首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
利用合成的寡聚核苷酸片段,从质粒pOS1000中分离出具有适合克隆位点的苏云金芽孢杆菌(Bacillus thuringiensis )δ-内毒索crylA?全长基因。将该基因与大肠杆菌表达载体pKK223-3重组,并引入大肠杆菌JMl09中,经IPTG诱导.获得了超量表达的CryIA?蛋白。将crylA?全长基因插入链霉菌表达载体pHZl272中,得到重组质粒pHZl256,将该质粒引入变铅青链霉菌(Streptomyces lividans)JT46中,经硫链丝菌素诱导.通过Westerablotting测定表明,重组变铅青链霉菌JT46(pHZl256)已表达出相应的CrylA?蛋白。杀虫试验表明,大肠杆菌和链霉菌所表达出的δ-内毒索crylA?对小菜蛾均有毒杀作用,其致死率分别为93%和57%。  相似文献   

2.
克隆了大肠杆菌和霍乱弧菌胸腺嘧啶合成酶基因thyA,并以pcDNA3质粒为基础,分别用两种来源的thyA基因替代其氨苄抗性基因Amp,构建了不含抗性基因,且可在thyA营养缺陷型大肠杆菌中基于染色体-质粒平衡致死系统稳定传代的真核表达载体。该载体可有效表达红色荧光蛋白报告基因。为核酸疫苗的制备提供一个无抗性的表达载体系统。  相似文献   

3.
重组马槟榔甜蛋白MabinlinⅡ在大肠杆菌中的表达   总被引:3,自引:0,他引:3  
Mabinlin Ⅱ是我国所特有且唯一的植物甜蛋白,在体外至今没有得到具有甜味的基因表达产物.本文根据已知马槟榔甜蛋白的序列设计引物克隆Mabinlin Ⅱ基因,对基因进行剪切重组.将重组基因克隆至大肠杆菌表达载体pET-30a(+)中,构建了3个重组表达载体,转化大肠杆菌BL21(DE3),得到三株表达重组马槟榔甜蛋白的大肠杆菌工程菌.经IPTG诱导,3个重组MabinlinⅡ基因可在大肠杆菌BL21(DE3)中高效表达.  相似文献   

4.
为获得丙型肝炎病毒的核心蛋白(Core),将克隆有Core基因的表达载体pBVIL1-Core转化大肠杆菌HB101,温度诱导表达Core蛋白。同时利用PCR方法以含有丙型肝炎病毒全基因的质粒PBRTM/HCV为模板扩增Core基因,克隆进表达载体pPICZαA,构建表达载体pPICZαA-Core,转化毕赤酵母(Pichiapastoris)GS115,在甲醇诱导下表达Core蛋白。Western-blot显示Core蛋白在大肠杆菌中高效表达,表达蛋白量占菌体总蛋白的20%;在酵母培养上清  相似文献   

5.
把高山被孢霉 (Mortierellaalpina)和深黄被孢霉 (Mortierellaisabellina)的Δ12-脂肪酸脱氢酶基因亚克隆到大肠杆菌表达载体pET21a中 ,获得重组表达载体pMACL12和pMI CL12 ,并用氯化钙方法将重组表达载体转化到大肠杆菌BL21 (DE3)中。筛选阳性克隆进行培养 ,然后分离其细胞膜蛋白 ,并构建体外表达体系 ,同时加入外源性底物油酸进行表达。经气相色谱 (GC)分析表明 ,分别有 17.87%和 17  相似文献   

6.
通过PCR的方法从Bacillus subtilis基因组中克隆了中性植酸酶基因nphy,DNA全序列分析表明其结构基因全长1152个核苷酸(编码383个氨基酸),5′端有一编码26个氨基酸的信号肽序列。去除信号肽编码序列的nphy克隆到大肠杆菌IPTG诱导表达载体pTYB40上,在大肠杆菌中得到了高效表达,表达量达到大肠杆菌可溶性蛋白的40%以上,表达产物具有生物学活性,证实了克隆到的中性植酸酶的编码基因有正常的生物学功能。  相似文献   

7.
三角酵母D-氨基酸氧化酶基因的克隆、测序及表达*   总被引:1,自引:0,他引:1  
利用跨越内含子的PCR技术,三角酵母(Trigonopsos variabilis)变种FA1-10中扩增得到D-氨基酸氧化酶基因(daao),并通过TA克隆的方法将其克隆至pGEM—T载体。序列测定结果表明,所得daao基因的5’端内含子已被删除,基因总长度为1071bp,它与Trigonopsis variabilis D-氨基酸氧化酶同源性达98.3%,与Fusarium solaniiRhodotoru-la gracilis的同源性分别是38.9%和30.8%。为提高表达水平,又将此基因转移至高表达载体pET-28b上.在大肠杆菌BL-2l(DE3)中进行诱导表达。经IPTG诱导,目的蛋白的产生量可占菌体总蛋白量的46%,分子量约为38kD。D-氨基酸氧化酶的活力可达802u/L。  相似文献   

8.
从橄榄绿链霉菌Streptomyces olivaceoviridis A1中克隆出木聚糖酶基因xynA,将带与不带原基因信号肽编码序列的xynA分别以正确的阅读框架克隆到大肠杆菌表达载体pET22b(+)上的pellB信号肽编码序列之后,得到2种构建的重组载体,在重组大肠杆菌中木聚糖酶得到了表达,表达产物具有生物活性。进一步将不带原基因信号肽编码序列的xynA插入到毕赤酵母转移载体pPIC9中,转化毕赤酵母得到重组子,在重组子中木聚糖酶基因得到了高效分泌表达,在摇床培养水平上的表达量达到200mg/L,且表达产物具有生物学活性。  相似文献   

9.
肉桂地链霉菌(S.cinnamonensis)是莫能菌素(Monensin)的产生菌。大肠杆菌链霉菌穿梭表达载体pHZ1252中的透明颤菌血红蛋白基因(vhb)位于硫链丝菌素诱导启动子PtipA之下,它在肉桂地链霉菌中的结构不稳定,发生了重组缺失,缺失的片段包括大肠杆菌质粒部分和vhb基因。但来自阿维链霉菌(S.avermitilis)中缺失了大肠杆菌质粒部分却保留了完整的vhb基因及tipA启动子的pHZ1252,可在肉桂地链霉菌中稳定复制,不再发生缺失,经硫链丝菌素诱导表达出了有生物活性的VHb蛋白。摇瓶发酵实验证明,VHb蛋白在氧限条件下可明显促进肉桂地链霉菌的菌体生长和抗生素合成。  相似文献   

10.
乳糖诱导甜蛋白Monellin在大肠杆菌中的表达   总被引:5,自引:0,他引:5  
根据已报道的单链Monellin甜蛋白的氨基酸序列,按大肠杆菌基因偏爱密码子,设计和人工合成了单链monellin基因。将单链monellin基因克隆到大肠杆菌表达载体pET-28a中,构建了重组表达载体pET28a-mon,转化大肠杆菌BL21(DE3),得到表达Monellin的大肠杆菌工程菌株。借助SDS-PAGE分析方法,研究了乳糖代替IPTG诱导大肠杆菌表达甜蛋白Monellin。通过对乳糖作为诱导剂表达条件进行优化,Monellin的表达量可占细胞总蛋白的33.09%,与IPTG诱导表达量接近。本研究结果为乳糖作为诱导剂应用于重组大肠杆菌生产甜蛋白Monellin提供了参考依据。  相似文献   

11.
Chen Z  Cai H  Lu F  Du L 《Biotechnology letters》2005,27(22):1745-1749
The expression of a synthetic gene encoding monellin, a sweet protein, in E. coli under the control of T7 promoter from phage is described. The single-chain monellin gene was designed based on the biased codons of E. coli so as to optimize its expression. Monellin was produced and accounted for 45% of total soluble proteins. It was purified to yield 43 mg protein per g dry cell wt. The purity of the recombinant protein was confirmed by SDS-PAGE. Revisions requested 13 April 2005 and 26 May 2005; Revisions received 19 May 2005 and 30 August 2005  相似文献   

12.
Chen Z  Li Z  Yu N  Yan L 《Biotechnology letters》2011,33(4):721-725
The sweet protein monellin gene was expressed in Saccharomyces cerevisiae under the control of the GAL1 promoter and α-factor signal peptide sequence of S. cerevisiae. The gene, which was obtained through mutation of the synthesized single-chain monellin gene, was cloned into an E. coli-yeast shuttle vector pYES2.0 which carries the galactose-inducible promoter GAL1. Then the α-factor signal peptide of S. cerevisiae was linked also, resulting in the secreting expression vector pYESMTA. The recombinant plasmid was subsequently transformed into strain S. cerevisiae INVsc1. The peptide efficiently directed the secretion of monellin from the recombinant yeast cell. A maximum yield of active monellin was 0.41 g l−1 of the supernatant from INVsc1 harboring pYESMTA.  相似文献   

13.

Objectives

To improve the stability and sweetness of the sweet-tasting protein, monellin, by using site-directed mutagenesis and a Pichia pastoris expression system with a GAPDH constitutive promoter.

Results

Both wild-type and E2 N mutant of single-chain monellin gene were cloned into the PGAPZαA vector and expressed in Pichia pastoris. The majority of the secreted recombinant protein, at 0.15 g/l supernatant, was monellin. This was purified by Sephadex G50 chromatography. The sweetness threshold of wild-type and E2 N were 30 μg/ml and 20 μg/ml, respectively. Compared with the proteins expressed in Escherichia coli, the thermostability of both proteins was improved. The N-terminal sequence is determinative for the sweetness of the proteins expressed in yeast strains.

Conclusions

Site-directed mutagenesis, modification of the N-terminus of monellin, and without the need of methanol induction in P. pastoris expression system, indicate the possibility for large-scale production of this sweet-tasting protein.
  相似文献   

14.
The relative significance of weak non-covalent interactions in biological context has been much debated. Here, we have addressed the contribution of Coulombic interactions to protein stability and assembly experimentally. The sweet protein monellin, a non-covalently linked heterodimeric protein, was chosen for this study because of its ability to spontaneously reconstitute from separated fragments. The reconstitution of monellin mutants containing large surface charge perturbations was compared to the thermostability of structurally equivalent single-chain monellin containing the same sets of mutations under varying salt concentrations. The affinity between monellin fragments is found to correlate with the thermostability of single chain monellin, indicating the involvement of the same underlying Coulombic interactions. This confirms that there are no principal differences in the interactions involved in folding and binding. Based on comparison with a previous mutational study involving hydrophobic core residues, the relative contribution of Coulombic interactions to stability and affinity is modest. However, the Coulombic perturbations only affect the association rates of reconstitution in contrast to perturbations involving hydrophobic residues, which affect primarily the dissociation rates. These results indicate that Coulombic interactions are likely to be of main importance for the association of protein assembly, relevant for functions of proteins.  相似文献   

15.
目的:合成单链莫内甜蛋白基因,构建其植物表达载体。方法与结果:根据已报道的单链莫内甜蛋白的氨基酸序列及甜味机理,重新设计合成了全长294bp的莫内甜蛋白基因,其中单链莫内甜蛋白氨基酸序列中的Asp69(原AspA16)突变为Asn。利用DNA重组技术,将莫内甜蛋白基因克隆到植物表达载体pBl221中,构建了莫内甜蛋白基因的植物表达载体pBI221-monellin。结论:构建了莫内甜蛋白基因的植物表达载体,为转化园艺植物以改善其口感奠定了基础。  相似文献   

16.
Monellin is an intensely sweet-tasting protein present in the berry of Dioscoreophyllum cumminsii. Naturally occurring monellin (double chain monellin) is a heterodimer of two subunits commonly referred to as chain A and chain B. Monellin is a good model system for structural and dynamic studies of proteins. Single chain monellin has been generated by covalently linking the two subunits of naturally occurring double chain monellin, and has been used extensively for folding and unfolding studies, as well as for protein aggregation studies. There are, however, relatively few reports on such studies with double chain monellin. The primary difficulty associated with studies using double chain monellin appears to be the lack of a standard purification method. Here, a simple method for the purification of double chain monellin is presented. The genes encoding the two chains of monellin were cloned into a modified pETDUET vector under separate T7 promoters. The expression vector containing the genes of the two chains was expressed in E. coli BL21 Star (DE3). The expressed protein was purified using two steps of chromatography, ion exchange chromatography and gel filtration chromatography. This expression system consistently produced 40 mg of pure double chain monellin per litre of E. coli culture, in the correctly folded native state. The purity of the protein was confirmed by mass spectrometry and SDS-PAGE analysis. The purified protein was characterized using different spectroscopic methods, and the spectra obtained were in good agreement with the published spectra of naturally occurring double chain monellin.  相似文献   

17.
The modulation of the folding mechanism of the small protein single-chain monellin (MNEI) by the Escherichia coli chaperone GroEL has been studied. In the absence of the chaperone, the folding of monellin occurs via three parallel routes. When folding is initiated in the presence of a saturating concentration of GroEL, only 50-60% of monellin molecules fold completely. The remaining 40-50% of the monellin molecules remain bound to the GroEL and are released only upon addition of ATP. It is shown that the basic folding mechanism of monellin is not altered by the presence of GroEL, but that it occurs via only one of the three available routes when folding is initiated in the presence of saturating concentrations of GroEL. Two pathways become nonoperational because GroEL binds very tightly to early intermediates that populate these pathways in a manner that makes the GroEL-bound intermediates incompetent to fold. This accounts for the monellin molecules that remain GroEL-bound at the end of the folding reaction. The third pathway remains operational because the GroEL-bound early intermediate on this pathway is folding-competent, suggesting that this early intermediate binds to GroEL in a manner that is different from that of the binding of the early intermediates on the other two pathways. It appears, therefore, that the same protein can bind GroEL in more than one way. The modulation of the folding energy landscape of monellin by GroEL occurs because GroEL binds folding intermediates on parallel folding pathways, in different ways, and with different affinities. Moreover, when GroEL is added to refolding monellin at different times after commencement of refolding, the unfolding of two late kinetic intermediates on two of the three folding pathways can be observed. It appears that the unfolding of late folding intermediates is enabled by a thermodynamic coupling mechanism, wherein GroEL binds more tightly to an early intermediate than to a late intermediate on a folding pathway, with preferential binding energy being larger than the stability of the late intermediate. Hence, it is shown that GroEL can inadvertently and passively cause, through its ability to bind different folding intermediates differentially, the unfolding of late productive intermediates on folding pathways, and that its unfolding action is not restricted solely to misfolded or kinetically trapped intermediates.  相似文献   

18.
Summary We determined the resonance assignments, secondary structure and general topology of the 11-kDa sweet protein single-chain monellin (SCM), using two-dimensional proton nuclear magnetic resonance spectroscopy (2D-NMR). SCM is a genetically engineered protein whose design is based on the crystal structure of natural, two-chain monellin (Kim et al., 1989). Analysis of the NMR spectra shows that the secondary structure of SCM consists of a five-strand anti-parallel -sheet and a 15-residue -helix. Tertiary NOE constraints place the a-helix on the hydrophobic side of the -sheet, and indicate that the sheet is partially wrapped around the helix. The general structural features determined for SCM are similar to those of native monellin (Ogata et al., 1987). Some differences between the SCM structure in solution and the crystal structure of monellin are discussed.  相似文献   

19.
Monellin, one kind of most sweet proteins, could be used instead of carbohydrates in the diabetic diet and pharmaceuticals. However, the critical problem interferes with monellin usage in the food or pharmaceutical industry was its unstable at high temperatures. Here, we describe a novel method to increase the thermostability of monellin. Inspired by the high Tm value in RNA hairpin containing structure, the beta-hairpin was added between the two polypeptide chains of monellin instead of Gly-Phe dipeptide linker. Three kinds of beta-hairpin libraries were constructed and selected. Remarkably, the Tm has been increased from 54.7℃ of monellin with Gly-Phe dipeptide linker to 79.5℃, 89.1℃ and 89.4℃ of selected three mutants. And combined with E24Q/Y80R mutation, the mutated E24Q/Y80R hairpin monellin Tm was as high as 96.1℃. It was soluble even heated in boiling water for 10 min, and sweetness recovered after cooling. This new hairpin monellin may show remarkable potential for further sweeteners.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号