首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
The photosynthetic responses of the tropical tree species Acacia nigrescens Oliv. grown at different atmospheric CO2 concentrations—from sub-ambient to super-ambient—have been studied. Light-saturated rates of net photosynthesis (A sat) in A. nigrescens, measured after 120 days exposure, increased significantly from sub-ambient (196 μL L−1) to current ambient (386 μL L−1) CO2 growth conditions but did not increase any further as [CO2] became super-ambient (597 μL L−1). Examination of photosynthetic CO2 response curves, leaf nitrogen content, and leaf thickness showed that this acclimation was most likely caused by reduction in Rubisco activity and a shift towards ribulose-1,5-bisphosphate regeneration-limited photosynthesis, but not a consequence of changes in mesophyll conductance. Also, measurements of the maximum efficiency of PSII and the carotenoid to chlorophyll ratio of leaves indicated that it was unlikely that the pattern of A sat seen was a consequence of growth [CO2] induced stress. Many of the photosynthetic responses examined were not linear with respect to the concentration of CO2 but could be explained by current models of photosynthesis.  相似文献   

2.
Harnos  N.  Tuba  Z.  Szente  K. 《Photosynthetica》2002,40(2):293-300
Winter wheat plants were grown in open top chambers either at 365 µmol mol–1 (AC) or at 700 µmol mol–1 (EC) air CO2 concentrations. The photosynthetic response of flag leaves at the beginning of flowering and on four vertical leaf levels at the beginning of grain filling were measured. Net photosynthetic rates (P N) were higher at both developmental phases in plants grown at EC coupled with larger leaf area and photosynthetic pigment contents. The widely accepted Farquhar net photosynthesis model was parameterised and tested using several observed data. After parameterisation the test results corresponded satisfactorily with observed values under several environmental conditions.  相似文献   

3.
A few species of Cymbopogon and Vetiveria are potentially important tropical grasses producing essential oils. In the present study, we report on the leaf anatomy and photosynthetic carbon assimilation in five species of Cymbopogon and Vetiveria zizanioides. Kranz-type leaf anatomy with a centrifugal distribution of chloroplasts and exclusive localization of starch in the bundle sheath cells were common among the test plants. Besides the Kranz leaf anatomy, these grasses displayed other typical C4 characteristics including a low (0–5 µl/l) CO2 compensation point, lack of light saturation of CO2 uptake at high photon flux densities, high temperature (35°C) optimum of net photosynthesis, high rates of net photosynthesis (55–67 mg CO2 dm-2 leaf area h-1), little or no response of net photosynthesis to atmospheric levels of O2 and high leaf 13C/12C ratios. The biochemical studies with 14CO2 indicated that the leaves of the above plant species synthesize predominantly malate during short term (5 s) photosynthesis. In pulse-chase experiments it was shown that the synthesis of 3-phosphoglycerate proceeds at the expense of malate, the major first formed product of photosynthesis in these plant species.  相似文献   

4.
Structural, functional, and biochemical characteristics of the photosynthetic apparatus of a nemoral herbaceous perennial plant Ajuga reptansL. inhabiting the middle taiga subzone were investigated. Plant leaves were characterized by a high content of green (3.1 mg/dm2) and yellow (0.64 mg/dm2) pigments and contained moderate-sized chloroplasts with grana consisting of ten thylakoids or more. The maximum rate of photosynthesis in summergreen leaves (5–8 mg CO2/(dm2h)) was observed at 14–16°C under a saturating photosynthetically active radiation of 50 W/m2. At 6–7°C, the rate of CO2assimilation was reduced to 60–80% of the maximum one. The temperature optimum of photosynthesis was not constant and shifted by 2–6°C depending on the changes in the ambient temperature. Wintergreen leaves were capable of photosynthesis in late autumn after heavy freezes and in early spring after a long winter. The accumulation of soluble carbohydrates and free amino acids in leaves helps to maintain the functional activity of the photosynthetic apparatus.  相似文献   

5.
Seasonal changes in foliage nitrogen (N) and carbon (C) concentrations and δ15N and δ13C ratios were monitored during a year in Erica arborea, Myrtus communis and Juniperus communis co-occurring at a natural CO2 spring (elevated [CO2], about 700 μmol mol−1) and at a nearby control site (ambient [CO2], 360 μmol mol−1) in a Mediterranean environment. Leaf N concentration was lower in elevated [CO2] than in ambient [CO2] for M. communis, higher for J. communis, and dependent on the season for E. arborea. Leaf C concentration was negatively affected by atmospheric CO2 enrichment, regardless of the species. C/N ratio varied concomitantly to N. Leaves in elevated [CO2] showed lower δ13C, and therefore likely lower water use efficiencies than leaves at the control site, regardless of the species, suggesting substantial photosynthetic acclimation under long-term CO2-enriched atmosphere. Leaves of E. arborea showed lower values of δ15N under elevated [CO2], but this was not the case of M. communis and J. communis foliage. The use of the resources and leaf chemical composition are affected by elevated [CO2], but such an effect varies during the year, and is species-dependent. The seasonal dependency and species specificity suggest that plants are able to exploit different available water and N resources within Mediterranean sites. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
Kurasová  I.  Kalina  J.  Štroch  M.  Urban  O.  Špunda  V. 《Photosynthetica》2003,41(2):209-219
The response of barley (Hordeum vulgare L. cv. Akcent) to various photosynthetic photon flux densities (PPFDs) and elevated [CO2] [700 μmol (CO2) mol−1; EC] was studied by gas exchange, chlorophyll (Chl) a fluorescence, and pigment analysis. In comparison with barley grown under ambient [CO2] [350 μmol (CO2) mol−1; AC] the EC acclimation resulted in a decrease in photosynthetic capacity, reduced stomatal conductance, and decreased total Chl content. The extent of acclimation depression of photosynthesis, the most pronounced for the plants grown at 730 μmol m−2 s−1 (PPFD730), may be related to the degree of sink-limitation. The increased non-radiative dissipation of absorbed photon energy for all EC plants corresponded to the higher de-epoxidation state of xanthophylls only for PPFD730 barley. Further, a pronounced decrease in photosystem 2 (PS2) photochemical efficiency (given as FV/FM) for EC plants grown at 730 and 1 200 μmol m−2 s−1 in comparison with AC barley was related to the reduced epoxidation of antheraxanthin and zeaxanthin back to violaxanthin in darkness. Thus the EC conditions sensitise the photosynthetic apparatus of high-irradiance acclimated barley plants (particularly PPFD730) to the photoinactivation of PS2. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

7.
F. Yoshie  S. Yoshida 《Oecologia》1987,72(2):202-206
Summary Seasonal changes in the photosynthetic characteristics of intact involucral leaves of Anemone raddeana were investigated under laboratory conditions. Net photosynthesis and constant water vapor pressure deficit showed almost the same seasonal trend. They increased rapidly from mid-April immediately after unfolding of the leaves and reached the maximum in late-April, before the maximum expansion of the leaves. They retained the maximum values until early-May and then decreased toward late-May with a progress of leaf senescence. The calculated values of intercellular CO2 concentration and relative stomatal limitation of photosynthesis showed no significant change throughout the season. The carboxylation efficiency as assessed by the initial slope of Ci-photosynthesis curve and the net photosynthesis under a high Ci regime varied seasonally in parallel with the change of the light-saturated photosynthesis. The results indicate that the seasonal changes in light-saturated net photosynthesis are not due to a change of stomatal conductance, but to a change in the photosynthetic capacity of mesophyll. Nevertheless, leaf conductance changed concomitantly with photosynthetic capacity, indicating that the seasonal change in stomatal conductance is modulated by the mesophyll photosynthetic capacity such that the intercellular CO2 concentrations is maintained constant. The shape of light-photosynthesis curve was similar to that of sun-leaf type. The quantum yield also changed simultaneously with the photosynthetic capacity throughout the season.Contribution No. 2965 from the Institute of Low Temperature Science  相似文献   

8.
Onion (Allium cepa L.) plants were examined to determine the photosynthetic role of CO2 that accumulates within their leaf cavities. Leaf cavity CO2 concentrations ranged from 2250 L L–1 near the leaf base to below atmospheric (<350 L L–1) near the leaf tip at midday. There was a daily fluctuation in the leaf cavity CO2 concentrations with minimum values near midday and maximum values at night. Conductance to CO2 from the leaf cavity ranged from 24 to 202 mol m–2 s–1 and was even lower for membranes of bulb scales. The capacity for onion leaves to recycle leaf cavity CO2 was poor, only 0.2 to 2.2% of leaf photosynthesis based either on measured CO2 concentrations and conductance values or as measured directly by 14CO2 labeling experiments. The photosynthetic responses to CO2 and O2 were measured to determine whether onion leaves exhibited a typical C3-type response. A linear increase in CO2 uptake was observed in intact leaves up to 315 L L–1 of external CO2 and, at this external CO2 concentration, uptake was inhibited 35.4±0.9% by 210 mL L–1 O2 compared to 20 mL L–1 O2. Scanning electron micrographs of the leaf cavity wall revealed degenerated tissue covered by a membrane. Onion leaf cavity membranes apparently are highly impermeable to CO2 and greatly restrict the refixation of leaf cavity CO2 by photosynthetic tissue.Abbreviations Ca external CO2 concentration - Ci intercellular CO2 concentration - CO2 compensation concentration - PPFR photosynthetic photon fluence rate  相似文献   

9.
Regulation of photosynthetic rates of submerged rooted macrophytes   总被引:1,自引:0,他引:1  
Summary Fourteen temperate, submerged macrophytes were cultivated in the laboratory at high DIC levels (3.3–3.8 mM), 10.4–14.4 mol photons (PAR) m-2 d-1 and 15°C. Photosynthesis at photosaturation ranged between 0.59 and 17.98 mg O2 g-1 DW h-1 at ambient pH (8.3) and were markedly higher between 1.76 and 47.11 mg O2 g-1 DW h-1 at pH 6.5 under elevated CO2 concentrations. Photosynthetic rates were significantly related to both the relative surface area and the chlorophyll content of the leaves. Consequently, the photosynthetic rate was much less variable among the species when expressed per surface area and chlorophyll content instead of dry mass. The chlorophyll content was probably a main predictor of photosynthesis of submerged leaves because of the direct relationship of chlorophyll to the light harvesting capacity and/or a coupling to the capacity for photosynthetic electron transport and carboxylation. A comparison with terrestrial leaves characterized the submerged leaves by their low chlorophyll concentrations and low photosynthetic rates per surface area due to the thin leaves. Photosynthetic rates per chlorophyll content in submerged leaves at CO2 saturation, however, were at the same level as photosynthesis in terrestrial leaves measured at ambient CO2 when appropriate corrections were made for differences in incubation temperature.  相似文献   

10.
On reaching the respiratory compensation point (RCP) during rapidly increasing incremental exercise, the ratio of minute ventilation (VE) to CO2 output (VCO2) rises, which coincides with changes of arterial partial pressure of carbon dioxide (P aCO2). Since P aCO2 changes can be monitored by transcutaneous partial pressure of carbon dioxide (PCO2,tc) RCP may be estimated by PCO2,tc measurement. Few available studies, however, have dealt with comparisons between PCO2,tc threshold (T AT) and lactic, ventilatory or gas exchange threshold (V AT), and the results have been conflicting. This study was designed to examine whether this threshold represents RCP rather than V AT. A group of 11 male athletes performed incremental excercise (25 W · min–1) on a cycle ergometer. The PCO2,tc at (44°C) was continuously measured. Gas exchange was computed breath-by-breath, and hyperaemized capillary blood for lactate concentration ([la]b) and P aCO2 measurements was sampled each 2 min. The T AT was determined at the deflection point of PCO2,tc curve where PCO2,tc began to decrease continuously. The V AT and RCP were evaluated with VCO2 compared with oxygen uptake (VO2) and VE compared with the VCO2 method, respectively. The PCO2,tc correlated with P aCO2 and end-tidal PCO2. At T AT, power output [P, 294 (SD 40) W], VO2 [4.18 (SD 0.57)l · min–1] and [la] [4.40 (SD 0.64) mmol · l–1] were significantly higher than those at V AT[P 242 (SD 26) W, VO2 3.56 (SD 0.53) l · min–1 and [la]b 3.52 (SD 0.75), mmol · l–1 respectively], but close to those at RCP [P 289 (SD 37) W; VO2 3.97 (SD 0.43) l · min and [la]b 4.19 (SD 0.62) mmol · l–1, respectively]. Accordingly, linear correlation and regression analyses showed that P, VO2 and [la]b at T AT were closer to those at RCP than at V AT. In conclusion, the T AT reflected the RCP rather than V AT during rapidly increasing incremental exercise.  相似文献   

11.
We examined the in situ CO2 gas-exchange of fruits of a tropical tree, Durio zibethinus Murray, growing in an experimental field station of the Universiti Pertanian Malaysia. Day and night dark respiration rates were exponentially related to air temperature. The temperature dependent dark respiration rate showed a clockwise loop as time progressed from morning to night, and the rate was higher in the daytime than at night. The gross photosynthetic rate was estimated by summing the rates of daytime dark respiration and net photosynthesis. Photosynthetic CO2 refixation, which is defined as the ratio of gross photosynthetic rate to dark respiration rate in the daytime, ranged between 15 and 45%. The photosynthetic CO2 refixation increased rapidly as the temperature increased in the lower range of air temperature T c (T c <28.5 °C), while it decreased gradually as the temperature increased in the higher range (T c 28.5 °C). Light dependence of photosynthetic CO2 refixation was approximated by a hyperbolic formula, where light saturation was achieved at 100 mol m–2 s–1 and the asymptotic CO2 refixation was determined to be 37.4%. The estimated gross photosynthesis and dark respiration per day were 1.15 and 4.90 g CO2 fruit–1, respectively. Thus the CO2 refixation reduced the respiration loss per day by 23%. The effect of fruit size on night respiration rate satisfied a power function, where the exponent was larger than unity.  相似文献   

12.
The long-term effects of exogenous sucrose (3 percnt;) on growth, photosynthesis and carbon metabolism ofin vitro tomato plantlets were investigated under two sets of growth conditions that respectively favor source- or sink-limitations of photosynthesis: 1) low photosynthetic photon flux (PPF) (50 μmol m−2 · s−1) and low CO2 concentration (400 μmol mol−1) and 2) high PPF (500 μmol m−2 · s−1 and high CO2 concentration (4000 μmol mol−1). The supply of sucrose under source-limitation conditions increased the growth, the maximal photosynthetic rate, the chl content, the maximal quantum yield of Photosystem II estimated by the Fv/Fm chl fluorescence ratio as well as the soluble sugars (hexoses, sucrose) and starch contents in roots, young and mature leaves when compared to those of photo-autotrophic plantlets. Also, sucrose feeding under these conditions strongly increased the activity of sucrose synthase (SS) (EC 2.4.1.13) in roots and young leaves whereas the activities of sucrose phosphate synthase (SPS) (EC 2.4.1.14), acid invertase (INV) (EC 3.2.1.26) and ADP-glucose pyrophosphorylase (ADPGppase) (EC 2.7.7.27) were highly stimulated in roots and mature leaves. Contrary to these observations, the supply of sucrose to plantlets developed under high PPF and CO2 concentration decreased growth and led to a somewhat lower maximal photosynthetic rate relative to photo-autotrophic plantlets. These negative responses to exogenous sucrose were accompanied by stronger accumulations of hexose and starch, larger stimulation of INV in mature leaves developed under conditions of sink limitation than those from source limitation conditions. Moreover, under high PPF and high CO2 concentration, exogenous sucrose led to a marked repression of the SPS activity and caused much lower stimulations of ADPGppase in mature leaves than those observed at low PPF and low CO2 concentration. We therefore conclude that under our experimental conditions, the interactive effects of exogenous sucrose and environmental conditions on growth and photosynthesis could be rationalized by the source-sink equilibrium of thein vitro tomato plantlets.  相似文献   

13.
Acclimation of photosynthetic capacity to elevated CO2 involves a decrease of the leaf Rubisco content. In the present study, it was hypothesized that nitrogen uptake and partitioning within the leaf and among different aboveground organs affects the down-regulation of Rubisco. Given the interdependence of nitrogen and cytokinin signals at the whole plant level, it is also proposed that cytokinins affect the nitrogen economy of plants under elevated CO2, and therefore the acclimatory responses. Spring wheat received varying levels of nitrogen and cytokinin in field chambers with ambient (370 μmol mol−1) or elevated (700 μmol mol−1) atmospheric CO2. Gas exchange, Rubisco, soluble protein and nitrogen contents were determined in the top three leaves in the canopy, together with total nitrogen contents per shoot. Growth in elevated CO2 induced decreases in photosynthetic capacity only when nitrogen supply was low. However, the leaf contents of Rubisco, soluble protein and total nitrogen on an area basis declined in elevated CO2 regardless of nitrogen supply. Total nitrogen in the shoot was no lower in elevated than ambient CO2, but the fraction of this nitrogen located in flag and penultimate leaves was lower in elevated CO2. Decreased Rubisco: chlorophyll ratios accompanied losses of leaf Rubisco with CO2 enrichment. Cytokinin applications increased nitrogen content in all leaves and nitrogen allocation to senescing leaves, but decreased Rubisco contents in flag leaves at anthesis and in all leaves 20 days later, together with the amount of Rubisco relative to soluble protein in all leaves at both growth stages. The results suggest that down regulation of Rubisco in leaves at elevated CO2 is linked with decreased allocation of nitrogen to the younger leaves and that cytokinins cause a fractional decrease of Rubisco and therefore do not alleviate acclimation to elevated CO2.  相似文献   

14.
The responses of photosynthesis, Rubisco activity, Rubisco protein, leaf carbohydrates and total soluble protein to three carbon dioxide treatments were studied in winter wheat [Triticum aestivum (L.)] and barley [Hordeum vulgare (L.)]. Barley and wheat plants were grown in small field plots during 1995 and 1996 in clear, acrylic chambers (1.2–2.4 m2) and were provided with continuous carbon dioxide fertilization at concentrations of 350, 525 and 700 mol mol–1. Photosynthetic rates of barley penultimate leaves and wheat flag leaves measured at growth carbon dioxide concentrations decreased with leaf age in all three CO2 treatments during 1995 and 1996. Photosynthetic acclimation to elevated CO2 was observed on seven of eight measurement dates for barley and ten of eleven measurement dates for wheat over both years. Initial Rubisco activity, total soluble protein and Rubisco protein in barley penultimate leaves and wheat flag leaves also decreased with leaf age. Total Rubisco activity was not used because of enzyme degradation. There was a significant CO2 treatment effect on initial Rubisco activity, total soluble protein and Rubisco protein for wheat in 1995 and 1996 and for barley in 1995. Responses of barley penultimate leaf Rubisco activity and leaf protein concentrations to elevated carbon dioxide were nonsignificant in 1996. A significant CO2 treatment effect also was detected when means of Rubisco activity, soluble protein and Rubisco protein for wheat flag leaves were combined over harvests and years. These three flag leaf parameters were not significantly different in the 350 and 525 mol mol–1 CO2 treatments but were decreased during growth in 700 mol mol–1 CO2 relative to the other two CO2 treatments. Ratios of photosynthesis at 700 and 350 mol mol–1 were compared to ratios of Rubisco activity at 700 and 350 mol mol–1 using wheat flag leaf data from 1995 and 1996. Regression analysis of these data were linear [y = 0.586 + 1.103t x (r2 = 0.432)] and were significant at P 0.05. This result indicated that photosynthetic acclimation was positively correlated with changes of initial Rubisco activity in wheat flag leaves in response to CO2 enrichment. Effects of elevated CO2 on wheat leaf proteins during 1995 and 1996 and on barley during 1995 were consistent with an acceleration of senescence.  相似文献   

15.
Our previous study has demonstrated that both RuBP carboxylation limitation and RuBP regeneration limitation exist simultaneously in rice grown under free-air CO2 enrichment (FACE, about 200 μmol mol−1 above the ambient air CO2 concentration) conditions [G.-Y. Chen, Z.-H. Yong, Y. Liao, D.-Y. Zhang, Y. Chen, H.-B. Zhang, J. Chen, J.-G. Zhu, D.-Q. Xu, Photosynthetic acclimation in rice leaves to free-air CO2 enrichment related to both ribulose-1,5-bisphosphate carboxylase limitation and ribulose-1,5-bisphosphate regeneration limitation. Plant Cell Physiol. 46 (2005) 1036–1045]. To explore the mechanism for forming of RuBP regeneration limitation, we conducted the gas exchange measurements and some biochemical analyses in FACE-treated and ambient rice plants. Net CO2 assimilation rate (Anet) in FACE leaves was remarkably lower than that in ambient leaves when measured at the same CO2 concentration, indicating that photosynthetic acclimation to elevated CO2 occurred. In the meantime the maximum electron transport rate (ETR) (Jmax), maximum carboxylation rate (Vcmax) in vivo, and RuBP contents decreased significantly in FACE leaves. The whole chain electron transport rate and photophosphorylation rate reduced significantly while ETR of photosystem II (PSII) did not significantly decrease and ETR of photosystem I (PSI) was significantly increased in the chloroplasts from FACE leaves. Further, the amount of cytochrome (Cyt) f protein, a key component localized between PSII and PSI, was remarkably declined in FACE leaves. It appears that during photosynthetic acclimation the decline in the Cyt f amount is an important cause for the decreased RuBP regeneration capacity by decreasing the whole chain electron transport in FACE leaves.  相似文献   

16.
Bunce  J.A.  Sicher  R.C. 《Photosynthetica》2001,39(1):95-101
Midday measurements of single leaf gas exchange rates of upper canopy leaves of soybeans grown in the field at 350 (AC) and 700 (EC) µmol(CO2) mol–1 in open topped chambers sometimes indicated up to 50 % higher net photosynthetic rates (P N) measured at EC in plants grown at AC compared to EC. On other days mean P N were nearly identical in the two growth [CO2] treatments. There was no seasonal pattern to the variable photosynthetic responses of soybean to growth [CO2]. Even on days with significantly lower P N in the plants grown at EC, there was no reduction in ribulose-1,5-bisphosphate carboxylase/oxygenase, chlorophyll, or soluble protein contents per unit of leaf area. Over three years, gas exchange evidence of acclimation occurred on days when either soil was dry or the water vapor pressure deficit was high (n = 12 d) and did not occur on days after rain or on days with low water vapor pressure deficit (n = 9 d). On days when photosynthetic acclimation was evident, midday leaf water potentials were consistently 0.2 to 0.3 MPa lower for the plants grown at EC than at AC. This suggested that greater susceptibility to water stress in plants grown at EC cause the apparent photosynthetic acclimation. In other experiments, plants were grown in well-watered pots in field chambers and removed to the laboratory early in the morning for gas exchange measurements. In these experiments, the amount of photosynthetic acclimation evident in the gas exchange measurements increased with the maximum water vapor pressure deficit on the day prior to the measurements, indicating a lag in the recovery of photosynthesis from water stress. The apparent increase in susceptibility to water stress in soybean plants grown at EC is opposite to that observed in some other species, where photosynthetic acclimation was evident under wet but not dry conditions, and may be related to the observation that hydraulic conductance is reduced in soybeans when grown at EC. The day-to-day variation in photosynthetic acclimation observed here may account for some of the conflicting results in the literature concerning the existence of acclimation to EC in field-grown plants.  相似文献   

17.
Nostoc rivulare was grown in batch cultures under controlled CO2 and NO3 concentrations to modulate the photosynthetic source:sink relationship. Increasing CO2 supply accelerated the accumulation of chlorophyll (Chl) a, i.e., supplemental CO2 combined with double concentrations of NO3 more than doubled the amounts of Chl a relative to those of the original medium. Photosynthetic oxygen evolution and respiratory oxygen uptake were both enhanced by elevated CO2 and NO3 . Contents of soluble sugars and starch (total non-structural saccharides) as well as insoluble saccharides (structural fraction) were affected by altering CO2-NO3 combinations. Uptake as well as reduction of either NO3 or NO2 was inhibited by CO2 deprivation. Expanding the sink size via increasing NO3 supply enhanced photosynthesis and thus the sink (NO3 ) acted as a feed forward stimulator of the source (photosynthesis). The regulatory role of nitrate on photosynthesis was most influential in CO2-deprived cultures since it could enhance photosynthesis to higher levels than CO2-supplemented, nitrate-free cultures.  相似文献   

18.
The CO2 production of individual larvae of Apis mellifera carnica, which were incubated within their cells at a natural air humidity of 60–80%, was determined by an open-flow gas analyzer in relation to larval age and ambient temperature. In larvae incubated at 34 °C the amount of CO2 produced appeared to fall only moderately from 3.89±1.57 µl mg–1 h–1 in 0.5-day-old larvae to 2.98±0.57 µl mg–1 h–1 in 3.5-day-old larvae. The decline was steeper up to an age of 5.5 days (0.95±1.15 µl mg–1 h–1). Our measurements show that the respiration and energy turnover of larvae younger than about 80 h is considerably lower (up to 35%) than expected from extrapolations of data determined in older larvae. The temperature dependency of CO2 production was determined in 3.5-day-old larvae, which were incubated at temperatures varying from 18 to 38 °C in steps of 4 °C. The larvae generated 0.48±0.03 µl mg–1 h–1 CO2 at 18 °C, and 3.97±0.50 µl mg–1 h–1 CO2 at 38 °C. The temperature-dependent respiration rate was fitted to a logistic curve. We found that the inflection point of this curve (32.5 °C) is below the normal brood nest temperature (33–36 °C). The average Q10 was 3.13, which is higher than in freshly emerged resting honeybees but similar to adult bees. This strong temperature dependency enables the bees to speed up brood development by achieving high temperatures. On the other hand, the results suggest that the strong temperature dependency forces the bees to maintain thermal homeostasis of the brood nest to avoid delayed brood development during periods of low temperature.Abbreviations m body mass - R rate of development or respiration - TI inflexion point of a logistic (sigmoid) curve - TL lethal temperature - TO temperature of optimum (maximum) developmentCommunicated by G. Heldmaier  相似文献   

19.
Summary Coconut (Cocos nucifera L.) plantlets grown in vitro often grow slowly when transferred to the field possibly, due to a limited photosynthetic capacity of in vitro-cultured plantlets, apparently caused by the sucrose added to growth medium causing negative feedback for photosynthesis. In this paper, we tested the hypothesis that high exogenous sucrose will decrease ribulose 1,5-bisphosphate carboxylase (Rubisco) activity and photosynthesis resulting in limited ex vitro growth. Plantlets grown with high exogenous sucrose (90 gl−1) had reduced photosynthetic activity that resulted in a poor photosynthetic response to high levels of light and CO2. These plantlets also had low amounts of Rubisco protein, low Rubisco activity, and reduced growth despite showing high survival when transferred to the field. Decreasing the medium’s sucrose concentration from 90 to 22.5 gl−1 or 0 gl−1 resulted in increased photosynthetic response to light and CO2 along with increased Rubisco and phosphoenolpyruvate carboxylase (PEPC) activities and proteins. However, plantlets grown in vitro without exogenous sucrose died when transferred ex vitro, whereas those grown with intermediate exogenous sucrose showed intermediate photosynthetic response, high survival, fast growth, and ex vitro photosynthesis. Thus, exogenous sucrose at moderate concentration decreased photosynthesis but increased survival, suggesting that both in vitro photosynthesis and exogenous sucrose reserves contribute to field establisment and growth of coconut plantlets cultured in vitro.  相似文献   

20.
F. Yoshie  S. Kawano 《Oecologia》1986,71(1):6-11
Summary Seasonal changes in photosynthetic capacity, and photosynthetic responses to intercellular CO2 concentration and irradiance were investigated under laboratory conditions on intact leaves of Pachysandra terminalis. Photosynthetic capacity and stomatal conductance under saturating light intensity and constant water vapor pressure deficit showed almost the same seasonal trend. They increased from early June just after the expansion of leaves, reached the maximum in late-Septemer, and then decreased to winter. In over-wintering leaves they recovered and increased immediately after snow-melting, reached a first maximum in late April, and then decreased to early July in response to the reduction of light intensity on the forest floor. There-after, they increased from mid August, reached a second maximum in late September, and then decreased to winter. The parallel changes of photosynthesis and stomatal conductane indicate a more or less constant intercellular CO2 concentration throughout the year. The calculated values of relative stomatal limitation of photosynthesis were nearly constant throughout the year, irrespective of leaf age. The results indicate that the seasonal changes in light-saturated photosynthetic capacity are not due to a change of stomatal conductance, but to a change in the photosynthetic capacity of mesophyll. Indeed, carboxylation efficiency assessed by the inital slope of the Ci-photosynthesis curve changed in proportion to seasonal changes of the photosynthetic capacity in both current-year and over-wintered leaves. High photosynthetic capacity in current-year leaves as compared with one-year-old leaves was also due to the high photosynthetic capacity of mesophyll. Nevertheless, stomatal conductance changed in proportion to photosynthetic capacity, indicating that stomatal conductance is regulated by the mesophyll photosynthetic capacity such that the intercellular CO2 concentrations are maintained constant. The quantum yield also changed seasonally parallel with that in the photosynthetic capacity.Contribution No. 2893 from the Institute of Low Temperature Science  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号