首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
TNF receptor 1 signaling induces NF-κB activation and necroptosis in L929 cells. We previously reported that cellular inhibitor of apoptosis protein-mediated receptor-interacting protein 1 (RIP1) ubiquitination acts as a cytoprotective mechanism, whereas knockdown of cylindromatosis, a RIP1-deubiquitinating enzyme, protects against tumor necrosis factor (TNF)-induced necroptosis. We report here that RIP1 is a crucial mediator of canonical NF-κB activation in L929 cells, therefore questioning the relative cytoprotective contribution of RIP1 ubiquitination versus canonical NF-κB activation. We found that attenuated NF-κB activation has no impact on TNF-induced necroptosis. However, we identified A20 and linear ubiquitin chain assembly complex as negative regulators of necroptosis. Unexpectedly, and in contrast to RIP3, we also found that knockdown of RIP1 did not block TNF cytotoxicity. Cell death typing revealed that RIP1-depleted cells switch from necroptotic to apoptotic death, indicating that RIP1 can also suppress apoptosis in L929 cells. Inversely, we observed that Fas-associated protein via a death domain, cellular FLICE inhibitory protein and caspase-8, which are all involved in the initiation of apoptosis, counteract necroptosis induction. Finally, we also report RIP1-independent but RIP3-mediated necroptosis in the context of TNF signaling in particular conditions.  相似文献   

2.
Receptor-interacting protein kinase (RIPK) 1 and RIPK3 have emerged as essential kinases mediating a regulated form of necrosis, known as necroptosis, that can be induced by tumor necrosis factor (TNF) signaling. As a consequence, inhibiting RIPK1 kinase activity and repressing RIPK3 expression levels have become commonly used approaches to estimate the contribution of necroptosis to specific phenotypes. Here, we report that RIPK1 kinase activity and RIPK3 also contribute to TNF-induced apoptosis in conditions of cellular inhibitor of apoptosis 1 and 2 (cIAP1/2) depletion or TGF-β-activated kinase 1 (TAK1) kinase inhibition, implying that inhibition of RIPK1 kinase activity or depletion of RIPK3 under cell death conditions is not always a prerequisite to conclude on the involvement of necroptosis. Moreover, we found that, contrary to cIAP1/2 depletion, TAK1 kinase inhibition induces assembly of the cytosolic RIPK1/Fas-associated protein with death domain/caspase-8 apoptotic TNF receptor 1 (TNFR1) complex IIb without affecting the RIPK1 ubiquitylation status at the level of TNFR1 complex I. These results indicate that the recruitment of TAK1 to the ubiquitin (Ub) chains, and not the Ub chains per se, regulates the contribution of RIPK1 to the apoptotic death trigger. In line with this, we found that cylindromatosis repression only provided protection to TNF-mediated RIPK1-dependent apoptosis in condition of reduced RIPK1 ubiquitylation obtained by cIAP1/2 depletion but not upon TAK1 kinase inhibition, again arguing for a role of TAK1 in preventing RIPK1-dependent apoptosis downstream of RIPK1 ubiquitylation. Importantly, we found that this function of TAK1 was independent of its known role in canonical nuclear factor-κB (NF-κB) activation. Our study therefore reports a new function of TAK1 in regulating an early NF-κB-independent cell death checkpoint in the TNFR1 apoptotic pathway. In both TNF-induced RIPK1 kinase-dependent apoptotic models, we found that RIPK3 contributes to full caspase-8 activation independently of its kinase activity or intact RHIM domain. In contrast, RIPK3 participates in caspase-8 activation by acting downstream of the cytosolic death complex assembly, possibly via reactive oxygen species generation.  相似文献   

3.
Staphylococcus aureus USA300 strains cause a highly inflammatory necrotizing pneumonia. The virulence of this strain has been attributed to its expression of multiple toxins that have diverse targets including ADAM10, NLRP3 and CD11b. We demonstrate that induction of necroptosis through RIP1/RIP3/MLKL signaling is a major consequence of S. aureus toxin production. Cytotoxicity could be prevented by inhibiting either RIP1 or MLKL signaling and S. aureus mutants lacking agr, hla or Hla pore formation, lukAB or psms were deficient in inducing cell death in human and murine immune cells. Toxin-associated pore formation was essential, as cell death was blocked by exogenous K+ or dextran. MLKL inhibition also blocked caspase-1 and IL-1β production, suggesting a link to the inflammasome. Rip3 -/- mice exhibited significantly improved staphylococcal clearance and retained an alveolar macrophage population with CD200R and CD206 markers in the setting of acute infection, suggesting increased susceptibility of these leukocytes to necroptosis. The importance of this anti-inflammatory signaling was indicated by the correlation between improved outcome and significantly decreased expression of KC, IL-6, TNF, IL-1α and IL-1β in infected mice. These findings indicate that toxin-induced necroptosis is a major cause of lung pathology in S. aureus pneumonia and suggest the possibility of targeting components of this signaling pathway as a therapeutic strategy.  相似文献   

4.
Tumor necrosis factor receptor-1 (TNFR1) signaling, apart from its pleiotropic functions in inflammation, plays a role in embryogenesis as deficiency of varieties of its downstream molecules leads to embryonic lethality in mice. Caspase-8 noncleavable receptor interacting serine/threonine kinase 1 (RIPK1) mutations occur naturally in humans, and the corresponding D325A mutation in murine RIPK1 leads to death at early midgestation. It is known that both the demise of Ripk1D325A/D325A embryos and the death of Casp8−/− mice are initiated by TNFR1, but they are mediated by apoptosis and necroptosis, respectively. Here, we show that the defects in Ripk1D325A/D325A embryos occur at embryonic day 10.5 (E10.5), earlier than that caused by Casp8 knockout. By analyzing a series of genetically mutated mice, we elucidated a mechanism that leads to the lethality of Ripk1D325A/D325A embryos and compared it with that underlies Casp8 deletion-mediated lethality. We revealed that the apoptosis in Ripk1D325A/D325A embryos requires a scaffold function of RIPK3 and enzymatically active caspase-8. Unexpectedly, caspase-1 and caspase-11 are downstream of activated caspase-8, and concurrent depletion of Casp1 and Casp11 postpones the E10.5 lethality to embryonic day 13.5 (E13.5). Moreover, caspase-3 is an executioner of apoptosis at E10.5 in Ripk1D325A/D325A mice as its deletion extends life of Ripk1D325A/D325A mice to embryonic day 11.5 (E11.5). Hence, an unexpected death pathway of TNFR1 controls RIPK1 D325A mutation-induced lethality at E10.5.

A study of mice expressing a caspase-8 non-cleavable RIPK1 mutant during embryonic development reveals an unexpected TNFR1-triggered death pathway involving RIPK3, caspase-8, and caspases -1, -11 and -3.  相似文献   

5.
6.
Pseudomonas aeruginosa induced acute lung injury is such a serious risk to public health, but the pathological regulation remains unclear. Here, we reported that PA mediated epithelial necroptosis plays an important role in pathological process. Pharmacological and genomic ablation of necroptosis signaling ameliorate PA mediated ALI and pulmonary inflammation. Our results further proved NLRP3 inflammasome to involve in the process. Mechanism investigation revealed the cross-talking between inflammasome activation and necroptosis that MLKL-dependent necroptosis signaling promotes the change of mitochondrial membrane potential for the release of reactive oxygen species (ROS), which is the important trigger for functional inflammasome activation. Furthermore, antioxidants such as Mito-TEMPO was confirmed to significantly restrain inflammasome activation in epithelium, resulting in a reduction in PA induced pulmonary inflammation. Taken together, our findings revealed that necroptosis-triggered NLRP3 inflammasome in epithelium plays a crucial role in PA mediated injury, which could be a potential therapeutic target for pulmonary inflammation.  相似文献   

7.
Microglia are the resident immune cells in the central nervous system and key players against pathogens and injury. However, persistent microglial activation often exacerbates pathological damage and has been implicated in many neurological diseases. Despite their pivotal physiological and pathophysiological roles, how the survival and death of activated microglia is regulated remains poorly understood. We report here that microglia activated through Toll-like receptors (TLRs) undergo RIP1/RIP3-dependent programmed necrosis (necroptosis) when exposed to the pan caspase inhibitor zVAD-fmk. Although zVAD-fmk and the caspase-8 inhibitor IETD-fmk had no effect on unstimulated primary microglia, they markedly sensitized microglia to TLR1/2,3,4,7/8 ligands or TNF treatment, triggering programmed necrosis that was completely blocked by R1P1 kinase inhibitor necrostatin-1. Interestingly, necroptosis induced by TLR ligands and zVAD was restricted to microglial cells and was not observed in astrocytes, neurons or oligodendrocytes even though they are known to express certain TLRs. Deletion of genes encoding TNF or TNFR1 failed to prevent lipopolysaccharide- and poly(I:C)-induced microglial necroptosis, unveiling a TNF-independent programmed necrosis pathway in TLR3- and TLR4-activated microglia. Microglia from mice lacking functional TRIF were fully protected against TLR3/4 activation and zVAD-fmk-induced necrosis, and genetic deletion of rip3 also prevented microglia necroptosis. Activation of c-jun N-terminal kinase and generation of specific reactive oxygen species were downstream signaling events required for microglial cell death execution. Taken together, this study reveals a robust RIP3-dependent necroptosis signaling pathway in TLR-activated microglia upon caspase blockade and suggests that TLR signaling and programmed cell death pathways are closely linked in microglia, which could contribute to neuropathology and neuroinflammation when dysregulated.  相似文献   

8.
Mature erythrocytes (red blood cells (RBCs)) undergo the programmed cell death (PCD) pathway of necroptosis in response to bacterial pore-forming toxins (PFTs) that target human CD59 (hCD59) but not hCD59-independent PFTs. Here, we investigate the biochemical mechanism of RBC necroptosis with a focus on the mechanism of induction and the minimal requirements for such RBC death. Binding or crosslinking of the hCD59 receptor led to Syk-dependent induction of vesiculated morphology (echinocytes) that was associated with phosphorylation of Band 3 and was required for Fas ligand (FasL) release. FasL-dependent phosphorylation of receptor-interacting protein kinase 1 (RIP1) in combination with plasma membrane pore formation was required for execution of RBC necroptosis. RIP1 phosphorylation led to the phosphorylation of RIP3, which was also critical for RBC necroptosis. Notably, RBC necroptosis was mediated by FasL and not by other candidate inducers, including tumor necrosis factor alpha (TNF-α) and TNF-related apoptosis-inducing ligand (TRAIL). Other types of RBC damage, such as eryptotic damage, failed to induce necroptosis when combined with hCD59 crosslinking. This work sheds light on the requirements for this recently discovered PCD in RBCs and provides a clear picture of the biochemical mechanism of induction of RBC necroptosis.Recently, we demonstrated that bacterial pore-forming toxins (PFTs) that target human CD59 (hCD59) induce programmed necrosis (necroptosis) in primary erythrocytes (red blood cells, RBCs).1 This observation was striking, as RBC lack nuclei and mitochondria. Nonetheless, RBC necroptosis proceeded in a manner similar to that observed in nucleated cells, requiring Fas and Fas ligand (Fas/FasL), mixed lineage kinase domain-like protein, and the phosphorylation of receptor-interacting protein kinase 1 (RIP1) kinase.1 RBC necroptosis was antagonized by caspase-8 and was associated with necrosome formation and conserved necroptosis effector pathways including acid sphingomyelinase-dependent ceramide formation, NADPH oxidase/iron-dependent reactive oxygen species formation, and glycolytic formation of advanced glycation end products (AGEs). While RBC necroptosis shared many molecular steps with canonical necroptosis pathways, it was distinct from eryptosis, a RBC-specific programmed cell death (PCD) that functions as a trigger for RBC clearance by macrophages.1, 2Proteins that induce plasma membrane pores are a common biological theme and may be pathogen produced, such as bacterial PFTs, or host produced, such as the membrane attack complex (MAC) of the complement system.3, 4 Pore formation may kill cells through osmotic lysis or may activate target cell signaling pathways including proinflammatory, membrane repair, and PCD modules.4 However, the specific mechanisms linking bacterial PFTs to RBC necroptosis have not been described.In this study, we sought to understand the mechanism of induction of RBC necroptosis by bacterial PFTs and the minimal requirements for such death in these target cells. In particular, we show that hCD59 signaling, induced by receptor crosslinking, results in Syk-dependent phosphorylation of Band 3 leading to vesicle (echinocyte) formation and release of FasL. Released FasL induces the phosphorylation of RIP1, which in turn leads to RIP3 phosphorylation. The FasL-dependent phosphorylation of RIP1/RIP3 produces RBC death by necroptosis only when combined with functional pore formation. The ability for necroptosis to proceed in RBCs differs depends on the size and nature of membrane pores. Additionally, we show that RBC necroptosis is mediated only by FasL and not by other known necroptotic mediators/stimuli, including tumor necrosis factor alpha (TNF-α) and TNF-related apoptosis-inducing ligand (TRAIL).  相似文献   

9.
10.
Necroptosis is a highly pro-inflammatory mode of cell death regulated by RIP (or RIPK)1 and RIP3 kinases and mediated by the effector MLKL. We report that diverse bacterial pathogens that produce a pore-forming toxin (PFT) induce necroptosis of macrophages and this can be blocked for protection against Serratia marcescens hemorrhagic pneumonia. Following challenge with S. marcescens, Staphylococcus aureus, Streptococcus pneumoniae, Listeria monocytogenes, uropathogenic Escherichia coli (UPEC), and purified recombinant pneumolysin, macrophages pretreated with inhibitors of RIP1, RIP3, and MLKL were protected against death. Alveolar macrophages in MLKL KO mice were also protected during S. marcescens pneumonia. Inhibition of caspases had no impact on macrophage death and caspase-1 and -3/7 were determined to be inactive following challenge despite the detection of IL-1β in supernatants. Bone marrow-derived macrophages from RIP3 KO, but not caspase-1/11 KO or caspase-3 KO mice, were resistant to PFT-induced death. We explored the mechanisms for PFT-induced necroptosis and determined that loss of ion homeostasis at the plasma membrane, mitochondrial damage, ATP depletion, and the generation of reactive oxygen species were together responsible. Treatment of mice with necrostatin-5, an inhibitor of RIP1; GW806742X, an inhibitor of MLKL; and necrostatin-5 along with co-enzyme Q10 (N5/C10), which enhances ATP production; reduced the severity of S. marcescens pneumonia in a mouse intratracheal challenge model. N5/C10 protected alveolar macrophages, reduced bacterial burden, and lessened hemorrhage in the lungs. We conclude that necroptosis is the major cell death pathway evoked by PFTs in macrophages and the necroptosis pathway can be targeted for disease intervention.  相似文献   

11.
12.
Necroptosis and pyroptosis are inflammatory forms of regulated necrotic cell death as opposed to apoptosis that is generally considered immunologically silent. Recent studies revealed unexpected links in the pathways regulating and executing cell death in response to activation of signaling cascades inducing apoptosis, necroptosis, and pyroptosis. Emerging evidence suggests that receptor interacting protein kinase 1 and caspase-8 control the cross-talk between apoptosis, necroptosis, and pyroptosis and determine the type of cell death induced in response to activation of cell death signaling.  相似文献   

13.
14.
Receptor-interacting protein (RIP) kinases promote the induction of necrotic cell death pathways. Here we investigated signaling pathways in outer hair cells (OHCs) of adult male CBA/J mice exposed to noise that causes permanent threshold shifts, with a particular focus on RIP kinase-regulated necroptosis. One hour after noise exposure, nuclei of OHCs in the basal region of the cochlea displayed both apoptotic and necrotic features. RIP1 and RIP3 protein levels increased and caspase-8 was activated. Treatment with pan-caspase inhibitor ZVAD blocked the activation of caspase-8 and reduced the number of apoptotic nuclei, while increasing levels of RIP1, RIP3, and necrotic OHCs. Conversely, treatment with necrosis inhibitor necrostatin-1 (Nec-1) or RIP3 siRNA (siRIP3) diminished noise-induced increases in RIP1 and RIP3, and decreased necrotic OHC nuclei. This treatment also increased the number of apoptotic nuclei without increasing activation of caspase-8. Consistent with the elevation of levels of RIP1 and RIP3, noise-induced active AMPKα levels increased with ZVAD treatment, but decreased with Nec-1 and siRIP3 treatment. Furthermore, treatment with siRIP3 did not alter the activation of caspase-8, but instead increased activation of caspase-9 and promoted endonuclease G translocation into OHC nuclei. Finally, auditory brainstem response functional measurements and morphological assessment of OHCs showed that ZVAD treatment reduces noise-induced deficits. This protective function is potentiated when combined with siRIP3 treatment. In conclusion, noise-induced OHC apoptosis and necrosis are modulated by caspases and RIP kinases, respectively. Inhibition of either pathway shifts the prevalence of OHC death to the alternative pathway.  相似文献   

15.
Death signaling provided by tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) can induce death in cancer cells with little cytotoxicity to normal cells; this cell death has been thought to involve caspase-dependent apoptosis. Reactive oxygen species (ROS) are also mediators that induce cell death, but their roles in TRAIL-induced apoptosis have not been elucidated fully. In the current study, we investigated ROS and caspases in human pancreatic cancer cells undergoing two different types of TRAIL-induced cell death, apoptosis and necroptosis. TRAIL treatment increased ROS in two TRAIL-sensitive pancreatic cancer cell lines, MiaPaCa-2 and BxPC-3, but ROS were involved in TRAIL-induced apoptosis only in MiaPaCa-2 cells. Unexpectedly, inhibition of ROS by either N-acetyl-L-cysteine (NAC), a peroxide inhibitor, or Tempol, a superoxide inhibitor, increased the annexin V-/propidium iodide (PI)+ early necrotic population in TRAIL-treated cells. Additionally, both necrostatin-1, an inhibitor of receptor-interacting protein kinase 1 (RIP1), and siRNA-mediated knockdown of RIP3 decreased the annexin V-/PI+ early necrotic population after TRAIL treatment. Furthermore, an increase in early apoptosis was induced in TRAIL-treated cancer cells under inhibition of either caspase-2 or -9. Caspase-2 worked upstream of caspase-9, and no crosstalk was observed between ROS and caspase-2/-9 in TRAIL-treated cells. Together, these results indicate that ROS contribute to TRAIL-induced apoptosis in MiaPaCa-2 cells, and that ROS play an inhibitory role in TRAIL-induced necroptosis of MiaPaCa-2 and BxPC-3 cells, with caspase-2 and -9 playing regulatory roles in this process.  相似文献   

16.
17.
Microglia are resident brain macrophages, which can cause neuronal loss when activated in infectious, ischemic, traumatic, and neurodegenerative diseases. Caspase-8 has both prodeath and prosurvival roles, mediating apoptosis and/or preventing RIPK1-mediated necroptosis depending on cell type and stimulus. We found that inflammatory stimuli (LPS, lipoteichoic acid, or TNF-α) caused an increase in caspase-8 IETDase activity in primary rat microglia without inducing apoptosis. Inhibition of caspase-8 with either Z-VAD-fmk or IETD-fmk resulted in necrosis of activated microglia. Inhibition of caspases with Z-VAD-fmk did not kill non-activated microglia, or astrocytes and neurons in any condition. Necrostatin-1, a specific inhibitor of RIPK1, prevented microglial caspase inhibition-induced death, indicating death was by necroptosis. In mixed cerebellar cultures of primary neurons, astrocytes, and microglia, LPS induced neuronal loss that was prevented by inhibition of caspase-8 (resulting in microglial necroptosis), and neuronal death was restored by rescue of microglia with necrostatin-1. We conclude that the activation of caspase-8 in inflamed microglia prevents their death by necroptosis, and thus, caspase-8 inhibitors may protect neurons in the inflamed brain by selectively killing activated microglia.  相似文献   

18.
The linear ubiquitin chain assembly complex (LUBAC) is the only known E3 ubiquitin ligase which catalyses the generation of linear ubiquitin linkages de novo. LUBAC is a crucial component of various immune receptor signalling pathways. Here, we show that LUBAC forms part of the TRAIL-R-associated complex I as well as of the cytoplasmic TRAIL-induced complex II. In both of these complexes, HOIP limits caspase-8 activity and, consequently, apoptosis whilst being itself cleaved in a caspase-8-dependent manner. Yet, by limiting the formation of a RIPK1/RIPK3/MLKL-containing complex, LUBAC also restricts TRAIL-induced necroptosis. We identify RIPK1 and caspase-8 as linearly ubiquitinated targets of LUBAC following TRAIL stimulation. Contrary to its role in preventing TRAIL-induced RIPK1-independent apoptosis, HOIP presence, but not its activity, is required for preventing necroptosis. By promoting recruitment of the IKK complex to complex I, LUBAC also promotes TRAIL-induced activation of NF-κB and, consequently, the production of cytokines, downstream of FADD, caspase-8 and cIAP1/2. Hence, LUBAC controls the TRAIL signalling outcome from complex I and II, two platforms which both trigger cell death and gene activation.  相似文献   

19.
The adaptor protein, apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), connects pathogen/danger sensors such as NLRP3 and NLRC4 with caspases and is involved in inflammation and cell death. We have found that ASC activation induced caspase-8-dependent apoptosis or CA-074Me (cathepsin B inhibitor)-inhibitable necrosis depending on the cell type. Unlike necroptosis, another necrotic cell death, ASC-mediated necrosis, was neither RIP3-dependent nor necrostatin-1-inhibitable. Although acetyl-YVAD-chloromethylketone (Ac-YVAD-CMK) (caspase-1 inhibitor) did not inhibit ASC-mediated necrosis, comprehensive gene expression analyses indicated that caspase-1 expression coincided with the necrosis type. Furthermore, caspase-1 knockdown converted necrosis-type cells to apoptosis-type cells, whereas exogenous expression of either wild-type or catalytically inactive caspase-1 did the opposite. Knockdown of caspase-1, but not Ac-YVAD-CMK, suppressed the monocyte necrosis induced by Staphylococcus and Pseudomonas infection. Thus, the catalytic activity of caspase-1 is dispensable for necrosis induction. Intriguingly, a short period of caspase-1 knockdown inhibited IL-1β production but not necrosis, although longer knockdown suppressed both responses. Possible explanations of this phenomenon are discussed.  相似文献   

20.
Besides inducing apoptosis, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) activates NF-κB. The apoptosis signaling pathway of TRAIL is well characterized involving TRAIL receptors, Fas-associated protein with death domain (FADD) and caspase-8. In contrast, the molecular mechanism of TRAIL signaling to NF-κB remains controversial. Here, we characterized the receptor–proximal mediators of NF-κB activation by TRAIL. Deletion of the DD of TRAIL receptors 1 and 2 revealed that it is essential in NF-κB signaling. Because FADD interacts with the TRAIL receptor DD, FADD was tested. RNAi-mediated knockdown of FADD or FADD deficiency in JURKAT T-cell leukemia cells decreased or disabled NF-κB signaling by TRAIL. In contrast, TRAIL-induced activation of NF-κB was maintained upon loss of receptor interacting protein 1 (RIP1) or knockdown of FLICE-like inhibitory protein (FLIP). Exogenous expression of FADD rescued TRAIL-induced NF-κB signaling. Loss-of-function mutations of FADD within the RHDLL motif of the death effector domain, which is required for TRAIL-induced apoptosis, abrogated FADD''s ability to recruit caspase-8 and mediate NF-κB activation. Accordingly, deficiency of caspase-8 inhibited TRAIL-induced activation of NF-κB, which was rescued by wild-type caspase-8, but not by a catalytically inactive caspase-8 mutant. These data establish the mechanism of TRAIL-induced NF-κB activation involving the TRAIL receptor DD, FADD and caspase-8, but not RIP1 or FLIP. Our results show that signaling of TRAIL-induced apoptosis and NF-κB bifurcates downstream of caspase-8.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号