首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Aims:  To develop solid-state fermentation system (SSF) for hyper production of tylosin from a mutant γ-1 of Streptomyces fradiae NRRL-2702 and its parent strain.
Methods and Results:  Various agro-industrial wastes were screened to study their effect on tylosin production in SSF. Wheat bran as solid substrate gave the highest production of 2500 μg of tylosin g−1 substrate by mutant γ-1 against parent strain (300 μg tylosin g−1 substrate). The tylosin yield was further improved to 4500 μg g−1 substrate [70% moisture, 10% inoculum (v/w), pH 9·2, 30°C, supplemental lactose and sodium glutamate on day 9]. Wild-type strain displayed less production of tylosin (655 μg of tylosin g−1 substrate) in SSF even after optimization of process parameters.
Conclusion:  The study has shown that solid-state fermentation system significantly enhanced the tylosin yield by mutant γ-1.
Significance and Impact of the Study:  This study proved to be very useful and resulted in 6·87 ± 0·30-fold increase in tylosin yield by this mutant when compared to that of wild-type strain.  相似文献   

2.
Aims:  A range of new differential and confirmation plating media for some non-O157 Shiga toxin producing Escherichia coli (STEC) serotypes (O26, O103, O111, O145) and both sorbitol-positive and -negative O157 were evaluated using artificially contaminated samples.
Methods and Results:  Dairy products (raw milk, cheese made from pasteurized milk and raw milk), meat (ground beef, fermented meat) and cattle faeces were artificially contaminated using clinical STEC strains. Isolation efficiency was 100%, 82·3%, 88·5%, 65·9%, 64·3% and 15·8%, respectively, for an inoculum size of ≤100 CFU 25 g−1. The consecutive use of differential and confirmation media limited the incidence of false positive isolates from 0% for raw milk samples, cheese made from pasteurized milk and for fermented meat to 2·1% for cheese made from raw milk, and to 8·9% for ground beef.
Conclusions:  Data presented in this paper indicated that the efficiency of the applied isolation method was dependent on sample-to-sample variation but not on the inoculum size.
Significance and Impact of Study:  Data in this paper indicated that isolation of low levels of non-O157 and sorbitol-positive O157 STEC from food samples is possible.  相似文献   

3.
Aims:  To locate a high-dose point hexachlorocyclohexane (HCH)-contaminated site, to identify HCH-degrading bacteria in it and assay HCH-decontamination by biostimulation.
Methods and Results:  Bacteria were isolated by serial dilution method from HCH-contaminated soil samples collected from areas near an HCH-manufacturing unit and its dumpsite in North India. After confirming the presence of indigenous HCH-degraders (seven of 24 strains), an ex situ biostimulation experiment was conducted. For this, residue levels in soil were diluted by mixing with pristine garden soil and aeration, moisture and nutrients were provided intermittently. This soil was monitored for reduction in Σ-HCH (sum of α-, β-, γ- and δ-HCH) levels and stimulation of HCH-degraders. Experiments were conducted twice, in March–April ( c.  75  μ g Σ-HCH g−1 soil) and October–November 2006 ( c.  280  μ g Σ-HCH g−1 soil) at 26–30°C. Σ-HCH levels were reduced to <30% of the original in 24 days and <3% in 240 days in the experimental pits. Terminal restriction fragment length polymorphism analysis reflected changes in microbial community structure during the course of experiment.
Conclusions:  Our results show presence of HCH-degrading sphingomonads at a high-dose point HCH-contaminated site and presents biostimulation as an effective approach for its decontamination via aeration, addition of nutrients and moisture, of the indigenous population.
Significance and Impact of the Study:  The study demonstrates that biostimulation of indigenous HCH-degrading microbial population can be used for decontamination of chronically HCH-contaminated sites.  相似文献   

4.
Aims:  The major objective of this study was to determine the effects of low levels of Escherichia coli O157:H7 contamination on plant by monitoring the survival of the pathogen on the rhizosphere and leaf surfaces of lettuce during the growth process.
Methods and Results:  Real-time PCR and plate counts were used to quantify the survival of E. coli O157:H7 in the rhizosphere and leaf surfaces after planting. Real-time PCR assays were designed to amplify the stx 1, stx 2 and the eae genes of E. coli O157:H7. The detection limit for E. coli O157:H7 quantification by real-time PCR was 2·4 × 103 CFU g−1 of starting DNA in rhizosphere and phyllosphere samples and about 102 CFU g−1 by plate count. The time for pathogens to reach detection limits on the leaf surface by plate counts was 7 days after planting in comparison with 21 days in the rhizosphere. However, real-time PCR continued to detect stx 1, stx 2 and the eae genes throughout the experimental period.
Conclusion:  Escherichia coli O157:H7 survived throughout the growth period as was determined by real-time PCR and by subsequent enrichment and immunomagnetic separation of edible part of plants.
Significance and impact of the Study:  The potential presence of human pathogens in vegetables grown in soils contaminated with E. coli O157:H7 is a serious problem to our national food supply as the pathogen may survive on the leaf surface as they come in contact with contaminated soil during germination.  相似文献   

5.
Abstract A genetically modified strain of Pseudomonas fluorescens and its parent showed grossly similar decline rates following introduction into subtropical clay and sandy soils. In unplanted clay soit at pH 6.9 and 25°C, population densities declined progressively from about 108 to 103 colony forming units (cfu) g−1 dry soil over 75 days, but in unplanted sandy soil the introduced populations could not be detected after 25 days. In clay soil at pH 8.7 or 4.7, or at environmental temperature, decay rates were enhanced as compared to those at pH 6.9 and 25°C. Counts of introduced strains in clay bulk soil and in rhizosphere and rhizoplane of maize suggested that the introduced bacteria competed well with the native bacteria, and colonized the roots at about 106 cfu g−1 dry root at 25°C, over 20 days. However, rhizoplane colonization was lower at environmental temperature. The decay rate of both strains was slower in planted than in unplanted sandy soil. The population densities in the rhizosphere and rhizoplane in the sandy soil were significantly lower than those in the clay soil. Both introduced strains colonized the maize roots in both soils, using seeds coated with bacteria in 1% carboxymethyl cellulose. Introduced cells were localized at different sites along the roots of plants developing in clay soil, with higher densities in the original (near the seeds) and root hair zones as compared to the intermediate zones. No significant difference was observed between the extent of root colonization of the genetically modified strain and its parent.  相似文献   

6.
Aims:  Sheep are important carriers of Shiga toxin-producing Escherichia coli (STEC) in several countries. However, there are a few reports about ovine STEC in American continent.
Methods and Results:  About 86 E. coli strains previously isolated from 172 healthy sheep from different farms were studied. PCR was used for detection of stx 1, stx 2, eae, ehxA and saa genes and for the identification of intimin subtypes. Restriction fragment length polymorphism (RFLP)–PCR was performed to investigate the variants of stx 1 and stx 2, and the flagellar antigen ( fli C) genes in nonmotile isolates. Five isolates were eae + and stx , and belonged to serotypes O128:H2/β-intimin (2), O145:H2/γ, O153:H7/β and O178:H7/ε. Eighty-one STEC isolates were recovered, and the stx genotypes identified were stx 1c stx 2d-O118 (46·9%), stx 1c (27·2%), stx 2d-O118 (23·4%), and stx 1c stx 2dOX3a (2·5%). Pulsed-field gel electrophoresis (PFGE) revealed 27 profiles among 53 STEC and atypical enteropathogenic Escherichia coli (EPEC) isolates.
Conclusions:  This study demonstrated that healthy sheep in São Paulo, Brazil, can be carriers of potential human pathogenic STEC and atypical EPEC.
Significance and Impact of the Study:  As some of the STEC serotypes presently found have been involved with haemolytic uraemic syndrome (HUS) in other countries, the important role of sheep as sources of STEC infection in our settings should not be disregarded.  相似文献   

7.
This study examined the attachment kinetics of Yersinia enterocolitica serotype O:3 to determine the optimum conditions for its isolation from meat enrichment systems using a novel surface adhesion technique. Minced beef was inoculated with Y. enterocolitica at an initial level of 10 cfu g−1 and incubated at 25 °C in an enrichment broth. Yersinia was recovered from enriched samples on polycarbonate membranes by surface adhesion and enumerated using immunofluorescence microscopy. The surface adhesion immunofluorescence technique (SAIF) had a minimum detection limit of approximately 4·0–4·5 log10 cfu ml−1 and provided good correlation between the estimation of the numbers of Yersinia in the enrichment broth derived from plate counts on Yersinia Selective agar (CIN) and those determined by SAIF ( r 2 = 0·94; rsd = ± 0·21). A derived regression equation of the SAIF count vs plate counts was used to predict Y. enterocolitica numbers in spiked meat samples stored at 0 °C for up to 20 d. The numbers as predicted by the SAIF method showed good correlation with counts derived by plating techniques ( r 2 = 0·78; rsd = ± 0·42). The application of the SAIF technique for the rapid detection of Y. enterocolitica serotype O:3 from meat is discussed.  相似文献   

8.
Aims:  The effect of the inoculation of maize and sorghum silages with Lactobacillus plantarum (LP) and Lactobacillus buchneri (LB) on the clostridia spore formation during aerobic deterioration has been studied.
Methods and results:  The crops were ensiled in 30 l jars, without a lactic acid bacteria inoculant (C), and with an LP or LB inocula (theoretical rate of 1 × 106). After 90 days of conservation, the silages were analysed for the chemical and microbiological characteristics and subjected to an aerobic stability test, during which pH, temperature, nitrate, yeast, mould and clostridia spores were measured. Compared to the C and LP silages, yeasts were reduced in the LB silages, resulting in an increased aerobic stability. Clostridia spores, determined by most probable number (MPN) procedure, increased to 6 log10 MPN g−1 in the C and LP maize silages, whereas they reached 3 log10 MPN g−1 in C and LP sorghum silages.
Conclusions:  Clostridia spore count only slightly increased in the LB maize silages after 342 h (2·59 log10 MPN g−1), whereas it did not show any increase in the LB sorghum silages for the whole period of air exposure.
Significance and impact of the study:  The data indicated that clostridia spore outgrowth can take place during silo feedout in aerobic-deteriorated silages and that LB inoculation reduces the risk of clostridia outgrowth after silage opening by increasing the aerobic stability.  相似文献   

9.
Aims:  This study aims to maximize the yield of gamma-linolenic acid by a filamentous fungus, Mucor rouxii , using low cost production by solid-state fermentation.
Methods and Results:  We optimized substrate types and culture conditions including inoculum size and temperature. The optimal growth of M. rouxii was found in the cultures inoculated with 5 × 105 spores g−1 substrate. The fungal cells grew well on rice bran and soy bean meal, whereas a lower biomass was found in the cultures grown on polished rice, broken rice and spent malt grain. The GLA content was highly accumulated in rice bran ferment and its maximal content of about 6 g kg−1 fermented mass was observed in the 5th-day culture grown at 30°C. However, the GLA content in the rice bran ferment was not enhanced by low temperature.
Conclusions:  The GLA production of M. rouxii could be enhanced by optimizing the agricultural by-product substrates and culture condition.
Significance and Impact of the Study:  Low cost GLA production process was achieved, and fermented product containing GLA can be incorporated into feed additives without further oil extraction to alternate the expensive plant oils.  相似文献   

10.
Aim:  To investigate changes in Escherichia coli O157:H7 numbers on excised beef carcass surfaces over 72 h at different temperatures.
Methods and Results:  Excised lean meat, fascia and fat were inoculated with E. coli O157:H7 and held in an environmental chamber for 72 h, at air speed 0·5 m s−1, relative humidity (RH) 90%, and temperatures 4, 8 and 12°C. On lean, pathogen counts increased significantly at 12°C. On fascia, significant reductions in counts occurred at 4 and 8°C. Pathogen numbers were significantly reduced on fat at 4, 8 and 12°C (64 h). Counts on fat were significantly less at all temperatures, compared to lean or fascia and surface water activity, aw, decreased significantly over time on fat at 4°C. Significant decreases in surface pH values were recorded on all meat substrates.
Conclusions:  The survival of E. coli O157:H7 varied in relation to the meat substrate and the holding temperature. Reductions in counts on fat surfaces appeared to be related to low surface aw values. No relationship between pathogen survival and surface pH was established.
Significance and Impact of the Study:  The use of excised meat pieces in an environmental cabinet offers a more flexible approach to determining the use of different chilling regimes in the production of safe meat.  相似文献   

11.
An antibody-direct epifluorescent filter technique (Ab-DEFT) detected 100% of the raw ground beef samples inoculated with Escherichia coli O157 : H7 cells (0·15 cells g−1) and incubated in a prewarmed, modified buffered peptone water (mBPW) non-selective enrichment broth for 5 h at 42°C in an orbital shaking water bath (200 rev min−1). Over 50% of the microscopic fields viewed were positive (1–10 fluorescent cells field−1) in the Ab-DEFT. All positive screening results were confirmed within 24 h by subjecting 1 ml of the mBPW to the Dynabeads® anti- E. coli O157 immunomagnetic separation procedure, followed by plating on MacConkey sorbitol agar containing 5-bromo-4-chloro-3-indolyl-β- D -glucuronide. At this cell concentration, 41·7% of the inoculated samples were detected by the conventional method involving a 24-h selective enrichment. Exposure to viable cells before filtration was minimized by using a 0·58% formaldehyde concentration for 5 min at 50°C (killed >4·00 logs of E. coli O157 : H7 cells) without affecting cell fluorescence.  相似文献   

12.
Abstract A method was developed for direct extraction, purification and amplification of DNA from forest soil. Eighty-two % of the DNA in Pseudomonas aeruginosa UG2Lr introduced into soil was recovered. The detection limit for the strain was approximately 800 cfu g−1 of dry soil based on the polymerase chain reaction (PCR). Survival of κ-carrageenan-encapsulated and unencapsulated UG2Lr was monitored by antibiotic selective and bioluminescence-based nonselective plating and PCR-amplification of a tnsA fragment. After freeze-thaw treatment of soil samples, the unencapsulated UG2Lr declined from an initial population density of 1 × 109 cfu g−1 of dry soil to below the detection threshold of both selective (14 cfu g−1 of dry soil) and nonselective (1 × 103 cfu g−1 of dry soil) plating. However, presence of nonculturable UG2Lr cells in the soil was revealed by PCR and resuscitation of the bacteria. Population density of the encapsulated UG2Lr increased from 2.7 × 106 to 2.9 × 108 cfu g−1 of dry soil after a 3-week incubation at 22°C and declined to 6.3 × 106 cfu g−1 of dry soil after the freeze-thaw treatment.  相似文献   

13.
In most studies concerning the carbon (C) exchange between soil and atmosphere only the topsoil (0–0.3 m) is taken into account. However, it has been shown that important amounts of stable soil organic carbon (SOC) are also stored at greater depth. Here, we developed a quantitative model to estimate the evolution of the distribution of SOC with depth between 1960 (database 'Aardewerk') and 2006 in northern Belgium. This temporal analysis was conducted under different land use, texture and drainage conditions. The results indicate that intensified land management practices seriously affect the SOC status of the soil. The increase in plough depth and a change in crop rotation result in a significant decrease of C near the surface for dry silt loam cropland soils, (i.e. 1.02 ± 0.23 kg C m−2 in the top 0.3 m between 1960 and 2006). In wet to extremely wet grasslands, topsoil SOC decreased significantly, indicating a negative influence of intensive soil drainage on SOC stock. This resulted in a decline of SOC between 1960 and 2006 in the top 1 m, ranging from 3.99 ± 2.57 kg C m−2 in extremely wet silt loam soils to 2.04 ± 2.08 kg C m−2 in wet sandy soils. A slight increase of SOC stock is observed under dry to moderately wet grasslands at greater depths corresponding to increased livestock densities in the region. The increase of SOC in the top 1 m under grassland ranges from 0.65 ± 1.39 kg C m−2 in well drained silt loam soils to 2.59 ± 6.49 kg C m−2 in moderately drained silt loam soils over entire period.  相似文献   

14.
Aim:  Bioaugumentation of low temperature biogas production was attempted by addition of cold-adapted Clostridium and a methanogen.
Methods and Results:  A psychrotrophic xylanolytic acetogenic strain Clostridium sp. PXYL1 growing optimally at 20°C and pH 5·3 and a Methanosarcina strain, PMET1, growing optimally on acetate and producing methane at 15°C were isolated from a cattle manure digester. Anaerobic conversion of xylose at 15°C with the coculture of the two strains was performed, and batch culture methane production characteristics indicated that methanogenesis occurred via acetate through 'acetoclastic' pathway. Stimulation studies were also undertaken to evaluate the effect of exogenous addition of the coculture on biogas yields at 15°C. Addition of 3 ml of PXYL1 at the rate of 12 × 102 CFU ml−1 increased the biogas 1·7-fold (33 l per kg cowdung) when compared to control (19·3 l per kg cowdung) as well as increased the volatile fatty acid (VFA) levels to 3210 mg l−1 when compared to 1140 mg l−1 in controls. Exogenous of addition of 10 ml PMET1 inoculum at the rate of 6·8 ± 102 CFU ml−1 in addition to PXYL1 served to further improve the biogas yields to 46 l kg−1 as well as significantly brought down the VFA levels to 1350 mg l−1.
Conclusions:  Our results suggest that the rate-limiting methanogenic step at low temperatures could be overcome and that biogas yields improved by manipulating the population of the acetoclastic methanogens.
Significance and Impact of the Study:  Stimulation of biomethanation at low temperature by coculture.  相似文献   

15.
Aims:  The impact of a combined hurdle treatment of heat and pulsed electric fields (PEF) was studied on native microbiota used for the inoculation of low-fat ultra-high temperature (UHT) milk and whole raw milk. Microbiological shelf-life of the latter following hurdle treatment or thermal pasteurization was also investigated.
Methods and Results:  UHT milk was preheated to 30°C, 40°C or 50°C over a 60-s period, pulsed for 50  μ s or 60  μ s at a field strength of 40 kV cm−1 or for 33  μ s at 50 kV cm−1. Heat and PEF reduced the microbial count by a maximum of 6·4 log in UHT milk (50°C; 50 kV cm−1, 33  μ s) compared to 6·0 log ( P  ≥ 0·05) obtained by thermal pasteurization (26 s, 72°C). When raw milk was treated with a combination of hurdles (50°C; 40 kV cm−1, 60  μ s) a 6·0 log inactivation of microbiota was achieved and microbiological milk shelf-life was extended to 21 days under refrigeration (4°C) vs 14 days in thermally pasteurized milk. Native microbiota was decreased by 6·7 log following conventional pasteurization.
Conclusions:  The findings suggest that heat and PEF achieved similar inactivation of native microbiota in milk and longer stabilization of microbiological shelf-life than thermal pasteurization.
Significance and Impact of the Study:  A hurdle approach of heat and PEF could represent a valid milk processing alternative to conventional pasteurization. Hurdle treatment might also preserve native milk quality better due to less thermal exposure.  相似文献   

16.
Soil microbial carbon uptake characteristics in relation to soil management   总被引:2,自引:0,他引:2  
Abstract The kinetics of glucose uptake by soil microbial communities in 16 different soild (7 under monocultures and 9 under crop rotations) differing in microbial biomass content, % Corg, pH and clay content were investigated at 22°C. The V max value of microbial bimasses under monoculture, was o.27 μg Cgluc · μg−1 Cmic · h−1 (range 0.18–0.44), twice as high as the mean value of V max of microbial biomasses under rotations (0.13 μg Cgluc, range 0.07–0.19). Mean values of K m were 714 μg Cgluc and 290 μg Cgluc · g−1 soil, respectively.
These differences were highly significant ( P =0.001, based on SE) and could not be relate to particle size distribution of the soils, pH or Corg. A Michaelis-Menten type uptake response was apparent over the total range of glucose concentrations used (45.4–1453.3 μg Cgluc · g−1 soil) for microbial biomasses under rotation while the majority of microbial biomasses under monocultures showed a similar response only at low glucose concentrations. A different uptake mechanism appeared to be involved at higher glucose concentrations (similar to diffusion) in monoculture soils.  相似文献   

17.
Aims:  The present study was aimed to develop a loop-mediated isothermal amplification (LAMP) assay for rapid and specific detection of Vibrio cholerae .
Methods and Results:  A set of five designed primers that recognized specifically the V. cholerae ompW gene was used. The optimized time and temperature conditions for the LAMP assay were 75 min at 65°C, respectively. The LAMP method accurately identified 16 isolates of V. cholerae but did not detect 28 non- cholerae Vibrio isolates and 37 non- Vibrio bacterial isolates. The sensitivity of LAMP for V. cholerae detection in pure cultures was 2·2 × 103 CFU ml−1 or equivalent to 8 CFU per reaction. In the case of spiked shrimp samples without enrichment, the detection limit for V. cholerae was 2·2 × 104 CFU g−1 or equivalent to 20 CFU per reaction, while that of PCR was 100 CFU per reaction.
Conclusion:  The developed LAMP assay targeting ompW gene was rapid, specific and sensitive for V. cholerae detection.
Significant and Impact of the study:  The developed LAMP assay appears to be precise, accurate and a valuable tool for detection of V. cholerae . This assay can replace laborious biochemical tests for the identification of V. cholerae in contaminated food sample.  相似文献   

18.
Aims:  To isolate and identify a benefic bacterium, Bacillus subtilis E20, from natto (fermented soybeans), and incorporate it into shrimp feed to promote shrimp growth performance.
Methods and Results:  A protease-producing bacterium, E20, isolated from natto was identified as B. subtilis by an API 50 CHB kit and the 16S rDNA sequence. B. subtilis E20 was able to grow at a broad range of temperatures (10–50°C), pH values (5–10), and NaCl levels (0–9%). The best culture conditions for B. subtilis E20 to produce the protease were 40°C, a pH of 6–8 and 0% NaCl. No shrimp died after being injected with B. subtilis E20 [up to 109 colony-forming units (CFU) per shrimp]. Bacillus subtilis E20 was incorporated in diets at the levels of 0 (control), 106, 107, and 108 CFU kg−1 for shrimp grow-out culture, and results showed that after feeding on B. subtilis E20-containing diets (108 CFU kg−1 of diet), shrimp had excellent growth performance and production compared to the control because protease activities in the digestive tract were improved by B. subtilis E20.
Conclusions:  Bacillus subtilis E20 isolated from natto is a great protease producer and is able to improve shrimp growth performance through increasing the digestibility of food.
Significance and Impact of the Study:  Results suggest that B. subtilis E20 is a potential candidate for use as a probiotic to improve shrimp growth performance, and consequently reduce feed costs.  相似文献   

19.
Aim:  To explore safe guidelines for manufacturers and consumers to prepare, handle and store dry infant formula (DIF) to protect infants against Cronobacter spp.
Methods and Results:  Selected strains (2.45, FSM 293, ATCC-12868, FSM-271) screened from 68 strains of Cronobacter spp . were used to study growth and survival in commercial DIF. Prototype growth patterns in Enterobacteriaceae enrichment broth (EEB) containing a cocktail comprised of ATCC 12868, ATCC 29004, ATCC 29544 and ATCC 51329 showed a rapid increase in cell count (2·0 log10 to 6·2 log10 CFU ml−1). Infant formula provided a better protective environment for the cells of Cronobacter strains than did buffered peptone water . Experiments on survival in inoculated (104–106 CFU ml−1) reconstituted infant formula (RIF), preparation temperature, the effect of preparation volume (one-serving or two-serving) and effect of storage at room temperature for up to 10 h provided information to develop consumer guidelines for DIF preparation and handling.
Conclusions:  Reconstituted DIF in water at >70°C in larger volumes, minimizing storage time before feeding and storing unused reconstituted formulate at <4°C, may reduce the risk of Cronobacter infection in infants.
Significance and Impact of the Study:  Meningitis, necrotizing enterocolitis and bacteremia in premature babies has been linked to contaminated milk powder and DIF; better handling practices may improve the safety of these foods for neonates.  相似文献   

20.
Aims:  3-Methylindole (3-MI) is a degradation product of l -tryptophan and is both an animal waste malodorant and threat to ruminant health. Culture conditions influencing 3-MI production in Clostridium scatologenes ATCC 25775 were investigated.
Methods and Results:  Extracellular 3-MI levels in cells cultured in brain heart infusion (BHI) medium (pH 7·0) at 33°C and 37°C for 72 h were 907 ± 38 and 834 ± 121  μ mol l−1, respectively. Cells cultured in tryptone-yeast (TY) extract medium at 37°C for 48 h produced 104 ± 86  μ mol l−1 3-MI; however, addition of 1 mmol l−1  l -tryptophan failed to increase extracellular levels (113 ± 50  μ mol l−1 3-MI). Specific activity of indole acetic acid decarboxylase measured in BHI, TY and TY plus 1 mmol l−1 tryptophan-grown cells displayed 35-, 33- and 76-fold higher levels than in semi-defined medium-grown cells.
Conclusions:  When cultured in rich medium, at 33°C or 37°C and pH 7·0, Cl. scatologenes ATCC 25775 optimally produced 3-MI. Addition of l- tryptophan to medium did not lead to significant increases in extracellular 3-MI levels. Whole cell assays indicate growth in rich medium significantly up-regulated 3-MI production.
Significance and Impact of the Study:  Information presented here may prove useful in understanding what factors influence 3-MI production in malodorous animal wastes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号