首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We developed a method to measure the rupture forces between antibody and antigen by atomic force microscopy (AFM). Previous studies have reported that in the measurement of antibody–antigen interaction using AFM, the specific intermolecular forces are often obscured by nonspecific adhesive binding forces between antibody immobilized cantilever and substrate surfaces on which antigen or nonantigen are fixed. Here, we examined whether detergent and nonreactive protein, which have been widely used to reduce nonspecific background signals in ordinary immunoassay and immunoblotting, could reduce the nonspecific forces in the AFM measurement. The results showed that, in the presence of both nonreactive protein and detergent, the rupture forces between anti-ferritin antibodies immobilized on a tip of cantilever and ferritin (antigen) on the substrate could be successfully measured, distinguishing from nonspecific adhesive forces. In addition, we found that approach/retraction velocity of the AFM cantilever was also important in the reduction of nonspecific adhesion. These insights will contribute to the detection of specific molecules at nanometer scale region and the investigation of intermolecular interaction by the use of AFM.  相似文献   

2.
Atomic force microscopy (AFM) is a vital instrument in nanobiotechnology. In this study, we developed a method that enables AFM to simultaneously measure specific unbinding force and map the viral glycoprotein at the single virus particle level. The average diameter of virus particles from AFM images and the specificity between the viral surface antigen and antibody probe were integrated to design a three-stage method that sets the measuring area to a single virus particle before obtaining the force measurements, where the influenza virus was used as the object of measurements. Based on the purposed method and performed analysis, several findings can be derived from the results. The mean unbinding force of a single virus particle can be quantified, and no significant difference exists in this value among virus particles. Furthermore, the repeatability of the proposed method is demonstrated. The force mapping images reveal that the distributions of surface viral antigens recognized by antibody probe were dispersed on the whole surface of individual virus particles under the proposed method and experimental criteria; meanwhile, the binding probabilities are similar among particles. This approach can be easily applied to most AFM systems without specific components or configurations. These results help understand the force-based analysis at the single virus particle level, and therefore, can reinforce the capability of AFM to investigate a specific type of viral surface protein and its distributions.  相似文献   

3.
Development of immunobiosensor detector surfaces involves the immobilization of active antibodies on the capture surface without any significant loss of antigen binding activity. An atomic force microscope (AFM) was used to directly evaluate specific interactions between pesticides and antibodies on a biosensor surface. Oriented immobilization of antibodies against two herbicide molecules 2,4-dichlorophenoxyacetic acid (2,4-D) and atrazine, on gold, was carried out to create the active immunobiosensor surfaces. The adhesive forces between immobilized antibodies and their respective antigens were measured by force spectroscopy using hapten-carrier protein functionalized AFM cantilevers. Relative functional affinity (avidity) measurements of the antibodies carried out prior to immobilization, well correlated with subsequent AFM force measurement observations. Analysis showed that immobilization had not compromised the reactivity of the surface immobilized antibody molecules for antigen nor was there any change in their relative quality with respect to each other. The utility of the immunoreactive surface was further confirmed using a Surface Plasmon Resonance (SPR) based detection system. Our study indicates that AFM can be utilized as a convenient immunobiosensing tool for confirming the presence and also assessing the strength of antibody-hapten interactions on biosensor surfaces under development.  相似文献   

4.
The knowledge of the energy involved in cell-cell interactions has significant implications in biological and medical sciences. Red blood cells (RBC) become mutually adhered when specific (agglutinins) or nonspecific macromolecules bind adjacent cells in an irreversible or reversible form. Flow chamber technique with digital image processing was successfully applied to determine the partial separation, by shear stress, of two RBC agglutinated face to face (doublet) by specific monoclonal antibodies (MAb) and also to evaluate the shear stress required to attain this separation. The work done in separating adhered cells is then easily calculated and serves to evaluate the antibody affinity. In this work, this technique was applied to evaluate the affinity of a monoclonal antibody specific to the blood group A antigen. The specific disaggregation energy gamma (i.e., the work done by the shear stress) required to disrupt a unit of adhered membrane areas between agglutinated cells was calculated. On play back of the image analysis, measurements were taken to determine the force applied to the doublet and the relative separation between both RBC. Values of gamma(d) (from 2.70 to 4.61 x 10(-9) N/cm) were found to be proportional to the density (D = 27 to 55 molecules/microm(2)) of MAb molecules bound on the RBC membrane.  相似文献   

5.
基于原子力显微术,利用电化学、胶体金修饰等,进行与生物分子的结构与功能相关的免疫识别研究。利用分子自组装技术,设计出胶体金修饰CD29免疫传感器,并将原子力显微镜(AFM)针尖修饰CD29后,利用力曲线模式,对免疫传感器进行分子识别及活性点分析。CD29免疫传感器的活性点分析表明,只有62.5%的表面区域有明显力的黏附性,即活性部位,其余部分无活性。通过AFM扫描表面,发现抗体在表面聚集成团状,失去蛋白分子的原有结构,且将活性部位隐藏于内部。推断出这可能是导致蛋白失活的主要原因。  相似文献   

6.
RBC flow cytometric analysis is usually used to quantify antigen content. Calibration systems enable antigen content determination by relating mean fluorescence intensity with the number of bound antibody molecules (equivalent to the number of antigen molecules). For that reason, antibodies must be used at saturating concentration, which may lead to agglutination when working with high density antigens. Then, forward scattering, side scattering and fluorescence will be increased, thus obtaining wrong results. In this work, the simple Langmuir adhesion model was applied. Flow cytometry was used to quantify GPA, a transmembrane protein present at high density on RBC. The fluorescence intensity of samples at different anti-GPA sub-saturating concentrations was measured. Sometimes, agglutinates were present and two peaks of fluorescence were observed, the principal one corresponding to isolated cells and the secondary one corresponding to agglutinated cells. In those cases, the principal peak was taken into account for the analysis. The GPA antigen content obtained for nine analyzed samples ranged from 3 to 13 x 10(5) sites per cell, which is similar to those values found in literature. Therefore, the Langmuir adsorption model enables us to determine the antigen content for the anti-GPA/GPA system on RBC membrane. This model could be used to quantify high density antigens in RBC and in other cells.  相似文献   

7.
Zeng G  Yang P  Zheng Z  Feng Q  Cai J  Zhang S  Chen ZW 《Proteomics》2005,5(17):4347-4353
While biosensors have been constructed using various strategies, there is no report describing nanostructures of antibody-immobilized electrode interface in an immunosensor. Here, atomic force microscopy (AFM) and electrochemistry analyses were employed to construct and characterize the nanostructures and electrochemistry of biosensing surface that was created by a sequential self-assembling of bioactive aminobenzenthiol oligomer (o-ABT), glutareldehyde and anti-transferrin (anti-Tf) antibody on the electrode gold surface. Under AFM, a complete coverage of bioactive o-ABT interface could be achieved by anti-Tf antibody at an optimal concentration. The anti-Tf antibody immobilized on electrode surface of the immunosensor exhibited globular-shape topography with some degree of aggregation. Extensive force-curve analysis allowed mapping the functional spots of the anti-Tf immunosensor. Surprisingly, although immunosensing surface was fully covered by anti-Tf antibodies at the optimal concentration, only about 52% of coated anti-Tf antibody molecules (spots) on the electrode surface were able to specifically capture or bind Tf antigen under AFM. Despite limited functional spots, however, the anti-Tf immunosensor was highly specific and sensitive for sensitizing Tf antigen in solution. The anti-Tf molecules on the immunosensor exhibited a greater molecular force bound to holo-Tf (iron-containing form of Tf) than that to apo-Tf (iron-absent form of Tf). Consistently, the anti-Tf immunosensor had a greater electrochemical capacity to sensitize apo-Tf than holo-Tf, supporting the molecular force-based finding by AFM. Thus, the present study elucidated the nanostructures and molecular force bases for the immunosensing capacity of a highly sensitive capacitive immunosensor.  相似文献   

8.
We have used direct binding isotherm analyses to measure the association constant (Ka) and number of binding sites for the binding of prepared complement-fixing antibody (Ab)/dsDNA immune complexes (IC) to human red blood cells (RBC). In order to generalize this study we have examined the binding reaction for a number of different anti-dsDNA Ab (from systemic lupus erythematosus plasmas), complement sources, RBC donors, and dsDNA sizes. The affinity of the IC for the RBC is quite high, and the Ka values fall within a narrow range (5 to 14 X 10(10) liter/mol). Similarly, the limiting stoichiometries for the number of IC bound per RBC were between 40 and 91. The very high affinity and limiting stoichiometries both suggest that the IC bind to the RBC via multiple contacts with clusters of complement receptor type 1 (CR1). Furthermore, we have used three specific monoclonal AB (mAb) to quantitate CR1 on human RBC in the presence and absence of bound IC. One of these Ab, mAb 1B4, is blocked from binding to the RBC if IC are previously bound, and we have used this observation to verify the multivalent nature of the interaction of complement-fixing IC with CR1 on human RBC.  相似文献   

9.
Specific antigen/antibody interactions measured by force microscopy.   总被引:11,自引:2,他引:9       下载免费PDF全文
Molecular recognition between biotinylated bovine serum albumin and polyclonal, biotin-directed IG antibodies has been measured directly under various buffer conditions using an atomic force microscope (AFM). It was found that even highly structured molecules such as IgG antibodies preserve their specific affinity to their antigens when probed with an AFM in the force mode. We could measure the rupture force between individual antibody-antigen complexes. The potential and limitations of this new approach for the measurement of individual antigen/antibody interactions and some possible applications are discussed.  相似文献   

10.
Expression of chicken red blood cell (RBC) surface antigens was studied by using a monoclonal antibody (ISU-cA) specific for chicken A blood group antigens. Erythrocytes were examined from embryos of 3-18 days of incubation and from chicks at hatch up to 21 weeks of age. Specific antigens were detected on embryonic RBC surfaces by immunofluorescence as early as 3 days of incubation. Antigenic expression was examined by both haemagglutination and immunofluorescence and found to increase with age from embryos to mature birds. The antigen concentration on the cell surface was found to be affected by genotype; heterozygotes had an intermediate level of antigen between that of the two parental genotypes. These data confirm the co-dominance that is observed with most blood group antigens. Flow cytometric analysis allowed confirmation that the entire erythrocyte population gradually increased in antigenic expression over time, rather than having an antigen-negative subpopulation being replaced by a positive subpopulation.  相似文献   

11.
Specific immune complexes, prepared at different ratios of antibody to antigen, were examined for their effects on the antibody response of BALB/c mice to the cell wall polysaccharide antigen (PnC) extracted from Streptococcus pneumonia R36a. Mice immunized with complexes formed in antigen excess developed a PnC-specific antibody response that was equivalent to that in mice injected with free antigen. On the other hand, mice injected with complexes formed in antibody excess developed very little PnC-specific antibody. Furthermore, administration of immune complexes (formed in antibody excess) resulted in suppression of the response to an immunogenic dose of PnC given concurrently or 1 day after injection of immune complexes but not when the antigen was given 1 day before injection of the immune complexes. Injections of free antibody (TEPC-15) also resulted in suppression of the response to antigenic challenge; however, suppression was greatest when the antibody was injected concurrently with the antigen, suggesting that the suppression was mediated through the formation of immune complexes in vivo. The suppression appears to be specific for the antigen (PnC), since in mice injected with TEPC-15/PnC complexes (formed in antibody excess) and challenged with PnC coupled to sheep RBC, only the response to PnC was suppressed.  相似文献   

12.
In this study, we ask whether antigen presentation can be effected by antigen-activated B cells. Antigen-dependent in vitro proliferation of T cells from mice primed with SRBC or HoRBC occurs in the presence of B cells primed to the relevant antigen. B cells prepared from lymph nodes of mice primed with irrelevant antigens are not effective antigen-presenting cells for RBC-specific T cell proliferation over a wide range of SRBC doses. This is true even when both RBC and the antigen to which the B cells are primed are included in the culture. In contrast, B cells specific for a hapten determinant coupled to SRBC are able to support proliferation of T cells specific for SRBC determinants. We conclude from these data that antigen-specific B cells play a role in the induction of T cell proliferative responses to SRBC and HoRBC antigens. Two models are proposed: either B cells, upon antigen interaction with surface antibody, are able to act as accessory cells to induce Ia-dependent proliferation of immune T cells; or B cells augment the T cell proliferative response by secretion of antibody, leading to opsonization of the antigen for macrophage uptake and presentation.  相似文献   

13.
Mouse spleen cells were depleted of immunoglobulin (Ig)-bearing B cells by rosetting with glutaraldehyde-fixed, tannic acid-treated RBC coupled with antibody to mouse Ig (anti-Ig) and removing the rosetted cells by density gradient centrifugation. The method was routinely greater than 90% effective in removing B cells as assayed by the failure of anti-Ig rosette-depleted primed spleen cells to generate antibody-producing cells in vitro in response to specific antigen or of anti-Ig rosette-depleted nonprimed spleen cells to generate a polyclonal antibody response. T cells were not removed by the rosetting procedure as measured by helper T-cell activity. The greater effectiveness of the rosetting procedure in removing potential IgG-secreting, non-IgM-bearing B cells is shown relative to other commonly used B-cell depletion procedures. Because the RBC in the rosetting reagent are fixed with glutaraldehyde, the rosetting reagent is stable for many months. Such stability makes constantly available a convenient means for B-cell removal, as well as reducing consumption of antisera.  相似文献   

14.
Antibody formation in vitro was studied using erythrocytes (RBC) as antigen and immunocytoadhesion as the technique for detection of antibody-forming cells. Spleen cells (SPC) of nonimmune mice gained the ability to produce antibody after treatment with ribonucleic acid (RNA) preparation extracted from allogeneic mice immunized with xenogeneic or allogeneic RBC. It was also found that a small proportion of SPC from individual mice of certain strains formed antibody against autologous RBC when the cells were treated in vitro with RNA preparation obtained from the spleen of an allogeneic mouse immunized with RBC of that individual. No converting ability was observed in the RNA preparation from spleen of nonimmune autologous or allogeneic mice. The converting activity of immune RNA preparation was shown to be sensitive to ribonuclease treatment. These evidences exclude the possible contribution of antigen or fragments thereof in the RNA preparation to the induction of antibody formation in RNA recipient cells.  相似文献   

15.
A special protein assay system based on a highly hydrophilic, non-toxic and conductive biominetic interface has been demonstrated. To fabricate such assay system, red blood cells of crucian carp (RBC) was initially grown on a glassy carbon electrode surface (GCE) deposited nano-sized gold particles (GPs), a second gold nanoparticle layer (NG) was then absorbed on the RBC surface, and finally mammary cancer 15-3 antibody (anti-CA15-3) was attached on the functional RBC surface. A competitive immunoassay format was employed to detect CA15-3 with horseradish peroxidase (HRP)-labeled CA15-3 as tracer and hydrogen peroxide as enzyme substrate. When the immunosensor was incubated into a mixture solution containing HRP-labeled CA15-3 and CA15-3 sample for 1h at 37 degrees C, the amperometric response decreased with the increment of CA15-3 sample concentration. AFM images of the modified layer revealed a uniform distribution of protein and nanogold. In situ QCM and electrochemical measurements demonstrated that the wanted antibody-antigen reactions should occur with high specificity and selectivity. The specific immunoassay system can be developed further to yield sophisticated structures for other proteins.  相似文献   

16.
抗原-抗体的特异性结合是由抗体表面的抗原决定簇与抗原表面的表位基序间的特异性互补识别决定的。B细胞表位作图既包括B细胞抗原表位基序的鉴定(即确定抗原分子上被B细胞表面受体或抗体特异性识别并结合的氨基酸基序),也包括绘制抗原蛋白的全部或接近全部的B细胞表位基序在其一级或高级结构上的分布图谱的过程。B细胞表位作图是研发表位疫苗、治疗性表位抗体药物和建立疾病免疫诊断方法的重要前提。目前,已经建立了多种B细胞表位鉴定或绘制抗原蛋白B细胞表位图谱的实验方法。基于抗原-单抗复合物晶体结构的X-射线晶体学分析的B细胞表位作图和基于抗原蛋白或抗原片段的突变体库筛选技术的B细胞表位作图可以在氨基酸水平,甚至原子水平上揭示抗原分子上与单抗特异性结合的关键基序;其它B细胞表位作图方法(如基于ELISA的肽库筛选技术)常常只能获得包含B细胞表位的抗原性肽段,因而,很少用于最小表位基序的鉴定;而改良的生物合成肽法多用于B细胞表位的最小基序鉴定和精细作图。鉴于每种B细胞作图方法都存在各自的优势与不足,B细胞表位作图往往需要多种作图方法的有机结合。本文对目前常用的B细胞表位作图的实验方法及其在动物疫病防控中的应用进行综述,以期为研究者设计最佳的表位作图方案提供参考。  相似文献   

17.
Three models were used to test the hypothesis that interspecific pregnancy failure between the sheep and goat is due to a species-specific, maternal antibody response. Interspecific pregnancies were established in ewes and does, sheep in equilibrium goat chimeric conceptuses produced by injection of ovine blastocysts were transferred to ovine recipients, and ovine and caprine pregnancies were established in interspecific chimeras. Complement-mediated lymphocytotoxic and hemolytic assays were used to monitor onset and titer of antibodies. Sera from 3 of 8 injection-chimera recipients reacted with all caprine peripheral blood lymphocytes (PBL) and red blood cells (RBC) tested (n = 18). Sera from 3 of 6 ewes and 7 of 7 does also were pancytotoxic to PBL of the other species (n greater than or equal to 20). Absorptions with xenogeneic RBC generally removed the reactivity. The data were consistent with responses to species-specific, monomorphic antigens expressed on PBL and RBC, and probably trophoblast. The response preceded or coincided with interspecific pregnancy failure in does, but not in ewes. Accordingly, no xenoreactivity was observed in chimera sera but caprine pregnancies were resorbed (n = 16) and ovine pregnancies developed to term (n = 11). The data did not support the hypothesis that failure of caprine pregnancy in ewes or chimeras is due to a species-specific, maternal antibody response. In contrast, a maternal, cytotoxic antibody response to species-specific antigen(s) may contribute to failure of hybrid or ovine pregnancy in does.  相似文献   

18.
Few systematic investigations have assessed the correlations between red blood cell (RBC) antibodies and human leukocyte antigen (HLA)-DRB1 alleles in the Chinese population. In this case-control study, we investigated whether specific HLA-DRB1 alleles were associated with RBC alloimmunization by calculating the odds ratios for the frequencies of HLA alleles associated with alloimmunization to different RBC antigens. Three hundred and eight patients harboring RBC alloantibodies were analyzed as the case group, and the frequencies of the HLA-DRB1and HLA-DQB1 alleles in control individuals were analyzed by collecting data from the China Marrow Donor Program (including more than 1.6 million healthy people). HLA alleles were genotyped by single specific primer-polymerase chain reaction. The development of anti-C was associated with DRB1*07, DQB1*06, and DQB1*08; anti-C,e was associated with DRB1*07 and DQB1*06; and anti-E and anti-M were associated with DQB1. Other associations were identified between anti-E and DRB1*09 and between anti-Lea and DRB1*01. Thus, our findings confirmed that HLA-DRB1 and DQB1 restriction played an important role in the generation of RBC alloantibodies in Chinese individuals.  相似文献   

19.
We used atomic force microscopy (AFM) to measure the unbinding force between antigen coupled to an AFM tip and antibody coated on the substrate surface. Dynamic responses of glucagon/anti-glucagon pairs with multiple pull-off steps to pH and pulling velocity were studied by AFM. Force-distance curves of a specific glucagon-anti-glucagon interaction system with mono-, di-, and multi-unbinding events were recorded, which may be attributed to a single, sequential or multiple breaking of interacting bond(s) between glucagon and anti-glucagon. We studied the dynamic response of glucagon-anti-glucagon pairs to various pulling velocities (16.7-166.7 nm/s). It was found that the mean value of the unbinding force was shifted toward higher values with increasing pulling velocity at each pH. This indicates that the friction force between glucagon and anti-glucagon may contribute to the unbinding force. Moreover, the dynamic response of glucagon-anti-glucagon pairs to pH (4-10) with different pulling velocities was studied. Within the acid range, the bond strength between the glucagon/anti-glucagon complex showed a rapid increase from pH 4 to 7 and reached a maximum (256.4+/-48.9 pN at 166.7 nm/s) at neutrality, followed by a sharp decrease with increasing pH (pH 7-10). This could be attributed to the conformational change that occurred in glucagon when the pH value in solution was varied from the reference level at neutrality. This study demonstrated that the pH dependence of multiple antigen-antibody bond-rupture forces could be measured by a force-based AFM biosensor. Unraveling the relationship between inter-molecular force and intra-molecular conformational change in acid, neutral, and alkaline environments may provide new directions for future application of force measurements by AFM in proteomics or in the development of a clinical cantilever-based mechanical biosensor.  相似文献   

20.
Antibody adsorption to solid surfaces creates a number of constraints that may interfere with epitope recognition and ligand-antibody interaction. By optimizing the conditions of adsorption, one may minimize these constraints. We have studied several factors that affect the antibody adsorption using atomic force microscopy (AFM) as a readout mechanism. AFM provides a highly sensitive, label-free method for detecting and analyzing molecular interactions. In this report, AFM was used to study antibody properties, the efficiency of particle capture and ligand-antibody interaction using anti-bacteriophage fd antibodies in a solid phase assay format. The capture efficiencies of anti-fd preparations adsorbed onto gold surfaces under various conditions including pH and antibody concentration were determined and compared. The relative sensitivities of each antibody for the capture of phage fd as a function of applied phage concentrations was evaluated. The collective data indicates that AFM is effective as an analytical instrument for studying the functionality of surface adsorbed antibodies in particle capture assays. This method of analysis can be extended to rapidly screen and select antibodies or other ligands with a specific set of characteristics. As the number and complexity of chip-based analytical platforms in proteomics increases, rapid selection/screening processes such as that described here will become invaluable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号