfer limitations. The ligand is immobilized in the membrane pores and the convective flow brings the solute molecules very close to the ligand and hence minimizes the diffusional limitations associated with the beads. Nonetheless, the adoption of this technology has been slow because membrane chromatography has been limited by a lower binding capacity than that of conventional columns, even though the high flux advantages provided by membrane adsorbers would lead to higher productivity. This review considers the use of membrane adsorbers as an alternative technology for capture and polishing steps for the purification of monoclonal antibodies. Promising industrial applications as well as new trends in research will be addressed.  相似文献   

3.
We developed a simple purification method to purify alkaline phosphatase/anti-alkaline phosphatase IgG as immune complexes using mimetic affinity chromatography wherein the antibody was either a monospecific antibody, a bispecific antibody or a commercial polyclonal IgG conjugated with alkaline phosphatase (AP–IgG) covalently. The immune complexes or conjugates were efficiently bound on the mimetic Blue A6XL column and eluted under mild conditions (5–20 mM phosphate buffer). A similar strategy of purifying peroxidase/anti-peroxidase antibody complexes was also successfully demonstrated using the mimetic Red 3 column. Mimetic affinity chromatography thus appears to be a simple method to purify the desired monospecific or bispecific antibodies from the respective hybridomas and quadromas.  相似文献   

4.
欧亚活血丹外源凝集素(Gleheda)是分离自欧亚活血丹 (Glechoma hederacea) 叶片中的一种糖基化植物新蛋白. 如同其他糖基化蛋白,通过免疫学方法探测 Gleheda 的过程中通常受到一些不相干糖蛋白的妨碍,为此制定了抗 Gleheda 特异性多克隆抗体的纯化方案. 免疫血清蛋白经硫酸铵选择性沉淀后,分别以 Gleheda 和刺槐外源凝集蛋白 (RPA) 结合在 Sepharose 4B作为亲和配体,采用亲和层析法连续纯化 2 次,然后进一步采用离子交换层析 Q Fast Flow 提纯. 经每一步骤提纯得到的抗体组分对 Gleheda 的特异性,均同时采用双向免疫扩散检验和 Western blot 分析. 结果表明,以 Gleheda 为配体,亲和纯化制备得到的抗体组分对叶片粗提物中的许多植物 (糖) 蛋白仍然表现交叉反应. 为除去由植物糖蛋白中的聚糖所引起这些非特异性交叉反应抗体,接着以 RPA 为配体再次进行亲和纯化,Western blot 分析显示,抗体的特异性得到提高但并非除去了所有非特异性交叉反应的抗体. 最后进一步采用离子交换层析制备得到仅抗 Gleheda 蛋白的特异性抗体组分,此抗体组分适用于免疫探测研究. 该抗体纯化制备程序简易而高效,而且不需要昂贵的设备.  相似文献   

5.
Hybrid hybridomas (quadromas) are derived by fusing at least two hybridomas, each producing a different antibody of predefined specificity. The resulting cell secretes not only the immunoglobulins of both parents but also hybrid molecules manifesting the binding characteristics of the individual fusion partners. Purification of the desired bispecific immunoprobe with high specific activity from a mixture of bispecific and monospecific monoclonal antibodies requires special strategies. Using a dual, sequential affinity chromatography (Protein-G chromatography followed by m-aminophenyleboronic acid agarose column), we have purified bispecific monoclonal antibodies (BsMAb) as a preformed HRPO (Horseradish Peroxidase) complex (BsMAb-HRPO). The quadroma culture supernatant was initially processed on a Protein-G column to isolate all the species of immunoglobulins. This pre-enriched fraction was subsequently passed through the aminophenyleboronic acid column super saturated with HRPO. The column matrix has the ability to bind to proteins such as HRPO with vicinal diols. The enzyme loaded column captures the desired bispecific anti-SARS-CoVxanti-HRPO species with the elimination of the monospecific anti-SARS-CoV MAb to result in a high specific activity diagnostic probe. The presence of anti-HRPO MAb is an acceptable impurity as it will not bind to the target SARS-CoV NP antigen and will get washed out during the ELISA procedure.  相似文献   

6.
Applications of affinity chromatography in proteomics   总被引:7,自引:0,他引:7  
Affinity chromatography is a powerful protein separation method that is based on the specific interaction between immobilized ligands and target proteins. Peptides can also be separated effectively by affinity chromatography through the use of peptide-specific ligands. Both two-dimensional electrophoresis (2-DE)- and non-2-DE-based proteomic approaches benefit from the application of affinity chromatography. Before protein separation by 2-DE, affinity separation is used primarily for preconcentration and pretreatment of samples. Those applications entail the removal of one protein or a class of proteins that might interfere with 2-DE resolution, the concentration of low-abundance proteins to enable them to be visualized in the gel, and the classification of total protein into two or more groups for further separation by gel electrophoresis. Non-2-DE-based approaches have extensively employed affinity chromatography to reduce the complexity of protein and peptide mixtures. Prior to mass spectrometry (MS), preconcentration and capture of specific proteins or peptides to enhance sensitivity can be accomplished by using affinity adsorption. Affinity purification of protein complexes followed by identification of proteins by MS serves as a powerful tool for generating a map of protein-protein interactions and cellular locations of complexes. Affinity chromatography of peptide mixtures, coupled with mass spectrometry, provides a tool for the study of protein posttranslational modification (PTM) sites and quantitative proteomics. Quantitation of proteomes is possible via the use of isotope-coded affinity tags and isolation of proteolytic peptides by affinity chromatography. An emerging area of proteomics technology development is miniaturization. Affinity chromatography is becoming more widely used for exploring PTM and protein-protein interactions, especially with a view toward developing new general tag systems and strategies of chemical derivatization on peptides for affinity selection. More applications of affinity-based purification can be expected, including increasing the resolution in 2-DE, improving the sensitivity of MS quantification, and incorporating purification as part of multidimensional liquid chromatography experiments.  相似文献   

7.
We reported previously that TG19318, a synthetic ligand deduced from the screening of combinatorial libraries, displays specific and selective recognition properties for immunoglobulins of the G class and can be used conveniently for affinity chromatography purification of monoclonal and polyclonal antibodies. In this study we have extended the ligand characterization, examining its ability to bind IgA from cell culture supernatants and from IgG-deprived serum. Affinity columns prepared by immobilizing TG19318 on Sepharose allowed convenient one-step purification of monoclonal IgA directly from crude feedstocks, in high yield and with full recovery of immunoreactivity. Optimal column adsorption occurred with phosphate buffer at neutral pH, while elution of adsorbed IgA could be accomplished by a buffer pH change to acidic or basic conditions. Column capacity was close to 7 mg IgA/ml support.  相似文献   

8.
Expression of a bispecific dsFv-dsFv' antibody fragment in Escherichia coli   总被引:3,自引:0,他引:3  
A bispecific disulfide-stabilized Fv antibody fragment (dsFv-dsFv') consisting of two different disulfide-stabilized Fv antibody fragments connected by flexible linker peptides was produced by secretion of three polypeptide chains into the periplasm of Escherichia coli. The dsFv-dsFv' molecules were enriched by immobilized metal affinity chromatography and further purified by anion-exchange chromatography. The recombinant antibody constructs retained the two parental antigen binding specificities and were able to cross-link the two different antigens. The described dsFv-dsFv' design might be of particular value for therapeutic in vivo applications since improved stability is expected to be combined with minimal immunogenicity.  相似文献   

9.
The global antibody market has grown exponentially due to increasing applications in research, diagnostics and therapy. Antibodies are present in complex matrices (e.g. serum, milk, egg yolk, fermentation broth or plant-derived extracts). This has led to the need for development of novel platforms for purification of large quantities of antibody with defined clinical and performance requirements. However, the choice of method is strictly limited by the manufacturing cost and the quality of the end product required. Affinity chromatography is one of the most extensively used methods for antibody purification, due to its high selectivity and rapidity. Its effectiveness is largely based on the binding characteristics of the required antibody and the ligand used for antibody capture. The approaches used for antibody purification are critically examined with the aim of providing the reader with the principles and practical insights required to understand the intricacies of the procedures. Affinity support matrices and ligands for affinity chromatography are discussed, including their relevant underlying principles of use, their potential value and their performance in purifying different types of antibodies, along with a list of commercially available alternatives. Furthermore, the principal factors influencing purification procedures at various stages are highlighted. Practical considerations for development and/or optimizations of efficient antibody-purification protocols are suggested.  相似文献   

10.
A simple, but highly efficient, method was developed for the purification of monospecific antibodies against the plant glycoprotein Sambucus nigra lectin related protein. In a first step, the antiserum is purified by affinity chromatography on a column with the immobilized antigen. To deplete the affinity-purified antiserum from aspecific cross-reacting antibodies directed against the glycan part of the glycoprotein, a second affinity chromatography on an unrelated plant glycoprotein, in casu the Robinia pseudoacacia agglutinin, is included.  相似文献   

11.
Affinity columns prepared by immobilizing monoclonal antibodies that specifically recognize the Lea or the Leb blood group antigens can be used for analytical or preparative isolation of oligosaccharides with the corresponding reactivities. The number of immobilized functional antibody combining sites on a column and the dissociation constants for standard oligosaccharides are determined by frontal analysis. By employing a simple approximation [K.-I. Kasai et al. (1986) J. Chromatogr. 376, 33-47] these parameters can be used to rationally design columns with properties appropriate for zonal affinity chromatography. The affinity for binding of the Lea-active oligosaccharide lacto-N-fucopentaose II (LNF II) by the anti-Lea antibody CO-514 doubles for each 8 degrees C downward shift in temperature between 37 and 4 degrees C. By zonal chromatography, Lea- or Leb-active oligosaccharides are recovered from a complex mixture of milk oligosaccharides containing more than a 20-fold molar excess of structurally similar but antigenically distinct oligosaccharides. The capacity for preparative isolation of an oligosaccharide increases in a linear fashion with the amount of antibody loaded on the solid support. The monoclonal antibodies used in these studies are products of hybridomas derived from mice immunized with human colorectal carcinoma cell lines [M. Blaszczyk et al. (1984) Arch. Biochem. Biophys. 233, 161-168]. The experiments establish that affinity chromatography applied to mixtures of oligosaccharides released by enzymatic or chemical cleavage of glycoconjugates may simplify the task of isolating and characterizing biologically interesting target antigens of monoclonal antibodies.  相似文献   

12.
The development of recombinant techniques for rapid cloning, expression, and characterization of cDNAs encoding antibody (Ab) subunits has revolutionized the field of antibody engineering. By fusion to heterologous protein domains, chain shuffling, or inclusion of self-assembly motifs, novel molecules such as bispecific Abs can be generated that possess the subset of functional properties designed to fit the intended application. We describe the engineering of Ab fragments produced in bacteria for blocking the CD28-CD80/CD86 costimulatory interaction in order to induce tolerance against transplanted organs. We designed single-chain Fv antibodies, monospecific and bispecific diabodies, and a bispecific tetravalent antibody (BiTAb) molecule directed against the CD80 and/or CD86 costimulatory molecules. These recombinant Ab molecules were expressed in Escherichia coli, followed by purification and evaluation for specific interaction with their respective antigen in an enzyme-linked immunosorbent assay (ELISA). A specific sandwich ELISA confirmed the bispecificity of the bispecific diabodies and the BiTAb.  相似文献   

13.
A stochastic approach of copurification of the protease Cathepsin L that results in product fragmentation during purification processing and storage is presented. Cathepsin L was identified using mass spectroscopy, characterization of proteolytic activity, and comparison with fragmentation patterns observed using recombinant Cathepsin L. Cathepsin L existed in Chinese hamster ovary cell culture fluids obtained from cell lines expressing different products and cleaved a variety of recombinant proteins including monoclonal antibodies, antibody fragments, bispecific antibodies, and fusion proteins. Therefore, characterization its chromatographic behavior is essential to ensure robust manufacturing and sufficient shelf life. The chromatographic behaviors of Cathepsin L using a variety of techniques including affinity, cation exchange, anion exchange, and mixed mode chromatography were systematically evaluated. Our data demonstrates that copurification of Cathepsin L on nonaffinity modalities is principally because of similar retention on the stationary phase and not through interactions with product. Lastly, Cathespin L exhibits a broad elution profile in cation exchange chromatography (CEX) likely because of its different forms. Affinity purification is free of fragmentation issue, making affinity capture the best mitigation of Cathepsin L. When affinity purification is not feasible, a high pH wash on CEX can effectively remove Cathepsin L but resulted in significant product loss, while anion exchange chromatography operated in flow-through mode does not efficiently remove Cathepsin L. Mixed mode chromatography, using Capto™ adhere in this example, provides robust clearance over wide process parameter range (pH 7.7 ± 0.3 and 100 ± 50 mM NaCl), making it an ideal technique to clear Cathepsin L. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 35: e2732, 2019  相似文献   

14.
Several lines of evidence have pointed to a role of urokinase-type plasminogen activator receptor (uPAR) as a modulator of certain biochemical processes that are active during tumor invasion and metastasis. Consequently, the structure and function of this receptor have been studied extensively, using recombinantly produced uPAR that has been purified by either affinity chromatography using its cognate ligand, the urokinase-type plasminogen activator (uPA), or a monoclonal anti-uPAR antibody (R2), or by hydroxyapatite. Here, we present a new method for the efficient one-step affinity purification of recombinant uPAR exploiting a high-affinity synthetic peptide antagonist (AE152). The corresponding parent peptide was originally identified in a random phage-display library and subsequently subjected to affinity maturation by combinatorial chemistry. This study compares the affinity purification of a soluble, recombinant uPAR using the monoclonal antibody R2 or the peptide AE152 immobilized on Sepharose. The two affinity ligands perform equally well in purifying uPAR from Drosophila melanogaster Schneider 2 cell culture medium and yield products of comparable purity, activity, and stability as judged by SDS-PAGE, size exclusion chromatography and surface plasmon resonance analysis. The general availability of peptide synthesis renders the present AE152-based affinity purification of uPAR more accessible than the traditional protein-based affinity purification strategies. In this way, large amounts of recombinant uPAR can conveniently be purified for further structural and functional studies.  相似文献   

15.
Immunoaffinity chromatography is a process in which the binding affinity of an antigen to a parent antibody is utilized as a basis of separation. Owing to the customized avidity and specificity, monoclonal antibodies (Mabs) have become indispensable for both protein characterization and purification. The immunosorbent performance is dependent on the support matrix upon which the antibody is immobilized and on the activation chemistry used couple the antibody to the matrix. This report details, protocols to immobilize Mabs on commercially available supports, and a method to compute immunosorbent efficiency.  相似文献   

16.
Immobilized metal ion affinity chromatography.   总被引:14,自引:0,他引:14  
The introduction of immobilized metal ion affinity chromatography, directed toward specific protein side chains, has opened a new dimension in protein purification. This review covers the principles and practice of IMAC that can be performed under very mild, nondenaturing conditions. IMAC is particularly suitable for preparative group fractionation of complex extracts and biofluids, but can also be used in high-performance mode: "HP-IMAC." Single-step purifications of 1000-fold or more may allow isolation of a particular protein from crude extracts on a milligram or gram scale. With respect to separation efficiency, IMAC compares well with biospecific affinity chromatography, and the immobilized metal ion ligand complexes are more likely to withstand wear and tear than are antibodies or enzymes. The enormous potential of IMAC and related metal affinity techniques is only in the initial stages of being explored and exploited. Synthesis of IMA adsorbents, and various modes of performing IMAC are discussed and exemplified with selected applications. Advantages and disadvantages are listed. Effective means of counteracting the few undesirable effects that can occur are suggested.  相似文献   

17.
While monoclonal antibodies of the G class can be conveniently purified by affinity chromatography using immobilized protein A or G, even on a large scale, scaling up IgM purification still presents several problems, since specific and cost-effective ligands for IgM are not available. A synthetic peptide (TG19318), deduced from the screening of a combinatorial peptide library, was characterized previously by our group for its binding properties for immunoglobulins of the G class and its applicability as a synthetic ligand for polyclonal and monoclonal IgG purification, from sera or cell culture supernatants. In this study, we have examined the ligand recognition properties for IgM, immobilizing the synthetic peptide on different affinity supports and examining its ability to purify IgMs from serum, ascitic fluid and cell culture supernatants. TG19318 affinity columns proved useful for a very convenient one-step purification of monoclonal IgMs directly from crude sources, loading the samples on the columns equilibrated with saline buffers at pH values ranging from 5 to 7, and eluting adsorbed IgM by a buffer change to 0.1 M acetic acid or 0.05–0.1 M sodium bicarbonate, pH 9.0. Antibody purity after affinity purification was very high, close to 85–95%, as determined by densitometric scanning of sodium dodecyl sulfate–polyacrylamide gels of purified fractions, and by gel permeation analysis. Antibody activity was fully recovered after purification, as determined by immunoassays. Column capacity was related to the type of support used for ligand immobilization, and ranged from 2 to 8 mg of IgM/ml of support.  相似文献   

18.
Naturally occurring IgG antibodies are bivalent and monospecific. Bispecific antibodies having binding specificities for two different antigens can be produced using recombinant technologies and are projected to have broad clinical applications. However, co-expression of multiple light and heavy chains often leads to contaminants and pose purification challenges. In this work, we have modified the CH3 domain interface of the antibody Fc region with selected mutations so that the engineered Fc proteins preferentially form heterodimers. These novel mutations create altered charge polarity across the Fc dimer interface such that coexpression of electrostatically matched Fc chains support favorable attractive interactions thereby promoting desired Fc heterodimer formation, whereas unfavorable repulsive charge interactions suppress unwanted Fc homodimer formation. This new Fc heterodimer format was used to produce bispecific single chain antibody fusions and monovalent IgGs with minimal homodimer contaminants. The strategy proposed here demonstrates the feasibility of robust production of novel Fc-based heterodimeric molecules and hence broadens the scope of bispecific molecules for therapeutic applications.  相似文献   

19.
To establish a procedure for the purification of a broad spectrum of cell surface proteins, three separate methods based on different principles were compared with the aid of four marker proteins. Membrane preparation by sedimentation-flotation centrifugation, temperature-induced phase separation with Triton X-114, and lectin affinity chromatography were used separately as well as in combination. The two-step procedure of membrane preparation and lectin affinity chromatography provided by far the best enrichment of cell surface marker proteins. This result was further substantiated by screening greater than 6,600 hybridoma cultures that originated from mice that had been immunized with protein fractions obtained by different purification protocols. In addition, it was found that solubilized glycoproteins used as immunogens led to many more cell surface-specific monoclonal antibodies than glycoproteins immobilized on lectin-agarose beads. Three monoclonal antibodies that recognize distinct epitopes of cell adhesion molecules (CAMs) were isolated. Monoclonal antibody C4 bound to a detergent-labile epitope of G4 (neuron-glia CAM). Monoclonal antibody D1 recognized specifically nonreduced neural CAM (N-CAM) with intact disulfide bridges, and monoclonal antibody D3 recognized only the 180-kilodalton isoform of N-CAM. Because of these specificities, these monoclonal antibodies promise to be useful tools for the elucidation of the structural organization of adhesion molecules.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号