首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 117 毫秒
1.
《Process Biochemistry》2007,42(5):873-877
The present work reports the effect of simple feeding strategies to obtain high-cell-density cultures of Kluyveromyces marxianus maximizing β-galactosidase productivity using cheese whey as basic medium. Linear and exponential feeding strategies, with feeding times of 20, 25 and 35 h, and three different feeding media concentrations (140 g/L, 210 g/L, and 280 g/L lactose concentration), were tested. Final biomass concentration reached 35 g cells dry weight/L and our results showed that continuous lactose addition to culture were able to produce high specific enzyme activities, consequently improving volumetric activities of β-galactosidase when compared to batch cultivations. The best fed-batch strategy, which was the feeding of three-fold lactose concentration in the cheese whey-medium during 25 h, resulted in β-galactosidase productivity of 291 U/L h, representing an increase of more than 50% compared to batch cultivations.  相似文献   

2.
Traditional batch fermentation leads to a higher energy consumption and lower production capability because of longer culture time. In this work, a pilot scale bioreactor composed of a 3000 L fermentor and external ceramic microfiltration equipment was used to perform cell-recycle fermentation. Repeat feeding medium was also used to relieve the substrate inhibition. In such pilot system, the maximum yield and productivity of l(+)-lactic acid production reached 157.22 ± 3.42 g/L and 8.77 ± 0.15 g/L/h which were 4.23% and 315.64% higher than those of batch fermentation, respectively, when equal amount of sugar was consumed. The cost of l(+)-lactic acid production was successfully reduced about two-thirds by the increase of yield and productivity. 12 rounds of cell-recycle fermentations were successfully achieved in the pilot system. The membrane filtration productivity reached to 61.27 ± 2.74 L/m2/h which increased 172.80%, while the cell damaging rate dropped to 3.88 ± 0.18% which decreased 85.77%, compared with those of the ultrafiltration. Furthermore, the ceramic microfiltration membrane showed advantages in tolerance for the temperature, pressure and acid, compared with the organic ultrafiltration membrane. The experimental results indicated that the method could give a reference for low cost production of l(+)-lactic acid in an industrial scale.  相似文献   

3.
The extensive prospects of violacein in the pharmaceutical industry have attracted increasing interest. However, the fermentation levels of violacein are currently inadequate to meet the demands of industrial production. This study was undertaken to develop an efficient process for the production of violacein by recombinant Citrobacter freundii. The effects of dissolved oxygen (DO) and pH on cell growth and violacein production in batch cultures were investigated first. When the DO and pH of the medium were controlled at around 25% and 7.0, respectively, the biomass and concentration of violacein were maximized. Based on the consumption of nutrients in the medium observed during batch culture, a fed-batch fermentation strategy with controlled DO and pH was implemented. By continuously feeding glycerol, NH4Cl, and l-tryptophan at a constant feeding rate of 16 mL h−1, the final concentration of violacein reached 4.13 g L−1, which was 4.09-fold higher than the corresponding batch culture, and the maximal dry cell weight (DCW) and average violacein productivity obtained for the fed-batch culture were 3.34 g DCW L−1 and 82.6 mg L−1 h−1, respectively. To date, this is the first report on the efficient production of violacein by genetically engineered strains in a fermentor.  相似文献   

4.
We examined glucose 6-phosphate dehydrogenase (G6PD) production by fed-batch cultivation, using a recombinant strain of Saccharomyces cerevisiae W303-181 overexpressing this enzyme. The cultivations were carried out in a 3 L fermenter at pH 5.7, 30 °C, 2.0 vvm aeration, 200 rpm agitation and an inoculum concentration of 1.0 g/L. The volume of the culture medium in the fed-batch process varied from 1.333 to 2.0 L, due to the addition of 15.0 g/L glucose solution during 5 h. Different feeding rates were studied (exponentially increasing and decreasing feeding rates), and the feeding profile was determined by values of the parameter K (time constant), namely: 0.2, 0.5 and 0.8 h−1. The best enzyme production (847 U/L) was obtained with an exponentially increasing feeding rate and K = 0.2 h−1. The results attained also showed that this process is promising for G6PD production.  相似文献   

5.
Jerusalem artichoke extract or powder was used for astaxanthin production using Phaffia rhodozyma without acidic or enzymatic inulin hydrolysis. The culture medium containing Jerusalem artichoke as carbon source was optimized, and feeding strategies, including constant, exponential, pH-stat, and substrate feedback fed-batch fermentations, were also compared for enhancing the cell biomass and astaxanthin synthesis by P. rhodozyma. Substrate-feedback fed-batch fermentation resulted in the highest dry cell weight of 83.60 g/L, with a carotenoid concentration and yield of 982.50 mg/L and 13.30 mg/g, respectively, under optimized medium components using Jerusalem artichoke extract as carbon source in a 3-L stirred-tank bioreactor. Moreover, 482.50 mg/L of carotenoids and 253.10 mg/L of astaxanthin were obtained by continuous feeding of Jerusalem artichoke powder, which was used as carbon source. Astaxanthin essence with high DPPH-scavenging activity was obtained from the extracted astaxanthin, and the DPPH free radical scavenging rate of 40 ppm astaxanthin essence reached 76.29%. When stored at 4 °C, astaxanthin essence showed the highest stability, with a minimum k value of 0.0099 week−1 and maximum half-life (t1/2) value of 70 weeks.  相似文献   

6.
Phenylacetaldehyde (PA) can be produced by the oxidation of 2-phenylethanol (PE) through biotransformation. In order to prevent substrate and product inhibitions and the transformation of the PA to phenylacetic acid (PAA), utilization of a two-phase system is very attractive. Gluconobacter oxydans B-72 was used as the microorganism and iso-octane as the solvent. The effect of initial substrate concentration on the PA production was investigated in single- and two-phase systems. In the single-phase system, substrate inhibition occurred above 5 g/l, and in the two-phase system, above 7.5 g/l. Substrate inhibition kinetics were also studied in the two-phase system and kinetic constants were determined as rmax=0.64 g/l min, KM=8.15 g/l, KPA=2.5 g/l. Because it was observed that two-phase system is insufficient to remove the substrate inhibition effect, fed-batch operation was utilised in this study. For 7.5 g/l of PE, 1.65, 3.85, and 7.35 g/l of PA were obtained in the single-phase, two-phase, and two-phase three fed-batch systems, respectively. Effect of biotransformation time, initial substrate concentration, agitation speed, and fed-batch number on the PA production was investigated in a two-phase fed-batch system by the response surface methodology (RSM). The optimum values were found as 3 fed-batch number, 2.75 g/l initial substrate concentration, 150 rpm agitation speed, and 65 min of one batch biotransformation time. In order to verify these results, an experiment was performed at these optimum conditions and 7.10 g/l of PA concentration was obtained.  相似文献   

7.
This work is focused on the inulinase production by solid-state fermentation (SSF) in a fixed-bed reactor (34 cm diameter and 50 cm height) with working capacity of 2-kg of dry substrate operated in batch and fed-batch modes. It was investigated different strategies for feeding the inlet air in the bioreactor (saturated and unsaturated air) as alternative to remove the metabolic heat generated during the microbial growth by evaporative cooling. The kinetic evaluation of the process carried out in batch mode using unsaturated air showed that the evaporative cooling decreasing the mean temperature of the solid-bed, although the enzyme production was lower than that obtained using saturated air. Results showed that maximum enzyme activity (586 ± 63 U gds−1) was obtained in the fed-batch mode using saturated air after 24 h of fermentation. The enzymatic extract obtained by fed-batch mode was characterized and presented optimum temperature and pH in the range of 52–57 °C and 4.8–5.2, respectively. For a temperature range from 40 to 70 °C the enzyme presented decimal reduction time, D-value, ranging from 5748 to 47 h, respectively. For a pH range from 3.5 to 5.5 the enzyme showed good stability, presenting D-values higher than 2622 h. In terms of Michaelis–Mentem parameters were demonstrated that the crude inulinase activity presented higher affinity for substrate sucrose compared to inulin.  相似文献   

8.
We developed di-d-fructofranosyl-2,6′:2′,6-anhydride (DFA IV) production system with single culture of Bacillus subtilis directly from sucrose. This system can avoid the purification procedure of levan which organic solvent was used for precipitation. The levan fructotransferase (LFTase) gene was cloned from Arthrobacter nicotinovorans GS-9 (AHU1840, FERM P-15285) and expressed in levan producing B. subtilis 168. LFTase activity was detected in the culture supernatant of the transformant with maximal activity of 0.062 U/ml after 15.5 h post induction. Then sucrose was added as substrate and incubated. About 78 h after addition of sucrose, 20.5 g/l of DFA IV was produced from 139.3 g/l of sucrose consumed. The yield of DFA IV from sucrose was 14.7 wt.%.  相似文献   

9.
To improve the growth of recombinant Pichia pastoris with a phenotype of MutS and expression of angiostatin, the effects of glycerol, sorbitol, acetate and lactic acid which were, respectively, added together with methanol in the expression phase, were studied in a 5-l fermentor. Methanol concentration was automatically controlled at 5 g/l by a methanol monitor and control system, while the feeding of the other carbon source was manually adjusted. The angiostatin production level was 108 mg/l when glycerol was added at an initial rate of 2.3 g/h and gradually increased to 9.9 g/h within an induction period of 96 h. The angiostatin concentration was 141 mg/l as sorbitol was used, while only 52 mg/l were obtained on acetate. The highest angiostatin production of 191 mg/l was achieved as lactic acid was used; whose feeding rate was gradually increased from 2.6 to 11.3 g/h. Lactic acid accumulated during the induction phase and reached 6.3 g/l at the end of fermentation. However, the accumulation of lactic acid did not interfere with angiostatin production, indicating that lactic acid to be a non-repressive carbon source. The average productivity and specific productivity of angiostatin obtained on lactic acid and methanol were, respectively, 2.96 and 0.044 mg/(g h), 1.7- and 2.5-fold of those obtained in the fermentation fed with glycerol and methanol.  相似文献   

10.
This work optimized the novel biotransformation process of podophyllotoxin to produce podophyllic acid by Pseudomonas aeruginosa CCTCC AB93066. Firstly, the biotransformation process was significantly affected by medium composition. 5 g/l of yeast extract and 5 g/l of peptone were favorable for podophyllic acid production (i.e. 25.3 ± 3.7 mg/l), while not beneficial for the cell growth of P. aeruginosa. This indicated that the accumulation of podophyllic acid was not corresponded well to the cell growth of P. aeruginosa. 0 g/l of sucrose was beneficial for podophyllic acid production (i.e. 34.3 ± 3.9 mg/l), which led to high podophyllotoxin conversion (i.e. 98.2 ± 0.1%). 1 g/l of NaCl was the best for podophyllic acid production (i.e. 47.6 ± 4.0 mg/l). Secondly, the production of podophyllic acid was significantly enhanced by fed-batch biotransformation. When each 100 mg/l of podophyllotoxin was added to the biotransformation system after 4, 10 and 25 h of culture, respectively, podophyllic acid concentration reached 99.9 ± 12.3 mg/l, enhanced by 284% comparing to one-time addition (i.e. 26.0 ± 2.1 mg/l). The fundamental information obtained in this study provides a simple and efficient way to produce podophyllic acid.  相似文献   

11.
In order to examine the structure–activity relationship and the substrate specificity of human d-amino acid oxidase (h.DAO), a single amino acid mutation had been established as proline-219-luecine (P-219-L). The gene encoding mutant h.DAO has been cloned and expressed in Escherichia coli BL21 (DE3). It was observed that the host cell was negatively affected by the expressed mutant h.DAO, resulting in a remarkable decrease in the cell growth and consequently the amount of the produced enzyme. To overcome this problem, we investigated several factors that may affect the cell growth rate and the mutant h.DAO production such as optimization of the glucose concentration as a main carbon source and the yeast extract concentration as a main nitrogen source, optimization of dissolved oxygen (DO%) concentration and the addition of benzyl alcohol (BA, which can artificially induce a strong heat shock response at low temperature), to enhance the production of natively folded soluble fraction of the recombinant protein. These parameters were tested on both shake flask level and fed-batch bioreactor level. The Western blot analysis and the enzyme activity assay indicated the higher level of the mutant expression towards enhancement of the conditions by using our designed approach.The specific activity (which was used as an indicator for the level of the desired protein produced = U/mg protein) and the OD600 nm of the host cells (which was used as an indicator for the cell growth), reached to be 0.061 U/mg protein and 3.44, respectively upon using fed-batch culture system containing the optimized medium composition (15 g/l glucose and 5 g/l yeast extract). While upon using the shake flask level, these values were 0.032 and 1.1, respectively. Enhancement of the cell growth and the enzyme production was noticed after DO% optimization upon using 500 rpm agitation speed and 1.8 v.v.m. (volume volume minute) aeration. The specific activity for the mutant enzyme and the OD600 nm of the host cells reached to be 0.14 U/mg protein and 7.1, respectively. Finally upon using the optimized culture composition (15 g/l glucose and 5 g/l yeast extract), optimized DO% (using 500 rpm agitation speed and 1.8 v.v.m.) and 0.1 mM BA at the fed-batch bioreactor level, the specific activity and the OD600 nm of the host cells increased significantly to be 0.21 U/mg protein and 11.3, respectively at 24 h culture. These results indicate the importance of our approaches to overproducing mutant h.DAO in soluble form in E. coli.  相似文献   

12.
Isoprenoids are important fine chemicals as material monomers, advanced fuels and pharmaceuticals. A variety of natural isoprenoids can be synthesized by engineered microbial strains. This work established a process by dividing the current isoprenoid pathway into the upstream fermentation process, from sugar to mevalonate (MVA), and the downstream process, from MVA to the target isoprenoids. The results showed that significant differences existed in the process conditions between the upstream and downstream fermentations. After individually optimizing the process conditions, the upstream MVA production (84.0 g/L, 34.0% and 1.8 g/ L/h) and downstream isoprene production (11.0 g/L and 0.23 g/L/h) were greatly improved in this two-step process. Flask fermentation experiments also confirmed that two-step route can significantly improve the sabinene titer to 150 mg/L (6.5-fold of the sabinene titer in an earlier flask study of our lab). Therefore, the two-step route proposed in this study may have potential benefits towards the current isoprenoids production directly from glucose. The high titer and yield of MVA indicate that MVA has great potential to be more broadly utilized as starting precursor in synthetic biology.  相似文献   

13.
《Process Biochemistry》2010,45(4):613-616
Corncob acid hydrolysate, detoxed by sequently boiling, overliming and activated charcoal adsorption, was used for 2,3-butanediol production by Klebsiella oxytoca ACCC 10370. The effects of acetate in hydrolysate and pH on 2,3-butanediol production were investigated. It was found that acetic acid in hydrolysate inhibited the growth of K. oxytoca while benefited the 2,3-butanediol yield. With the increase in acetic acid concentration in medium from 0 to 4 g/l, the lag phase was prolonged and the specific growth rate decreased. The acetic acid inhibition on cell growth can be alleviated by adjusting pH to 6.3 prior to fermentation and a substrate fed-batch strategy with a low initial acetic acid concentration. Under the optimum condition, a maximal 2,3-butanediol concentration of 35.7 g/l was obtained after 60 h of fed-batch fermentation, giving a yield of 0.5 g/g reducing sugar and a productivity of 0.59 g/h l.  相似文献   

14.
The aim of this study was to evaluate the vitality and viability of the probiotic yeast Saccharomyces boulardii after freezing/thawing and the physiological preconditioning effect on these properties. The results indicate that the specific growth rate (0.3/h?1) and biomass (2-3 × 108 cells/ml) of S. boulardii obtained in flasks shaken at 28 °C and at 37 °C were similar. Batch cultures of the yeast in bioreactors using glucose or sugar-cane molasses as carbon sources, reached yields of 0.28 g biomass/g sugar consumed, after 10 h incubation at 28 °C; the same results were obtained in fed batch fermentations. On the other hand, in batch cultures, the vitality of cells recovered during the exponential growth phase was greater than the vitality of cells from the stationary phase of growth. Vitality of cells from fed-batch fermentations was similar to that of stationary growing cells from batch fermentations. Survival to freezing at –20 °C and subsequent thawing of cells from batch cultures was 0.31% for cells in exponential phase of growth and 11.5% for cells in stationary phase. Pre-treatment of this yeast in media with water activity (aw) 0.98 increased the survival to freezing of S. boulardii cells stored at –20 °C for 2 months by 10 fold. Exposure of the yeast to media of reduced aw and/or freezing/thawing process negatively affected cell vitality. It was concluded that stress conditions studied herein decrease vitality of S. boulardii. Besides, the yeast strain studied presented good tolerance to bile salts even at low pH values.  相似文献   

15.
A mixed fermentation strategy based on exponentially fed-batch cultures (EFBC) and nutrient pulses with sucrose and yeast extract was developed to achieve a high concentration of PHB by Azotobacter vinelandii OPNA, which carries a mutation on the regulatory systems PTSNtr and RsmA-RsmZ/Y, that negatively regulate the synthesis of PHB. Culture of the OPNA strain in shake flaks containing PY-sucrose medium significantly improved growth and PHB production with respect to the results obtained from the cultures with the parental strain (OP). When the OPNA strain was cultured in a batch fermentation keeping constant the DOT at 4%, the maximal growth rate (0.16 h−1) and PHB yield (0.30 gPHB gSuc−1) were reached. Later, in EFBC, the OPNA strain increased three fold the biomass and 2.2 fold the PHB concentration in relation to the values obtained from the batch cultures. Finally, using a strategy of exponential feeding coupled with nutrient pulses (with sucrose and yeast extract) the production of PHB increased 7-fold to reach a maximal PHB concentration of 27.3 ± 3.2 g L−1 at 60 h of fermentation. Overall, the use of the mutant of A. vinelandii OPNA, impaired in the PHB regulatory systems, in combination with a mixed fermentation strategy could be a feasible strategy to optimize the PHB production at industrial level.  相似文献   

16.
《Process Biochemistry》2014,49(3):365-373
A three-stage control strategy independent of the organic substrate was developed for automated substrate feeding in a two-phase fed-batch culture of Cupriavidus necator DSM 545 for the production of the biopolymer polyhydroxybutyrate (PHB). The optimal feeding strategy was determined using glucose as the substrate. A combined substrate feeding strategy consisting of exponential feeding and a novel method based on alkali-addition monitoring resulted in a maximal cell concentration in the biomass growth phase. In the PHB accumulation phase, a constant substrate feeding strategy based on the estimated amount of biomass produced in the first phase and a specific PHB accumulation rate was implemented to induce PHB under limiting nitrogen at different biomass concentrations. Maximal cell and PHB concentrations of 164 and 125 g/L were obtained when nitrogen feeding was stopped at 56 g/L of residual biomass; the glucose concentration was maintained within its optimal range. The developed feeding strategy was validated using waste glycerol as the sole carbon source for PHB production, and the three-stage control strategy resulted in a PHB concentration of 65.6 g/L and PHB content of 62.7% while keeping the glycerol concentration constant. It can thus be concluded that the developed feeding strategy is sensitive, robust, inexpensive, and applicable to fed-batch culture for PHB production independent of the carbon source.  相似文献   

17.
Extracellular lipase of the yeast Candida rugosa was produced via high cell density fed-batch fermentations using palm oil as the sole source of carbon and energy. Feeding strategies consisted of a pH-stat operation, foaming-dependent control and specific growth rate control in different experiments. Compared to foaming-dependent feeding and the pH-stat operation, the specific growth rate control of feeding proved to be the most successful. At the specific growth rate control set at 0.05 h−1, the final lipase activity in the culture broth was the highest at ∼700 U L−1. This was 2.6-fold higher than the final enzyme activity obtained at a specific growth rate control set at 0.15 h−1. The peak enzyme concentration achieved using the best foaming-dependent control of feeding was around 28% of the peak activity attained using the specific growth rate control of feeding at 0.05 h−1. Similarly, the peak enzyme concentration attained using the pH-stat feeding operation was a mere 9% of the peak activity attained by specific growth rate control of feeding at a set-point of 0.05 h−1. Fed-batch fermentations were performed in a 2 L stirred-tank bioreactor (30 °C, pH 7) with the dissolved oxygen level controlled at 30% of air saturation.  相似文献   

18.
We carried out the first simulation on multi-stage continuous high cell density culture (MSC-HCDC) to show that the MSC-HCDC can achieve batch/fed-batch product titer with much higher productivity to the fed-batch productivity using published fermentation kinetics of lactic acid, penicillin and ethanol. The system under consideration consists of n-serially connected continuous stirred-tank reactors (CSTRs) with either hollow fiber cell recycling or cell immobilization for high cell-density culture. In each CSTR substrate supply and product removal are possible. Penicillin production is severely limited by glucose metabolite repression that requires multi-CSTR glucose feeding. An 8-stage C-HCDC lactic acid fermentation resulted in 212.9 g/L of titer and 10.6 g/L/h of productivity, corresponding to 101 and 429% of the comparable lactic acid fed-batch, respectively. The penicillin production model predicted 149% (0.085 g/L/h) of productivity in 8-stage C-HCDC with 40 g/L of cell density and 289% of productivity (0.165 g/L/h) in 7-stage C-HCDC with 60 g/L of cell density compared with referring batch cultivations. A 2-stage C-HCDC ethanol experimental run showed 107% titer and 257% productivity of the batch system having 88.8 g/L of titer and 3.7 g/L/h of productivity. MSC-HCDC can give much higher productivity than batch/fed-batch system, and yield a several percentage higher titer as well. The productivity ratio of MSC-HCDC over batch/fed-batch system is given as a multiplication of system dilution rate of MSC-HCDC and cycle time of batch/fed-batch system. We suggest MSC-HCDC as a new production platform for various fermentation products including monoclonal antibody.  相似文献   

19.
Five bacterial strains screened from a batch of 39 samples could convert glycerol anaerobically to 1,3-propanediol (1,3-PD). One of the strains, XJ-Li, which could synthesize 1,3-PD with a higher concentration, was identified and characterized. Phylogenetic analysis of the strain XJ-Li included the study of morphology, physiological and biochemical characteristics. In addition, 16SrDNA sequences were created. The results indicated that this strain is a member of Klebsiella pneumoniae. The optimal cultivation parameters for pH and temperature were determined as 8.0 and 40 °C, respectively. The optimized nitrogen source and carbon source were 6.0 g/L of (NH4)2SO4 and 20 g/L of glycerol, respectively. After 8 h in batch fermentation, both the 1,3-PD concentration and glycerol consumption reached the maximum, with 12.2 g/L of 1,3-PD and 1.53 g/L h of productivity, and a molar yield of 1,3-PD to glycerol of 0.75. Fed-batch fermentation also indicated a higher molar yield of 0.70, and the concentration of 1,3-PD reached 38.1 g/L after 66.4 g/L of glycerol consumption. The results of batch and fed-batch fermentations demonstrated that K. pneumoniae XJ-Li would be an excellent 1,3-PD producer.  相似文献   

20.
The production of 1,3-propanediol, 2,3-butanediol and ethanol was studied, during cultivations of strain Klebsiella oxytoca FMCC-197 on biodiesel-derived glycerol based media. Different kinds of glycerol feedstocks and experimental conditions had an important impact upon the distribution of metabolic products; production of 1,3-propanediol was positively influenced by stable pH conditions and by the absence of N2 gas infusions throughout the fermentation. Thus, during batch bioreactor fermentations conducted at increasing glycerol concentrations, 1,3-propanediol at 41.3 g/L and yield ~47% (w/w) was achieved at initial glycerol concentration ~120 g/L. At even higher initial glycerol media (150 and 170 g/L), growth was not ceased, but 1,3-propanediol production declined. During fed-batch fermentation under optimal experimental conditions, 126 g/L of glycerol were converted into 50.1 g/L of 1,3-propanediol. In this experiment, also 25.2 g/L of ethanol (conversion yield ~20%, w/w) were formed. A batch-bioreactor culture was performed under non-sterilized conditions and the 1,3-propanediol production was almost equivalent to the sterilized process. Concerning 2,3-butanediol formation, the most detrimental parameter was the absence of N2 sparging and as a result, no 2,3-butanediol was produced. The presence of glucose as co-substrate seriously enhanced 2,3-butanediol production; when commercial glucose was employed as sole substrate, 32.1 g/L of 2,3-butanediol were formed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号