首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Mitochondrial anti-apoptotic Bcl2 and BclxL proteins, are overexpressed in multiple tumour types, and has been involved in the progression and survival of malignant cells. Therefore, inhibition of such proteins has become a validated and attractive target for anticancer drug discovery. In this manner, the present studies developed a series of novel isatin–indole conjugates (7a-j and 9a-e) as potential anticancer Bcl2 and BclxL inhibitors. The progression of the two examined colorectal cancer cell lines was significantly inhibited by all of the prepared compounds with IC50 ranges132–611 nM compared to IC50 = 4.6 µM for 5FU, against HT-29 and IC50 ranges 37–468 nM compared to IC50 = 1.5 µM for 5FU, against SW-620. Thereafter, compounds 7c and 7g were selected for further investigations. Interestingly, both compounds exhibited selective cytotoxicity against both cell lines with high safety to normal fibroblast (HFF-1). In addition, both compounds 7c and 7g induced apoptosis and inhibited Bcl2 and BclxL expression in a dose-dependent manner. Collectively, the high potency and selective cytotoxicity suggested that conjugates 7c and 7g could be a starting point for further optimisation to develop novel pro-apoptotic and antitumor agents towards colon cancer.  相似文献   

2.
Different 2,4-thiazolidinedione-tethered coumarins 5a–b, 10a–n and 11a–d were synthesised and evaluated for their inhibitory action against the cancer-associated hCAs IX and XII, as well as the physiologically dominant hCAs I and II to explore their selectivity. Un-substituted phenyl-bearing coumarins 10a, 10 h, and 2-thienyl/furyl-bearing coumarins 11a–c exhibited the best hCA IX (KIs between 0.48 and 0.93 µM) and hCA XII (KIs between 0.44 and 1.1 µM) inhibitory actions. Interestingly, none of the coumarins had any inhibitory effect on the off-target hCA I and II isoforms. The sub-micromolar compounds from the biochemical assay, coumarins 10a, 10 h and 11a–c, were assessed in an in vitro antiproliferative assay, and then the most potent antiproliferative agent 11a was tested to explore its impact on the cell cycle phases and apoptosis in MCF-7 breast cancer cells to provide more insights into the anticancer activity of these compounds.  相似文献   

3.
As one of the most lethal malignancies, lung cancer is considered to account for approximately one-fifth of all malignant tumours-related deaths worldwide. This study reports the synthesis and in vitro biological assessment of two sets of 3-methylbenzofurans (4a–d, 6a–c, 8a–c and 11) and 3-(morpholinomethyl)benzofurans (15a–c, 16a–b, 17a–b and 18) as potential anticancer agents towards non-small cell lung carcinoma A549 and NCI-H23 cell lines, with VEGFR-2 inhibitory activity. The target benzofuran-based derivatives efficiently inhibited the growth of both A549 and NCI-H23 cell lines with IC50 spanning in ranges 1.48–47.02 and 0.49–68.9 µM, respectively. The three most active benzofurans (4b, 15a and 16a) were further investigated for their effects on the cell cycle progression and apoptosis in A549 (for 4b) and NCI-H23 (for 15a and 16a) cell lines. Furthermore, benzofurans 4b, 15a and 16a displayed good VEGFR-2 inhibitory activity with IC50 equal 77.97, 132.5 and 45.4 nM, respectively.  相似文献   

4.
A series of [1]benzothieno[2,3-c]pyridines was synthesised. Most compounds were chosen by NCI-USA to evaluate their anticancer activity. Compounds 5a–c showed prominent growth inhibition against most cell lines. 5c was selected at five dose concentration levels. It exhibited potent broad-spectrum anticancer activity with a GI50 of 4 nM–37 µM. Cytotoxicity of 5a–c was further evaluated against prostate, renal, and breast cancer cell lines. 5c showed double and quadruple the activity of staurosporine and abiraterone, respectively, against the PC-3 cell line with IC50 2.08 µM. The possible mechanism of anti-prostate cancer was explored via measuring the CYP17 enzyme activity in mice prostate cancer models compared to abiraterone. The results revealed that 5c suppressed the CYP17 enzyme to 15.80 nM. Moreover, it was found to be equipotent to abiraterone in testosterone production. Cell cycle analysis and apoptosis were performed. Additionally, the ADME profile of compound 5c demonstrated both good oral bioavailability and metabolic stability.  相似文献   

5.
The serine/threonine protein kinases CDK2 and GSK-3β are key oncotargets in breast cancer cell lines, therefore, in the present study three series of oxindole-benzofuran hybrids were designed and synthesised as dual CDK2/GSK-3β inhibitors targeting breast cancer (5a–g, 7a–h, and 13a–b). The N1-unsubstituted oxindole derivatives, series 5, showed moderate to potent activity on both MCF-7 and T-47D breast cancer cell lines. Compounds 5d–f showed the most potent cytotoxic activity with IC50 of 3.41, 3.45 and 2.27 μM, respectively, on MCF-7 and of 3.82, 4.53 and 7.80 μM, respectively, on T-47D cell lines, in comparison to the used reference standard (staurosporine) IC50 of 4.81 and 4.34 μM, respectively. On the other hand, the N1-substituted oxindole derivatives, series 7 and 13, showed moderate to weak cytotoxic activity on both breast cancer cell lines. CDK2 and GSK-3β enzyme inhibition assay of series 5 revealed that compounds 5d and 5f are showing potent dual CDK2/GSK-3β inhibitory activity with IC50 of 37.77 and 52.75 nM, respectively, on CDK2 and 32.09 and 40.13 nM, respectively, on GSK-3β. The most potent compounds 5d–f caused cell cycle arrest in the G2/M phase in MCF-7 cells inducing cell apoptosis because of the CDK2/GSK-3β inhibition. Molecular docking studies showed that the newly synthesised N1-unsubstituted oxindole hybrids have comparable binding patterns in both CDK2 and GSK-3β. The oxindole ring is accommodated in the hinge region interacting through hydrogen bonding with the backbone CO and NH of the key amino acids Glu81 and Leu83, respectively, in CDK2 and Asp133 and Val135, respectively, in GSK-3β. Whereas, in series 7 and 13, the N1-substitutions on the oxindole nucleus hinder the compounds from achieving these key interactions with hinge region amino acids what rationalises their moderate to low anti-proliferative activity.  相似文献   

6.
Novel tolmetin derivatives 5a–f to 8a–c were designed, synthesised, and evaluated for antiproliferative activity by NCI (USA) against a panel of 60 tumour cell lines. The cytotoxic activity of the most active tolmetin derivatives 5b and 5c was examined against HL-60, HCT-15, and UO-31 tumour cell lines. Compound 5b was found to be the most potent derivative against HL-60, HCT-15, and UO-31 cell lines with IC50 values of 10.32 ± 0.55, 6.62 ± 0.35, and 7.69 ± 0.41 µM, respectively. Molecular modelling studies of derivative 5b towards the VEGFR-2 active site were performed. Compound 5b displayed high inhibitory activity against VEGFR-2 (IC50 = 0.20 µM). It extremely reduced the HUVECs migration potential exhibiting deeply reduced wound healing patterns after 72 h. It induced apoptosis in HCT-15 cells (52.72-fold). This evidence was supported by an increase in the level of apoptotic caspases-3, -8, and -9 by 7.808-, 1.867-, and 7.622-fold, respectively. Compound 5b arrested the cell cycle in the G0/G1 phase. Furthermore, the ADME studies showed that compound 5b possessed promising pharmacokinetic properties.  相似文献   

7.
Novel halogenated phenoxychalcones 2a–f and their corresponding N-acetylpyrazolines 3a–f were synthesised and evaluated for their anticancer activities against breast cancer cell line (MCF-7) and normal breast cell line (MCF-10a), compared with staurosporine. All compounds showed moderate to good cytotoxic activity when compared to control. Compound 2c was the most active, with IC50 = 1.52 µM and selectivity index = 15.24. Also, chalcone 2f showed significant cytotoxic activity with IC50 = 1.87 µM and selectivity index = 11.03. Compound 2c decreased both total mitogen activated protein kinase (p38α MAPK) and phosphorylated enzyme in MCF-7 cells, suggesting its ability to decrease cell proliferation and survival. It also showed the ability to induce ROS in MCF-7 treated cells. Compound 2c exhibited apoptotic behaviour in MCF-7 cells due to cell accumulation in G2/M phase and elevation in late apoptosis 57.78-fold more than control. Docking studies showed that compounds 2c and 2f interact with p38alpha MAPK active sites.  相似文献   

8.
A series of 1,2,3-trisubstituted indolizines (2a–2f, 3a–3d, and 4a–4c) were screened for in vitro whole-cell anti-tubercular activity against the susceptible H37Rv and multidrug-resistant (MDR) Mycobacterium tuberculosis (MTB) strains. Compounds 2b–2d, 3a–3d, and 4a–4c were active against the H37Rv-MTB strain with minimum inhibitory concentration (MIC) ranging from 4 to 32 µg/mL, whereas the indolizines 4a–4c, with ethyl ester group at the 4-position of the benzoyl ring also exhibited anti-MDR-MTB activity (MIC = 16–64 µg/mL). In silico docking study revealed the enoyl-acyl carrier protein reductase (InhA) and anthranilate phosphoribosyltransferase as potential molecular targets for the indolizines. The X-ray diffraction analysis of the compound 4b was also carried out. Further, a safety study (in silico and in vitro) demonstrated no toxicity for these compounds. Thus, the indolizines warrant further development and may represent a novel promising class of InhA inhibitors and multi-targeting agents to combat drug-sensitive and drug-resistant MTB strains.  相似文献   

9.
In this work, the natural piperine moiety was utilised to develop two sets of piperine-based amides (5a–i) and ureas (8a–y) as potential anticancer agents. The anticancer action was assessed against triple negative breast cancer (TNBC) MDA-MB-231, ovarian A2780CP and hepatocellular HepG2 cancer cell lines. In particular, 8q stood out as the most potent anti-proliferative analogue against TNBC MDA-MB-231 cells with IC50 equals 18.7 µM, which is better than that of piperine (IC50 = 47.8 µM) and 5-FU (IC50 = 38.5 µM). Furthermore, 8q was investigated for its possible mechanism of action in MDA-MB-231 cells via Annexin V-FITC apoptosis assay and cell cycle analysis. Moreover, an in-silico analysis has proposed VEGFR-2 as a probable enzymatic target for piperine-based derivatives, and then has explored the binding interactions within VEGFR-2 active site (PDB:4ASD). Finally, an in vitro VEGFR-2 inhibition assay was performed to validate the in silico findings, where 8q showed good VEGFR-2 inhibitory activity with IC50 = 231 nM.  相似文献   

10.
In the present study, two new series of pyrrolizines bearing 3,4,5-trimethoxyphenyl moiety were designed, synthesised, and evaluated for their cytotoxic activity. The benzamide derivatives 16a–e showed higher cytotoxicity than their corresponding Schiff bases 15a–e. Compounds 16a,b,d also inhibited the growth of MCF-7/ADR cells with IC50 in the range of 0.52–6.26 μM. Interestingly, the new compounds were less cytotoxic against normal MRC-5 cells (IC50=0.155–17.08 μM). Mechanistic studies revealed the ability of compounds 16a,b,d to inhibit tubulin polymerisation and multiple oncogenic kinases. Moreover, compounds 16a,b,d induced preG1 and G2/M cell cycle arrest and early apoptosis in MCF-7 cells. The molecular docking analyses of compounds 16a,b,d into the active site in tubulin, CDK-2, and EGFR proteins revealed higher binding affinities compared to the co-crystallised ligands. These preliminary results suggested that compounds 16a,b,d could serve as promising lead compounds for the future development of new potent anticancer agents.

Highlights

  1. Two new series of pyrrolizines bearing 3,4,5-trimethoxyphenyl moieties were synthesized.
  2. Compounds 16a,b,d displayed the highest cytotoxicity against the three cancer cell lines.
  3. Kinase profiling test revealed inhibition of multiple oncogenic kinases by compounds 16a,b,d.
  4. Compounds 16a,b,d exhibited weak to moderate inhibition of tubulin-polymerization.
  5. Compounds 16a,b,d induced preG1 and G2/M cell cycle arrest and early apoptosis in MCF-7 cells.
  6. Docking studies revealed high binding affinities for compounds 16a,b towards tubulin and CDK-2.
  相似文献   

11.
New piperazine–chalcone hybrids and related pyrazoline derivatives have been designed and synthesised as potential vascular endothelial growth factor receptor-2 (VEGFR-2) inhibitors. The National Cancer Institute (NCI) has selected six compounds to evaluate their antiproliferative activity in vitro against 60 human cancer cells lines. Preliminary screening of the examined compounds indicated promising anticancer activity against number of cell lines. The enzyme inhibitory activity against VEGFR-2 was evaluated and IC50 of the tested compounds ranged from 0.57 µM to 1.48 µM. The most potent derivatives Vd and Ve were subjected to further investigations. A cell cycle analysis showed that both compounds mainly arrest HCT-116 cell cycle in the G2/M phase. Annexin V-FITC apoptosis assay showed that Vd and Ve induced an approximately 18.7-fold and 21.2-fold total increase in apoptosis compared to the control. Additionally, molecular docking study was performed against VEGFR (PDB ID: 4ASD) using MOE 2015.10 software and Sorafenib as a reference ligand.  相似文献   

12.
New cyanobenzofurans derivatives 2–12 were synthesised, and their antiproliferative activity was examined compared to doxorubicin and Afatinib (IC50 = 4.17–8.87 and 5.5–11.2 µM, respectively). Compounds 2 and 8 exhibited broad-spectrum activity against HePG2 (IC50 = 16.08–23.67 µM), HCT-116 (IC50 = 8.81–13.85 µM), and MCF-7 (IC50 = 8.36–17.28 µM) cell lines. Compounds 2, 3, 8, 10, and 11 were tested as EGFR-TK inhibitors to demonstrate their possible anti-tumour mechanism compared to gefitinib (IC50 = 0.90 µM). Compounds 2, 3, 10, and 11 displayed significant EGFR TK inhibitory activity with IC50 of 0.81–1.12 µM. Compounds 3 and 11 induced apoptosis at the Pre-G phase and cell cycle arrest at the G2/M phase. They also increased the level of caspase-3 by 5.7- and 7.3-fold, respectively. The molecular docking analysis of compounds 2, 3, 10, and 11 indicated that they could bind to the active site of EGFR TK.  相似文献   

13.
Novel quinazolinones conjugated with indole acetamide (4a–c), ibuprofen (7a–e), or thioacetohydrazide (13a,b, and 14a-d) were designed to increase COX-2 selectivity. The three synthesised series exhibited superior COX-2 selectivity compared with the previously reported quinazolinones and their NSAID analogue and had equipotent COX-2 selectivity as celecoxib. Compared with celecoxib, 4 b, 7c, and 13 b showed similar anti-inflammatory activity in vivo, while 13 b and 14a showed superior inhibition of the inflammatory mediator nitric oxide, and 7 showed greater antioxidant potential in macrophages cells. Moreover, all selected compounds showed improved analgesic activity and 13 b completely abolished the pain response. Additionally, compound 4a showed anticancer activity in tested cell lines HCT116, HT29, and HCA7. Docking results were consistent with COX-1/2 enzyme assay results. In silico studies suggest their high oral bioavailability. The overall findings for compounds (4a,b, 7c, 13 b, and 14c) support their potential role as anti-inflammatory agents.  相似文献   

14.
A novel series of thiazole-naphthalene derivatives as tubulin polymerisation inhibitors were designed, synthesised, and evaluated for the anti-proliferative activities. The majority of the tested compounds exhibited moderate to potent antiproliferative activity on the MCF-7 and A549 cancer cell lines. Among them, compound 5b was found to be the most active compound with IC50 values of 0.48 ± 0.03 and 0.97 ± 0.13 μM. Moreover, mechanistic studies revealed that 5b significantly inhibited tubulin polymerisation with an IC50 value of 3.3 µM, as compared to the standard drug colchicine (IC50 = 9.1 μM). Further cellular mechanism studies elucidated that 5b arrested the cell cycle at G2/M phase and induced apoptosis in MCF-7 cancer cells. Molecular modelling study indicated that 5b binds well to the colchicine binding site of tubulin. In summary, these results suggest that 5b represents a promising tubulin polymerisation inhibitor worthy of further investigation as potential anticancer agents.  相似文献   

15.
Five series of novel carbazole derivatives containing an aminoguanidine, dihydrotriazine, thiosemicarbazide, semicarbazide or isonicotinic moiety were designed, synthesised and evaluated for their antimicrobial activities. Most of the compounds exhibited potent inhibitory activities towards different bacterial strains (including one multidrug-resistant clinical isolate) and one fungal strain with minimum inhibitory concentrations (MICs) between 0.5 and 16 µg/ml. Compounds 8f and 9d showed the most potent inhibitory activities (MICs of 0.5–2 µg/ml). Furthermore, compounds 8b, 8d, 8f, 8k, 9b and 9e with antimicrobial activities were not cytotoxic to human gastric cancer cell lines (SGC-7901 and AGS) or a normal human liver cell line (L-02). Structure–activity relationship analyses and docking studies implicated the dihydrotriazine group in increasing the antimicrobial potency and reducing the toxicity of the carbazole compounds. In vitro enzyme activity assays suggested that compound 8f binding to dihydrofolate reductase might account for the antimicrobial effect.  相似文献   

16.
Joining the global fight against Tuberculosis, the world''s most deadly infectious disease, herein we present the design and synthesis of novel isatin-nicotinohydrazide hybrids (5a–m and 9a–c) as promising anti-tubercular and antibacterial agents. The anti-tubercular activity of the target hybrids was evaluated against drug-susceptible M. tuberculosis strain (ATCC 27294) where hybrids 5d, 5g and 5h were found to be as potent as INH with MIC = 0.24 µg/mL, also the activity was evaluated against Isoniazid/Streptomycin resistant M. tuberculosis (ATCC 35823) where compounds 5g and 5h showed excellent activity (MIC = 3.9 µg/mL). Moreover, the target hybrids were examined against six bronchitis causing-bacteria. Most derivatives exhibited excellent antibacterial activity. K. pneumonia emerged as the most sensitive strain with MIC range: 0.49–7.81 µg/mL. Furthermore, a molecular docking study has proposed DprE1 as a probable enzymatic target for herein reported isatin-nicotinohydrazide hybrids, and explored the binding interactions within the vicinity of DprE1 active site.  相似文献   

17.
A new set of 4,6,7,8-tetrahydroquinolin-5(1H)-ones were designed as cytotoxic agents against breast cancer cell line (MCF-7) and synthesised under ultrasonic irradiation using chitosan decorated copper nanoparticles (CS/CuNPs) catalyst. The new compounds 4b, 4j, 4k, and 4e exhibited the most potent cytotoxic activity of IC50 values (0.002 − 0.004 µM) comparing to Staurosporine of IC50; 0.005 μM. The latter derivatives exhibited a promising safety profile against the normal human WI38 cells of IC50 range 0.0149 − 0.048 µM. Furthermore, the most promising cytotoxic compounds 4b, 4j were evaluated as multi-targeting agents against the RTK protein kinases; EGFR, HER-2, PDGFR-β, and VEGFR-2. Compound 4j showed promising inhibitory activity against HER-2 and PDGFR-β of IC50 values 0.17 × 10−3, 0.07 × 10−3 µM in comparison with the reference drug sorafenib of IC50; 0.28 × 10−3, 0.13 × 10−3 µM, respectively. In addition, 4j induced apoptotic effect and cell cycle arrest at G2/M phase preventing the mitotic cycle in MCF-7 cells.  相似文献   

18.
Vascular endothelial growth factor receptor-2 (VEGFR-2) plays a critical role in cancer angiogenesis. Inhibition of VEGFR-2 activity proved effective suppression of tumour propagation. Accordingly, two series of new 3-methylquinoxaline derivatives have been designed and synthesised as VEGFR-2 inhibitors. The synthesised derivatives were evaluated in vitro for their cytotoxic activities against MCF-7and HepG2 cell lines. In addition, the VEGFR-2 inhibitory activities of the target compounds were estimated to indicate the potential mechanism of their cytotoxicity. To a great extent, the results of VEGFR-2 inhibition were highly correlated with that of cytotoxicity. Compound 27a was the most potent VEGFR-2 inhibitor with IC50 of 3.2 nM very close to positive control sorafenib (IC50 = 3.12 nM). Such compound exhibited a strong cytotoxic effect against MCF-7 and HepG2, respectively with IC50 of 7.7 and 4.5 µM in comparison to sorafenib (IC50 = 3.51 and 2.17 µM). In addition, compounds 28, 30f, 30i, and 31b exhibited excellent VEGFR-2 inhibition activities (IC50 range from 4.2 to 6.1 nM) with promising cytotoxic activity. Cell cycle progression and apoptosis induction were investigated for the most active member 27a. Also, the effect of 27a on the level of caspase-3, caspase-9, and BAX/Bcl-2 ratio was determined. Molecular docking studies were implemented to interpret the binding mode of the target compounds with the VEGFR-2 pocket. Furthermore, toxicity and ADMET calculations were performed for the synthesised compounds to study their pharmacokinetic profiles  相似文献   

19.
Background and Aims In conifers, mature somatic embryos and zygotic embryos appear to resemble one another physiologically and morphologically. However, phenotypes of cloned conifer embryos can be strongly influenced by a number of in vitro factors and in some instances clonal variation can exceed that found in nature. This study examines whether zygotic embryos that develop within light-opaque cones differ from somatic embryos developing in dark/light conditions in vitro. Embryogenesis in larch is well understood both in situ and in vitro and thus provides a suitable system for addressing this question.Methods Features of somatic and zygotic embryos of hybrid larch, Larix × marschlinsii, were quantified, including cotyledon numbers, protein concentration and phenol chemistry. Somatic embryos were placed either in light or darkness for the entire maturation period. Embryos at different developmental stages were embedded and sectioned for histological analysis.Key Results Light, and to a lesser degree abscisic acid (ABA), influenced accumulation of protein and phenolic compounds in somatic and zygotic embryos. Dark-grown mature somatic embryos had more protein (91·77 ± 11·26 µg protein mg–1 f.wt) than either dark-grown zygotic embryos (62·40 ± 5·58) or light-grown somatic embryos (58·15 ± 10·02). Zygotic embryos never accumulated phenolic compounds at any stage, whereas somatic embryos stored phenolic compounds in the embryonal root caps and suspensors. Light induced the production of quercetrin (261·13 ± 9·2 µg g–1 d.wt) in somatic embryos. Mature zygotic embryos that were removed from seeds and placed on medium in light rapidly accumulated phenolics in the embryonal root cap and hypocotyl. Delaying germination with ABA delayed phenolic compound accumulation, restricting it to the embryonal root cap.Conclusions In larch embryos, light has a negative effect on protein accumulation, but a positive effect on phenol accumulation. Light did not affect morphogenesis, e.g. cotyledon number. Somatic embryos produced different amounts of phenolics, such as quercetrin, depending on light conditions. The greatest difference was seen in the embryonal root cap in all embryo types and conditions.  相似文献   

20.
Alzheimer''s disease (AD) is a type of progressive dementia caused by degeneration of the nervous system. A single target drug usually does not work well. Therefore, multi-target drugs are designed and developed so that one drug can specifically bind to multiple targets to ensure clinical effectiveness and reduce toxicity. We synthesised a series of 2-arylbenzofuran derivatives and evaluated their in vitro activities. 2-Arylbenzofuran compounds have good dual cholinesterase inhibitory activity and β-secretase inhibitory activity. The IC50 value of compound 20 against acetylcholinesterase inhibition (0.086 ± 0.01 µmol·L−1) is similar to donepezil (0.085 ± 0.01 µmol·L−1) and is better than baicalein (0.404 ± 0.04 µmol·L−1). And most of the compounds have good BACE1 inhibitory activity, of which 3 compounds (8, 19 and 20) show better activity than baicalein (0.087 ± 0.03 µmol·L−1). According to experimental results, 2-arylbenzofuran compounds provide an idea for drug design to develop prevention and treatment for AD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号