首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the gypsy moth, Lymantria dispar, the release of sperm bundles from the testis into the upper vas deferens (UVD) is precisely timed within each 24 h period by a circadian mechanism located in the reproductive system. In males kept under light:dark cycles of 16:8, release of sperm bundles is limited to the 3 h period that starts before lights off. Sperm released from the testis remains in the UVD for about 12 h and then moves into the seminal vesicles, so that the UVD stays empty until the next cycle of sperm release begins. The rhythm of release appears to play a role in the terminal stages of sperm maturation and is essential for the fertility of males. Sperm bundles undergo substantial morphological changes during the release from the testis and while they are retained in the UVD. In this study, using gel electrophoresis, we compared protein patterns in sperm and in the UVD during the daily cycle of sperm release and maturation. Several protein bands evident in the sperm bundles contained in the testis were missing from the sperm bundles that had passed from the testis into the UVD. Furthermore, a number of new proteins appeared in the sperm bundles as they remained in the UVD. Some of these proteins appeared to be secreted from the UVD epithelium into the UVD lumen before being incorporated into sperm bundles. Correlations between changes in protein patterns and ultrastructural changes in sperm during the cycle of sperm release and maturation are discussed. © 1994 Wiley-Liss, Inc.  相似文献   

2.

Background  

Reproductive systems of male moths contain circadian clocks, which time the release of sperm bundles from the testis to the upper vas deferens (UVD) and their subsequent transfer from the UVD to the seminal vesicles. Sperm bundles are released from the testis in the evening and are retained in the vas deferens lumen overnight before being transferred to the seminal vesicles. The biological significance of periodic sperm retention in the UVD lumen is not understood. In this study we asked whether there are circadian rhythms in the UVD that are correlated with sperm retention.  相似文献   

3.
Sperm production and movement from the fused testes into the male reproductive tract of the common cutworm Spodoptera litura were studied in insects maintained in a 12 h:12 h light dark (LD) regime. Two types of sperm bundles, eupyrene (nucleated) and apyrene (anucleate) were present in the adult testes. Eupyrene bundles constituted about 25% of the total. Descent of spermatozoa from the testes into the upper vas deferens (UVD) first occurred about 24-30 h before adult eclosion. On entering the reproductive tract, eupyrene spermatozoa remained in bundles while apyrene bundles became dissociated before they reached the UVD. Downward movement of both eupyrene and apyrene spermatozoa within the male tract occurred in a daily rhythm. Sperm descent from the testes into the UVD occurred during the early scotophase, followed by their further descent into the seminal vesicle (SV) during the photophase. Spermatozoa remained in the SV for only a short duration, whence sperm quickly passed through the lower vas deferens into the duplex, which acted as the main sperm storage organ until mating was initiated. During mating 80% of sperm left the duplex, but mating did not influence the number of sperm bundles that subsequently descended into the duplex or the rate of their descent. There was no evidence of sperm reflux. Rearing in constant light (LL) and in constant dark (DD) reduced the number of eupyrene sperm present in the testes of adults that emerged in LL and DD compared to controls (LD), although there was no significant effect on the number of apyrene sperm in the testes. The rhythmic pattern of sperm descent was suppressed in both LL and DD regimes, and the number of sperm in the duplex was adversely affected, with a marked impact in LL reared insects. Male longevity, mating behaviour, oviposition and fertility were found to be more severely affected in LL than in DD.  相似文献   

4.
Reproductive physiology of male moths is regulated by a peripheral circadian system, which controls the timing of sperm release from the testis into the upper vas deferens (UVD) and timing of sperm transfer from the UVD to the seminal vesicles. We investigated various effects of light and temperature on sperm release and transfer rhythms in the moth Spodoptera littoralis. We report that both rhythms persist for up to 1 week in constant darkness without significant dampening and are also temperature compensated in the range from 20°C to 30°C. However, the duration of sperm retention in the UVD is temperature-dependent; consequently, temperature exerts a masking effect on the rhythm of sperm transfer. Experimental manipulations of light and temperature regime demonstrated that light dominates over temperature in entraining the timing of sperm release and transfer. Nevertheless, temperature plays a critical role in the absence of light Zeitgeber. Sperm release and transfer are arrhythmic in constant light (LL); however, both rhythms are restored by temperature cycles.  相似文献   

5.
The release of sperm bundles from testes to the vas deferens is controlled by a circadian clock in several moth species. We investigated the pattern of sperm release in the codling moth, Cydia pomonnella L. (Lepidoptera: Tortricidae). Sperm release in the codling moth follows a two-step rhythm in light-dark cycles: sperm is released from the testis before lights-off, remains in the vas deferens during the dark phase and is transferred to the seminal vesicles after lights-on. This rhythm continues in constant darkness indicating that it has a circadian nature. The release of sperm is asynchronous in moths held in constant light. In contrast to previously investigated moths, constant light has no adverse effects on the male reproductive capacity in the codling moth.  相似文献   

6.
Release of mature bundles of spermatozoa from the testis into the vas deferens is a critical but poorly understood step in male insect reproduction. In moths, the release of sperm bundles is controlled by a circadian clock which imposes a temporal gate on the daily exit of bundles through the terminal epithelium-a layer of specialized epithelial cells separating testis follicles from the vas deferens. The sequence of cellular events associated with the daily cycle of sperm release was investigated by scanning and transmission electron microscopy. In the hours preceding sperm release, there is a solid barrier between the testis and the vas deferens formed by the interdigitation of cytoplasmic processes of adjacent terminal epithelial cells. At the beginning of the sperm release cycle, sperm bundles protrude through this barrier while the terminal epithelial cells change their shape and position relative to the bundles. Subsequently, the cyst cells enveloping the sperm bundles break down and spermatozoa move out of the testis through the exit channels formed between the epithelial cells. Afterwards, cyst cell remnants and other cellular debris are released into the vas deferens lumen, and the epithelial barrier is reconstructed due to phagocytic activity of its cells. These data provide a foundation on which to build an understanding of the cellular mechanisms of clock-controlled sperm release in insects.  相似文献   

7.
Summary

Development of the upper vas deferens and seminal vesicle, and the ecdysteroid titers of the cabbage armyworm (Mamestra brassicae) during pharate adult stage were investigated to provide evidence of endogenous control of the sperm movement through the reproductive tract. Apparently, development of the upper vas deferens is initiated when ecdysteroid titers increase after pupation and continues until eclosion. Sperm movement correlates with the decrease of ecdysteroid titers. When ecdysteroid titers remained at low levels, sperm release from the testis was observed one day before eclosion.  相似文献   

8.
Circadian clocks (oscillators) regulate multiple life functions in insects. The circadian system located in the male reproductive tract of Lepidoptera is one of the best characterized peripheral oscillators in insects. Our previous research on the cotton leafworm, Spodoptera littoralis, demonstrated that this oscillator controls the rhythm of sperm release from the testis and coordinates sperm maturation in the upper vas deferens (UVD). We demonstrated previously that a protein that functions as yolk protein in females is also produced in cyst cells surrounding sperm bundles in the testis, and is released into the UVD. Here, we investigated the temporal expression of the yolk protein 2 (yp2) gene at the mRNA and protein level in the testis of S. littoralis, and inquired whether their expression is regulated by PER-based molecular oscillator. We describe a circadian rhythm of YP2 accumulation in the UVD seminal fluid, where this protein interacts with sperm in a circadian fashion. However, we also demonstrate that yp2 mRNA and YP2 protein levels within cyst cells show only a diurnal rhythm in light/dark (LD) cycles. These rhythms do not persist in constant darkness (DD), suggesting that they are non-circadian. Interestingly, the per gene mRNA and protein levels in cyst cells are rhythmic in LD but not in DD. Nevertheless, per appears to be involved in the diurnal timing of YP2 protein accumulation in cyst cells.  相似文献   

9.
In the gypsy moth, the release of sperm bundles from the testis into the vas deferens is rhythmic and is controlled by a circadian pacemaker located in the reproductive system. However, in males kept since pupation in constant darkness (DD) and temperature, the release of sperm was arrhythmic. The release of sperm became rhythmic when males were transferred from a light-dark cycle (LD 16:8) to DD 6-7 days after pupation. To further investigate the development of the circadian system during the pupal stage, we exposed DD pupae to a single 8-hr pulse of light or 8-hr pulse of a 4 degrees C temperature increase on different days after pupation. The pattern of sperm release was determined 5-6 days after the pulse. Males that were exposed to light or temperature pulses 5 days after pupation subsequently showed nonrhythmic sperm release. However, about half of the pupae that received the pulse on day 6 and most of the pupae that received it on day 7 subsequently showed synchronized sperm release. These results suggested that the clock underlying rhythmic release of sperm becomes operational at approximately 6 days after pupation--that is, 2 days prior to initiation of rhythmic sperm release from the testis.  相似文献   

10.
The authors examined patterns of spatial and temporal expression of Drosophila per gene homologue in the codling moth, Cydia pomonella. Since sperm release in moths is regulated in a circadian manner by an autonomous clock that is independent from the brain, the authors investigated per expression in male reproductive system along with its expression in moth heads. per mRNA is rhythmically expressed with the same phase and amplitude in both tissues under light-dark (LD) conditions. The levels of per mRNA are low during the day, start to increase before lights-off, reach the peak in dark, and decrease after lights-on. In constant darkness (DD), cycling of per mRNA continued in heads with severely blunted amplitude. No cycling of per mRNA was detected in testis in DD. In situ hybridization and immunocytochemistry revealed distinct spatial patterns of per expression in the moth reproductive system. There is no expression of per in cells forming the wall of testes or in sperm bundles. However, per mRNA and protein are rhythmically expressed in the epithelial cells forming the wall of the upper vas deferens (UVD) and in the cells of the terminal epithelium, which are involved in the circadian gating of sperm release. Increase in per mRNA in the UVD coincides with sperm accumulation in this part of the insect reproductive system.  相似文献   

11.
Unlike the other penaeiodean shrimp, the ridge back shrimp, Sicyoniaingentis does not produce a spermatophore, but transfers sperm suspended in seminal plasm. This paper reports on the histomorphology and ultrastructure of the vas deferens with reference to its functional role in secreting the sperm bearing materials. The vas deferens is divisible into proximal secretory, mid storage and distal ejaculatory regions. The epithelial cells lining the proximal vas deferens are comprised of secretory and absorptive cell types. The loose sperm cells found in the lumen of this region are in an immature condition, and are agglutinated into a compact mass with signs of spermiogenesis in the mid vas deferens. The epithelial cells lining the mid vas deferens are short flattened cells. The distal vas deferens is ensheathed by muscular fibres. The inner epithelial cells are highly secretory and contain numerous microvilli at the luminal end. The sperm cord gets liquefied in this region facilitating the transfer of sperm in liquid form to the female during mating.  相似文献   

12.
Circadian clocks (oscillators) regulate multiple aspects of insect behaviour and physiology. The circadian system located in the male reproductive tract of Lepidoptera orchestrates rhythmic sperm release from testis and sperm maturation in the upper vas deferens (UVD). Our previous research on the cotton leafworm, Spodoptera littoralis, suggested rhythmic changes in the V-ATPase levels in the UVD epithelium, which correlated with rhythmic pH fluctuations in the UVD lumen. However, it was not known whether UVD cells contain clock mechanism that generates these daily fluctuations. In the current paper, we show circadian rhythm in the expression of clock gene period at the mRNA and protein level in the UVD epithelium. To determine the role of PER in V-ATPase and pH regulation, testes–UVD complexes were treated in vitro with double-stranded fragments of per mRNA (dsRNA). This treatment, which transiently lowered per mRNA and protein in the UVD, altered expression of V-ATPase c subunit. In addition, per RNAi caused a significant delay in the UVD lumen acidification. These data demonstrate that the UVD molecular oscillator involving the period gene plays an essential role in the regulation of rhythmic V-ATPase activity and periodic acidification of the UVD lumen.  相似文献   

13.
Our aim was to describe the reproductive system of males and the formation of sperm packages in the seminal receptacle (SR) of recently mated females of the arrow crab Stenorhynchus seticornis. The male reproductive system was analyzed, and was described using light microscopy and histological and histochemical methods. The first pair of gonopods was described by means of scanning electron microscopy. Additionally, the dehiscence of spermatophores was tested using samples obtained from the vas deferens of males and from the seminal receptacle of recently mated females. Testes were tubular type, and each vas deferens consisted of three regions: the anterior vas deferens (AVD), including a proximal portion that was filled with free spermatozoa and a distal portion contained developing spermatophores; the median vas deferens (MVD) that contained completely formed spermatophores; and the posterior vas deferens (PVD), which contained only granular secretions. The accessory gland, which was filled with secretions, was located in the transition region between the MVD and the PVD. The spermatophores from the MVD were of different sizes, and none of them showed dehiscence in seawater, whereas those spermatophores in contact with the seminal receptacle were immediately broken. The ultrastructure of the gonopods revealed the presence of denticles at the distal portion, which contribute to the mechanical rupture of the spermatophore wall during the transfer of sperm. The contents of the PVD and accessory gland of males are transferred together with the spermatophores, and are responsible for the secretions observed among the sperm packets in the SR of the female. We suggest that these secretions formed the layers found in the SR of recently mated females, and may play a role in sperm competition in arrow crabs.  相似文献   

14.
Summary

The male reproductive tract of Scyllarus chacei consists of paired testes and vasa deferentia that conduct sperm containing spermatophores to the genital pores at the base of each fifth walking leg. The testis is joined to the vas deferens which can be divided into four regions: (1) the anterior vas deferens can be further divided into three regions. It is highly convoluted and is the region in which the sperm become encapsulated in ovoid spermatophores of approximately 100 sperm as well as produces seminal fluids. (2) The middle vas deferens is the primary site of sperm storage and adds to seminal fluids which formed in the anterior region. (3) The posterior region is highly muscularized and may serve for limited sperm storage. (4) The most distal portion is the ejaculatory duct which is highly muscularized for extruding the spermatophoric mass for transfer to the female. A final seminar product is added here.  相似文献   

15.
The formation and structure of sperm bundles (spermiozeugmata), and the structure of the vas deferens where bundles are formed, in Pterostichus nigrita is described by light and electron microscopy. The spermiozeugmata are of the sheet-like type consisting of a central rod (about 3?mm long) of electron-dense material (the spermatostyle), to which two bundles of spermatozoa (about 95 per bundle) are attached. The spermatostyle has a spoon-shaped head, and the rod material is differentiated into an electron-dense core and a more electron-lucent cortex. Spermatozoa (about 340?µm long) are attached to the anterior portion of the rod only. Spermiozeugma formation occurs in the upper vas deferens (before the seminal vesicle region) with the secretion of rod material by epithelial cells, which are characterized by well developed rough endoplasmic reticulum with distended cisternae, abundant mitochondria and Golgi bodies. Some cells contain numerous myeloid structures thought to be precursors of rod material, and coated vesicles. During spermiozeugma development, the heads of spermatozoa become embedded in the developing rod material, the anterior of which sits in one of the many diverticula of the mid-region of the vas deferens. Elongation of the rod proceeds by addition of material posteriorly.  相似文献   

16.
This paper describes the physiological mechanism of action of chlorfluazuron on testicular development and spermatogenesis when sublethal doses (LD10: 1.00 ng/larva or LD30: 3.75 ng/larva) are applied topically to the cuticle of newly moulted fifth instars of the common cutworm Spodoptera litura (F.) (Lepidoptera, Noctuidae). These doses disrupt the growth and development of testes by decreasing the volume and weight of testes and thickness of testes sheath as compared with that of the controls. Sublethal doses of chlorfluazuron also significantly reduce the protein content of the testis, but do not affect the carbohydrate and lipid contents in newly emerged treated males when measured in μg/mg of testis as compared with that of the controls. Additionally, such doses disrupt spermatogenesis by reducing the number and size of eupyrene and apyrene sperm bundles in the testis. Very few or no eupyrene sperm bundles are observed in vas deferens of pre‐ and newly moulted adults compared with controls. This result shows that the transfer of sperm bundles from testes to vas deferens is delayed in treated males. The effects of chlorfluazuron on testicular development and spermatogenesis is thought to be one of the factors responsible for the reduction in fecundity, fertility and hatchability caused by sublethal doses of chlorfluazuron.  相似文献   

17.
Sublethal concentrations of the bisacylhydrazine moulting hormone agonists, RH-5849, and tebufenozide (RH-5992) were fed to sixth (final) instar larvae of Spodoptera litura. Both RH-5849 and tebufenozide adversely affected the mating success of S. litura when the surviving treated males were crossed with normal females. The ecdysone agonists decreased the longevity of treated males and of untreated females when crossed with treated males. The number of eggs laid by untreated females mated to treated males was decreased, and the fertility (percentage of hatching success) of the resulting eggs was reduced. These effects on male reproductive success were at least in part explained by a reduction in the number of sperm transferred during mating. The adverse effects of tebufenozide on male reproductive function were qualitatively the same as those of RH-5849, but tebufenozide was active at lower concentrations. To understand the reason for these adverse effects on male reproduction, we investigated the effects of the insecticides on male reproductive physiology. Male reproductive tract development and testicular volume of resulting adult moths were adversely affected by sublethal larval exposure to the ecdysone agonists. Dose-dependent reductions occurred in the production of eupyrene and apyrene spermatozoa in the adult testes, and in the number of spermatozoa released from the testes into the male reproductive tract. The descent into the male tract of both eupyrene and apyrene sperm was found to start at the normal stage of development in both normal and treated insects, but the daily rhythm of sperm descent was subsequently disturbed in the insecticide-treated moths. This affected the numbers of sperm in the upper vas deferens (UVD), seminal vesicle (SV), and duplex (duplex). Injections of RH-5849 given to pharate adult or newly emerged adult S. litura also caused drastic reduction in the number of sperm in the upper regions of the male tract, when measured 24 h after injection. The possible importance of pest population reduction through the sublethal anti-reproductive effects of insecticides is discussed.  相似文献   

18.
Tanaka H  Oka Y 《Zoological science》2007,24(12):1259-1265
Guppy sperm are immotile in the fluid (seminal plasma) of the vas deferens. We previously reported that the initiation of sperm motility is regulated by "Hofmeister solutes" in the isotonic medium. This indicates that chaotropes in solution activate the guppy sperm, whereas counteracting kosmotropes negate this activational effect and keep the sperm immotile. Here we show that seminal plasma has a strong inhibitory effect on sperm activation in response to chaotropes and multivalent ions, and that this inhibitory effect is due to kosmotropicity of the seminal plasma. These findings suggest a novel system of regulation of sperm motility in the guppy, a viviparious fish, in which the sperm are kept immotile in the vas deferens by a physicochemical effect (the Hofmeister effect) of the seminal plasma.  相似文献   

19.
An early prediction of sperm competition theory was that males should adjust the number of sperm they deliver according to the risk of double mating and this has received empirical support in recent years. It has been suggested that adaptive regulation of sperm delivery in mammals may depend on changes in vas deferens contractility. In laboratory mice, the vas deferens is sensitive to opioid agonists and the secretion of endogenous opioid peptides can be affected by social interactions that may be predictive of sperm competition risk. The present experiment was conducted to determine whether morphine, an opioid agonist (at the mu-receptor), has different effects on electrically evoked contractions of the isolated vas deferens in two congeneric rodent species differing in sperm competition intensity. Morphine inhibited contractions of the vas deferens in the non-monogamous deer mouse (Peromyscus maniculatus) but not the monogamous California mouse (Peromyscus californicus). This implies that the vas deferens of P. maniculatus possesses functional mu-receptors and, thus, should be able to respond to changes in the circulating levels of endogenous agonists whose secretion can be affected by social interactions predictive of sperm competition risk.  相似文献   

20.
Summary

Eupyrene and apyrene spermatozoa are contained in separate cysts in the testis of the butterfly Atrophaneura alcinous. Spermatozoa of both types from various parts of the male reproductive tract were examined with particular reference to their morphological characteristics. All spermatozoa collected from the vas deferens and the vesicula seminalis were found to be immotile under a dissecting microscope. No spermatozoa of either type were recognized in any part of the ejaculatory duct. Within the testis, eupyrene spermatozoa are present in bundles and each spermatozoon has a slender nucleus with an acrosome and a long flagellum containing mitochondrial derivatives. Two kinds of appendages, lacinate and reticular, are present on the surface of the sperm membrane. They are replaced with an extracellular sheath during passage through the vas deferens. In contrast, apyrene spermatozoa have neither nucleus nor acrosome, whereas a cup-shaped structure was found at the sperm tip instead of the acrosome. Unlike eupyrene spermatozoa, they are surrounded by a concentric sheath outside the sperm membrane in the vas deferens. Individual apyrene spermatozoa and coiled bundles of eupyrene spermatozoa were both found to accumulate in the vesicula seminalis before mating. These morphological changes during passage through the male reproductive tract suggests the occurrence of a kind of maturation and capacitation process reminiscent of mammalian spermatozoa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号