首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A new method and application is proposed to characterize intensity and pitch of human heart sounds and murmurs. Using recorded heart sounds from the library of one of the authors, a visual map of heart sound energy was established. Both normal and abnormal heart sound recordings were studied. Representation is based on Wigner-Ville joint time-frequency transformations. The proposed methodology separates acoustic contributions of cardiac events simultaneously in pitch, time and energy. The resolution accuracy is superior to any other existing spectrogram method. The characteristic energy signature of the innocent heart murmur in a child with the S3 sound is presented. It allows clear detection of S1, S2 and S3 sounds, S2 split, systolic murmur, and intensity of these components. The original signal, heart sound power change with time, time-averaged frequency, energy density spectra and instantaneous variations of power and frequency/pitch with time, are presented. These data allow full quantitative characterization of heart sounds and murmurs. High accuracy in both time and pitch resolution is demonstrated. Resulting visual images have self-referencing quality, whereby individual features and their changes become immediately obvious.  相似文献   

2.
Increasing evidence suggests that the natural world has a special status for our sensory and cognitive functioning. The mammalian sensory system is hypothesized to have evolved to encode natural signals in an efficient manner. Exposure to natural stimuli, but not to artificial ones, improves learning and cognitive function. Scale-invariance, the property of exhibiting the same statistical structure at different spatial or temporal scales, is common to naturally occurring sounds. We recently developed a 3-parameter model to capture the essential characteristics of water sounds, and from this generated both scale-invariant and variable-scale sounds. In a previous study, we found that adults perceived a wide range of the artificial scale-invariant, but not the variable-scale, sounds as instances of natural sounds. Here, we explored the ontogenetic origins of these effects by investigating how young infants perceive and categorize scale-invariant acoustic stimuli. Even though they have several months of experience with natural water sounds, infants aged 5 months did not show a preference, in the first experiment, for the instances of the scale-invariant sounds rated as typical water-like sounds by adults over non-prototypical, but still scale-invariant instances. Scale-invariance might thus be a more relevant factor for the perception of natural signals than simple familiarity. In a second experiment, we thus directly compared infants'' perception of scale-invariant and variable-scale sounds. When habituated to scale-invariant sounds, infants looked significantly longer to a change in sound category from scale-invariant to variable-scale sounds, whereas infants habituated to variable-scale sounds showed no such difference. These results suggest that infants were able to form a perceptual category of the scale-invariant, but not variable-scale sounds. These findings advance the efficient coding hypothesis, and suggest that the advantage for perceiving and learning about the natural world is evident from the first months of life.  相似文献   

3.
Listeners consistently perceive approaching sounds to be closer than they actually are and perceptually underestimate the time to arrival of looming sound sources. In a natural environment, this underestimation results in more time than expected to evade or engage the source and affords a “margin of safety” that may provide a selective advantage. However, a key component in the proposed evolutionary origins of the perceptual bias is the appropriate timing of anticipatory motor behaviors. Here we show that listeners with poorer physical fitness respond sooner to looming sounds and with a larger margin of safety than listeners with better physical fitness. The anticipatory perceptual bias for looming sounds is negatively correlated with physical strength and positively correlated with recovery heart rate (a measure of aerobic fitness). The results suggest that the auditory perception of looming sounds may be modulated by the response capacity of the motor system.  相似文献   

4.
ABSTRACT.   Although offering many benefits over manual recording and survey techniques for avian field studies, automated sound recording systems produce large datasets that must be carefully examined to locate sounds of interest. We compared two methods for locating target sounds in continuous sound recordings: (1) a manual method using computer software to provide a visual representation of the recording as a sound spectrogram and (2) an automated method using sound analysis software preprogrammed to identify specific target sounds. For both methods, we examined the time required to process a 24-h recording, scanning accuracy, and scanning comprehensiveness using four different target sounds of Pileated Woodpeckers ( Dryocopus pileatus ), Pale-billed Woodpeckers ( Campephilus guatemalensis ), and putative Ivory-billed Woodpeckers ( Campehilus principalis ). We collected recordings from the bottomland forests of Florida and the Neotropical dry forests of Costa Rica, and compared manual versus automated cross-correlation scanning techniques. The automated scanning method required less time to process sound recordings, but made more false positive identifications and was less comprehensive than the manual method, identifying significantly fewer target sounds. Although the automated scanning method offers a fast and economic alternative to traditional manual efforts, our results indicate that manual scanning is best for studies requiring an accurate account of temporal patterns in call frequency and for those involving birds with low vocalization rates.  相似文献   

5.
In this article, the spectral features of first heart sounds (S1) and second heart sounds (S2), which comprise the mechanical heart valve sounds obtained after aortic valve replacement (AVR) and mitral valve replacement (MVR), are compared to find out the effect of mechanical heart valve replacement and recording area on S1 and S2. For this aim, the Welch method and the autoregressive (AR) method are applied on the S1 and S2 taken from 66 recordings of 8 patients with AVR and 98 recordings from 11 patients with MVR, thereby yielding power spectrum of the heart sounds. Three features relating to frequency of heart sounds and three features relating to energy of heart sounds are obtained. Results show that in comparison to natural heart valves, mechanical heart valves contain higher frequency components and energy, and energy and frequency components do not show common behaviour for either AVR or MVR depending on the recording areas. Aside from the frequency content and energy of the sound generated by mechanical heart valves being affected by the structure of the lungs–thorax and the recording areas, the pressure across the valve incurred during AVR or MVR is a significant factor in determining the frequency and energy levels of the valve sound produced. Though studies on native heart sounds as a non-invasive diagnostic method has been done for many years, it is observed that studies on mechanical heart valves sounds are limited. The results of this paper will contribute to other studies on using a non-invasive method for assessing the mechanical heart valve sounds.  相似文献   

6.
Cats were stimulated with tones and with natural sounds selected from the normal acoustic environment of the animal. Neural activity evoked by the natural sounds and tones was recorded in the cochlear nucleus and in the medial geniculate body. The set of biological sounds proved to be effective in influencing neural activity of single cells at both levels in the auditory system. At the level of the cochlear nucleus the response of a neuron evoked by a natural sound stimulus could be understood reasonably well on the basis of the structure of the spectrograms of the natural sounds and the unit's responses to tones. At the level of the medial geniculate body analysis with tones did not provide sufficient information to explain the responses to natural sounds. At this level the use of an ensemble of natural sound stimuli allows the investigation of neural properties, which are not seen by analysis with simple artificial stimuli. Guidelines for the construction of an ensemble of complex natural sound stimuli, based on the ecology and ethology of the animal under investigation are discussed. This stimulus ensemble is defined as the Acoustic Biotope.  相似文献   

7.
Animals recognize biologically relevant sounds, such as the non-harmonic sounds made by some predators, and respond with adaptive behaviors, such as escaping. To clarify which acoustic parameters are used for identifying non-harmonic, noise-like, broadband sounds, guinea pigs were conditioned to a natural target sound by introducing a novel training procedure in which 2 or 3 guinea pigs in a group competed for food. A set of distinct behavioral reactions was reliably induced almost exclusively to the target sound in a 2-week operant training. When fully conditioned, individual animals were separately tested for recognition of a set of target-like sounds that had been modified from the target sound, with spectral ranges eliminated or with fine or coarse temporal structures altered. The results show that guinea pigs are able to identify the noise-like non-harmonic natural sounds by relying on gross spectral compositions and/or fine temporal structures, just as birds are thought to do in the recognition of harmonic birdsongs. These findings are discussed with regard to similarities and dissimilarities to harmonic sound recognition. The results suggest that similar but not identical processing that requires different time scales might be used to recognize harmonic and non-harmonic sounds, at least in small mammals.  相似文献   

8.
9.
Pulse-resonance sounds play an important role in animal communication and auditory object recognition, yet very little is known about the cortical representation of this class of sounds. In this study we shine light on one simple aspect: how well does the firing rate of cortical neurons resolve resonant (“formant”) frequencies of vowel-like pulse-resonance sounds. We recorded neural responses in the primary auditory cortex (A1) of anesthetized rats to two-formant pulse-resonance sounds, and estimated their formant resolving power using a statistical kernel smoothing method which takes into account the natural variability of cortical responses. While formant-tuning functions were diverse in structure across different penetrations, most were sensitive to changes in formant frequency, with a frequency resolution comparable to that reported for rat cochlear filters.  相似文献   

10.
Can plants sense natural airborne sounds and respond to them rapidly? We show that Oenothera drummondii flowers, exposed to playback sound of a flying bee or to synthetic sound signals at similar frequencies, produce sweeter nectar within 3 min, potentially increasing the chances of cross pollination. We found that the flowers vibrated mechanically in response to these sounds, suggesting a plausible mechanism where the flower serves as an auditory sensory organ. Both the vibration and the nectar response were frequency‐specific: the flowers responded and vibrated to pollinator sounds, but not to higher frequency sound. Our results document for the first time that plants can rapidly respond to pollinator sounds in an ecologically relevant way. Potential implications include plant resource allocation, the evolution of flower shape and the evolution of pollinators sound. Finally, our results suggest that plants may be affected by other sounds as well, including anthropogenic ones.  相似文献   

11.
How the temporal information that is crucial for understanding speech and music is processed in the brain is poorly understood, but a new study shows how the auditory cortex is tuned to the spectro-temporal acoustic features characteristic of natural biological sounds.  相似文献   

12.
Some combinations of musical tones sound pleasing to Western listeners, and are termed consonant, while others sound discordant, and are termed dissonant. The perceptual phenomenon of consonance has been traced to the acoustic property of harmonicity. It has been repeatedly shown that neural correlates of consonance can be found as early as the auditory brainstem as reflected in the harmonicity of the scalp-recorded frequency-following response (FFR). “Neural Pitch Salience” (NPS) measured from FFRs—essentially a time-domain equivalent of the classic pattern recognition models of pitch—has been found to correlate with behavioral judgments of consonance for synthetic stimuli. Following the idea that the auditory system has evolved to process behaviorally relevant natural sounds, and in order to test the generalizability of this finding made with synthetic tones, we recorded FFRs for consonant and dissonant intervals composed of synthetic and natural stimuli. We found that NPS correlated with behavioral judgments of consonance and dissonance for synthetic but not for naturalistic sounds. These results suggest that while some form of harmonicity can be computed from the auditory brainstem response, the general percept of consonance and dissonance is not captured by this measure. It might either be represented in the brainstem in a different code (such as place code) or arise at higher levels of the auditory pathway. Our findings further illustrate the importance of using natural sounds, as a complementary tool to fully-controlled synthetic sounds, when probing auditory perception.  相似文献   

13.
The fish auditory system encodes important acoustic stimuli used in social communication, but few studies have examined response properties of central auditory neurons to natural signals. We determined the features and responses of single hindbrain and midbrain auditory neurons to tone bursts and playbacks of conspecific sounds in the soniferous damselfish, Abudefduf abdominalis. Most auditory neurons were either silent or had slow irregular resting discharge rates <20 spikes s−1. Average best frequency for neurons to tone stimuli was ~130 Hz but ranged from 80 to 400 Hz with strong phase-locking. This low-frequency sensitivity matches the frequency band of natural sounds. Auditory neurons were also modulated by playbacks of conspecific sounds with thresholds similar to 100 Hz tones, but these thresholds were lower than that of tones at other test frequencies. Thresholds of neurons to natural sounds were lower in the midbrain than the hindbrain. This is the first study to compare response properties of auditory neurons to both simple tones and complex stimuli in the brain of a recently derived soniferous perciform that lacks accessory auditory structures. These data demonstrate that the auditory fish brain is most sensitive to the frequency and temporal components of natural pulsed sounds that provide important signals for conspecific communication.  相似文献   

14.
Aertsen et al. (1979) studied single unit recordings from the cochlear nucleus and the auditory cortex of the cat using a stimulus with a wide range of natural and technical sounds and discussed the question of the existence of a stimulus-event relation. The existence of such a stimulus-event relation was investigated by presenting the stimulus twice while recording the spike trains and studying the degree of reproducibility of the neural activity under the two presentations of the stimulus. This paper presents a statistical method to decide whether the two recordings of neural activity are similar, and if so to quantify the degree of similarity. The method is of potential use in multi-unit recordings.  相似文献   

15.
16.
17.
In this paper, the impression of various kinds of auditory signals currently used in automobiles and a comprehensive evaluation were measured by a semantic differential method. The desirable acoustic characteristic was examined for each type of auditory signal. Sharp sounds with dominant high-frequency components were not suitable for auditory signals in automobiles. This trend is expedient for the aged whose auditory sensitivity in the high frequency region is lower. When intermittent sounds were used, a longer OFF time was suitable. Generally, "dull (not sharp)" and "calm" sounds were appropriate for auditory signals. Furthermore, the comparison between the frequency spectrum of interior noise in automobiles and that of suitable sounds for various auditory signals indicates that the suitable sounds are not easily masked. The suitable auditory signals for various purposes is a good solution from the viewpoint of universal design.  相似文献   

18.
Functional neuroimaging research provides detailed observations of the response patterns that natural sounds (e.g. human voices and speech, animal cries, environmental sounds) evoke in the human brain. The computational and representational mechanisms underlying these observations, however, remain largely unknown. Here we combine high spatial resolution (3 and 7 Tesla) functional magnetic resonance imaging (fMRI) with computational modeling to reveal how natural sounds are represented in the human brain. We compare competing models of sound representations and select the model that most accurately predicts fMRI response patterns to natural sounds. Our results show that the cortical encoding of natural sounds entails the formation of multiple representations of sound spectrograms with different degrees of spectral and temporal resolution. The cortex derives these multi-resolution representations through frequency-specific neural processing channels and through the combined analysis of the spectral and temporal modulations in the spectrogram. Furthermore, our findings suggest that a spectral-temporal resolution trade-off may govern the modulation tuning of neuronal populations throughout the auditory cortex. Specifically, our fMRI results suggest that neuronal populations in posterior/dorsal auditory regions preferably encode coarse spectral information with high temporal precision. Vice-versa, neuronal populations in anterior/ventral auditory regions preferably encode fine-grained spectral information with low temporal precision. We propose that such a multi-resolution analysis may be crucially relevant for flexible and behaviorally-relevant sound processing and may constitute one of the computational underpinnings of functional specialization in auditory cortex.  相似文献   

19.
20.
以草鱼(Ctenopharyngodon idellus)幼鱼为实验对象, 进行了声音播放实验, 旨在探究草鱼幼鱼对水下录制的草鱼摄食浮萍声音(简称摄食声)的行为反应。以不播放声音的草鱼鱼群作为对照, 探讨了4 种单频音(500、1000、2000和3000 Hz)和摄食声对草鱼游泳行为和在水槽内的分布的影响。结果表明: 在播放单频音时, 3min内草鱼的趋音游泳速度和逗留时间与对照组无显著性差异(P>0.05); 在播放摄食声时, 3min内草鱼的趋音游泳速度和逗留时间显著高于4种单频音组和对照组(P<0.05); 在播放单频音时, 20min内草鱼的平均游泳速度、水槽内的分布和趋音率与对照组无显著性差异(P>0.05); 在播放摄食声时, 20min内草鱼的平均游泳速度和趋音率都显著高于4种单频音组和对照组(P<0.05)。草鱼摄食声对草鱼幼鱼有诱集作用, 为声音诱鱼技术研究提供了科学依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号