首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In Vitro Laser Ablation of Natural Marine Biofilms   总被引:1,自引:0,他引:1       下载免费PDF全文
We studied the efficiency of pulsed low-power laser irradiation of 532 nm from an Nd:YAG (neodymium-doped yttrium-aluminum-garnet) laser to remove marine biofilm developed on titanium and glass coupons. Natural biofilms with thicknesses of 79.4 ± 27.8 μm (titanium) and 107.4 ± 28.5 μm (glass) were completely disrupted by 30 s of laser irradiation (fluence, 0.1 J/cm2). Laser irradiation significantly reduced the number of diatoms and bacteria in the biofilm (paired t test; P < 0.05). The removal was better on titanium than on glass coupons.  相似文献   

2.
Bacterial biomass, metabolic condition, and activity were measured over a 16-month period in the surface sediments of the following four field sites with differing dissolved organic matter regimes: a woodlot spring seep, a meadow spring seep, a second-order stream, and a third-order stream. Total bacterial biomass was measured by lipid phosphate and epifluorescence microscopic counts (EMC), and viable biomass was measured by 14C most probable number, EMC with 2-(p-iodophenyl)-3-(p-nitrophenyl)-5-phenyl tetrazolium chloride reduction, and ATP. Bacterial metabolic condition was determined from the percentage of respiring cells, poly-β-hydroxybutyrate concentrations, and adenylate energy charge. Activity measures included 14C-lipid synthesis, 32P-phospholipid synthesis, the rate of uptake of algal lysate dissolved organic carbon, and respiration, from which biosynthesis was calculated (dissolved organic carbon uptake corrected for respiration). Total bacterial biomass (from EMC) ranged from 0.012 to 0.354 μg of C/mg of dry sediment and was usually lowest in the third-order stream. The percentage of cells respiring was less than 25% at all sites, indicating that most bacteria were dormant or dead. Adenylate energy charge was measured only in the third-order stream and was uniformly low. Poly-β-hydroxybutyrate concentrations were greater in the woodlot spring seep than in the second- and third-order streams. Uptake of algal lysate dissolved organic carbon ranged from undetectable levels to 166 mg of C · m−2 · h−1. Little community respiration could be attributed to algal lysate metabolism. Phospholipid synthesis ranged from 0.006 to 0.354 pmol · mg of dry sediment−1 · h−1. Phospholipid synthesis rates were used to estimate bacterial turnover at the study sites. An estimated 375 bacterial generations per year were produced in the woodlot spring seep, and 67 per year were produced in the third-order stream.  相似文献   

3.
Ice Nucleation Activity in Lichens   总被引:7,自引:0,他引:7       下载免费PDF全文
A newly discovered form of biological ice nucleus associated with lichens is described. Ice nucleation spectra of a variety of lichens from the southwestern United States were measured by the drop-freezing method. Several epilithic lichen samples of the genera Rhizoplaca, Xanthoparmelia, and Xanthoria had nuclei active at temperatures as warm as −2.3°C and had densities of 2.3 × 106 to more than 1 × 108 nuclei g−1 at −5°C (2 to 4 orders of magnitude higher than any plants infected with ice nucleation-active bacteria). Most lichens tested had nucleation activity above −8°C. Lichen substrates (rocks, plants, and soil) showed negligible activity above −8°C. Ice nucleation-active bacteria were not isolated from the lichens, and activity was not destroyed by heat (70°C) or sonication, indicating that lichen-associated ice nuclei are nonbacterial in origin and differ chemically from previously described biological ice nuclei. An axenic culture of the lichen fungus Rhizoplaca chrysoleuca showed detectable ice nucleation activity at −1.9°C and an ice nucleation density of 4.5 × 106 nuclei g−1 at −5°C. It is hypothesized that these lichens, which are both frost tolerant and dependent on atmospheric moisture, derive benefit in the form of increased moisture deposition as a result of ice nucleation.  相似文献   

4.
【目的】当前对全球冷泉生态系统微生物生态学研究显示,冷泉生态系统中主要微生物类群为参与甲烷代谢的微生物,它们的分布差异与所处冷泉区生物地球化学环境密切相关。但在冷泉区内也存在环境因子截然不同的生境,尚缺乏比较冷泉区内小尺度生境间微生物多样性和分布规律的研究。本研究旨在分析南海Formosa冷泉区内不同生境间微生物多样性差异,完善和理解不同环境因子对冷泉内微生物群落结构的影响。【方法】对采集自南海Formosa冷泉区不同生境(黑色菌席区、白色菌席区和碳酸盐岩区)沉积物样本中古菌和细菌16S rRNA基因进行测序,结合环境因子,比较微生物多样性差异,分析环境因子对微生物分布的影响。【结果】发现在Formosa冷泉内的不同生境中,甲烷厌氧氧化古菌(anaerobic methanotrophic archaea,ANME)是主要古菌类群,占古菌总体相对丰度超过70%;在菌席区ANME-1b和ANME-2a/b是主要ANME亚群,碳酸盐岩区则是ANME-1b。硫酸盐还原菌(sulfate-reducing bacteria,SRB)和硫氧化菌(sulfur-oxidizing bacteria...  相似文献   

5.
Biogenic production and sedimentation of calcium carbonate in the ocean, referred to as the carbonate pump, has profound implications for the ocean carbon cycle, and relate both to global climate, ocean acidification and the geological past. In marine pelagic environments coccolithophores, foraminifera and pteropods have been considered the main calcifying organisms. Here, we document the presence of an abundant, previously unaccounted fraction of marine calcium carbonate particles in seawater, presumably formed by bacteria or in relation to extracellular polymeric substances. The particles occur in a variety of different morphologies, in a size range from <1 to >100 µm, and in a typical concentration of 104–105 particles L−1 (size range counted 1–100 µm). Quantitative estimates of annual averages suggests that the pure calcium particles we counted in the 1–100 µm size range account for 2–4 times more CaCO3 than the dominating coccolithophoride Emiliania huxleyi and for 21% of the total concentration of particulate calcium. Due to their high density, we hypothesize that the particles sediment rapidly, and therefore contribute significantly to the export of carbon and alkalinity from surface waters. The biological and environmental factors affecting the formation of these particles and possible impact of this process on global atmospheric CO2 remains to be investigated.  相似文献   

6.
In order to better estimate bacterial biomass in marine environments, we developed a novel technique for direct measurement of carbon and nitrogen contents of natural bacterial assemblages. Bacterial cells were separated from phytoplankton and detritus with glass fiber and membrane filters (pore size, 0.8 μm) and then concentrated by tangential flow filtration. The concentrate was used for the determination of amounts of organic carbon and nitrogen by a high-temperature catalytic oxidation method, and after it was stained with 4′,6-diamidino-2-phenylindole, cell abundance was determined by epifluorescence microscopy. We found that the average contents of carbon and nitrogen for oceanic bacterial assemblages were 12.4 ± 6.3 and 2.1 ± 1.1 fg cell−1 (mean ± standard deviation; n = 6), respectively. Corresponding values for coastal bacterial assemblages were 30.2 ± 12.3 fg of C cell−1 and 5.8 ± 1.5 fg of N cell−1 (n = 5), significantly higher than those for oceanic bacteria (two-tailed Student’s t test; P < 0.03). There was no significant difference (P > 0.2) in the bacterial C:N ratio (atom atom−1) between oceanic (6.8 ± 1.2) and coastal (5.9 ± 1.1) assemblages. Our estimates support the previous proposition that bacteria contribute substantially to total biomass in marine environments, but they also suggest that the use of a single conversion factor for diverse marine environments can lead to large errors in assessing the role of bacteria in food webs and biogeochemical cycles. The use of a factor, 20 fg of C cell−1, which has been widely adopted in recent studies may result in the overestimation (by as much as 330%) of bacterial biomass in open oceans and in the underestimation (by as much as 40%) of bacterial biomass in coastal environments.  相似文献   

7.
Reducing emissions from deforestation and forest degradation (REDD+) is considered one of the most cost-effective strategies for mitigating climate change. However, historical deforestation and emission rates―critical inputs for setting reference emission levels for REDD+―are poorly understood. Here we use multi-source, time-series satellite data to quantify carbon emissions from deforestation in the Amazon basin on a year-to-year basis between 2000 and 2010. We first derive annual deforestation indicators by using the Moderate Resolution Imaging Spectroradiometer Vegetation Continuous Fields (MODIS VCF) product. MODIS indicators are calibrated by using a large sample of Landsat data to generate accurate deforestation rates, which are subsequently combined with a spatially explicit biomass dataset to calculate committed annual carbon emissions. Across the study area, the average deforestation and associated carbon emissions were estimated to be 1.59 ± 0.25 M ha•yr−1 and 0.18 ± 0.07 Pg C•yr−1 respectively, with substantially different trends and inter-annual variability in different regions. Deforestation in the Brazilian Amazon increased between 2001 and 2004 and declined substantially afterwards, whereas deforestation in the Bolivian Amazon, the Colombian Amazon, and the Peruvian Amazon increased over the study period. The average carbon density of lost forests after 2005 was 130 Mg C•ha−1, ~11% lower than the average carbon density of remaining forests in year 2010 (144 Mg C•ha−1). Moreover, the average carbon density of cleared forests increased at a rate of 7 Mg C•ha−1•yr−1 from 2005 to 2010, suggesting that deforestation has been progressively encroaching into high-biomass lands in the Amazon basin. Spatially explicit, annual deforestation and emission estimates like the ones derived in this study are useful for setting baselines for REDD+ and other emission mitigation programs, and for evaluating the performance of such efforts.  相似文献   

8.
It is now universally recognized that only a portion of aquatic bacteria is actively growing, but quantitative information on the fraction of living versus dormant or dead bacteria in marine sediments is completely lacking. We compared different protocols for the determination of the dead, dormant, and active bacterial fractions in two different marine sediments and at different depths into the sediment core. Bacterial counts ranged between (1.5 ± 0.2) × 108 cells g−1 and (53.1 ± 16.0) × 108 cells g−1 in sandy and muddy sediments, respectively. Bacteria displaying intact membrane (live bacterial cells) accounted for 26 to 30% of total bacterial counts, while dead cells represented the most abundant fraction (70 to 74%). Among living bacterial cells, nucleoid-containing cells represented only 4% of total bacterial counts, indicating that only a very limited fraction of bacterial assemblage was actively growing. Nucleoid-containing cells increased with increasing sediment organic content. The number of bacteria responsive to antibiotic treatment (direct viable count; range, 0.3 to 4.8% of the total bacterial number) was significantly lower than nucleoid-containing cell counts. An experiment of nutrient enrichment to stimulate a response of the dormant bacterial fraction determined a significant increase of nucleoid-containing cells. After nutrient enrichment, a large fraction of dormant bacteria (6 to 11% of the total bacterial number) was “reactivated.” Bacterial turnover rates estimated ranged from 0.01 to 0.1 day−1 but were 50 to 80 times higher when only the fraction of active bacteria was considered (on average 3.2 day−1). Our results suggest that the fraction of active bacteria in marine sediments is controlled by nutrient supply and availability and that their turnover rates are at least 1 order of magnitude higher than previously reported.  相似文献   

9.
Polycyclic aromatic hydrocarbons (PAHs) were analyzed for 136 indoor dust samples collected from Guizhou province, southwest of China. The ∑18PAHs concentrations ranged from 2.18 μg•g-1 to 14.20 μg•g-1 with the mean value of 6.78 μg•g-1. The highest Σ18PAHs concentration was found in dust samples from orefields, followed by city, town and village. Moreover, the mean concentration of Σ18PAHs in indoor dust was at least 10% higher than that of outdoors. The 4–6 rings PAHs, contributing more than 70% of ∑18PAHs, were the dominant species. PAHs ratios, principal component analysis with multiple linear regression (PCA-MLR) and hierarchical clustering analysis (HCA) were applied to evaluate the possible sources. Two major origins of PAHs in indoor dust were identified as vehicle emissions and coal combustion. The mean incremental lifetime cancer risk (ILCR) due to human exposure to indoor dust PAHs in city, town, village and orefield of Guizhou province, China was 6.14×10−6, 5.00×10−6, 3.08×10−6, 6.02×10−6 for children and 5.92×10−6, 4.83×10−6, 2.97×10−6, 5.81×10−6 for adults, respectively.  相似文献   

10.
Algal polysaccharides constitute a diverse and abundant reservoir of organic matter for marine heterotrophic bacteria, central to the oceanic carbon cycle. We investigated the uptake of alginate, a major brown macroalgal polysaccharide, by microbial communities from kelp-dominated coastal habitats. Congruent with cell growth and rapid substrate utilization, alginate amendments induced a decrease in bacterial diversity and a marked compositional shift towards copiotrophic bacteria. We traced 13C derived from alginate into specific bacterial incorporators and quantified the uptake activity at the single-cell level, using halogen in situ hybridization coupled to nanoscale secondary ion mass spectrometry (HISH-SIMS) and DNA stable isotope probing (DNA-SIP). Cell-specific alginate uptake was observed for Gammaproteobacteria and Flavobacteriales, with carbon assimilation rates ranging from 0.14 to 27.50 fg C µm−3 h−1. DNA-SIP revealed that only a few initially rare Flavobacteriaceae and Alteromonadales taxa incorporated 13C from alginate into their biomass, accounting for most of the carbon assimilation based on bulk isotopic measurements. Functional screening of metagenomic libraries gave insights into the genes of alginolytic Alteromonadales active in situ. These results highlight the high degree of niche specialization in heterotrophic communities and help constraining the quantitative role of polysaccharide-degrading bacteria in coastal ecosystems.Subject terms: Water microbiology, Microbial ecology, Marine microbiology, Biogeochemistry, Microbial ecology  相似文献   

11.
Iodide (I)-accumulating bacteria were isolated from marine sediment by an autoradiographic method with radioactive 125I. When they were grown in a liquid medium containing 0.1 μM iodide, 79 to 89% of the iodide was removed from the medium, and a corresponding amount of iodide was detected in the cells. Phylogenetic analysis based on 16S rRNA gene sequences indicated that iodide-accumulating bacteria were closely related to Flexibacter aggregans NBRC15975 and Arenibacter troitsensis, members of the family Flavobacteriaceae. When one of the strains, strain C-21, was cultured with 0.1 μM iodide, the maximum iodide content and the maximum concentration factor for iodide were 220 ± 3.6 (mean ± standard deviation) pmol of iodide per mg of dry cells and 5.5 × 103, respectively. In the presence of much higher concentrations of iodide (1 μM to 1 mM), increased iodide content but decreased concentration factor for iodide were observed. An iodide transport assay was carried out to monitor the uptake and accumulation of iodide in washed cell suspensions of iodide-accumulating bacteria. The uptake of iodide was observed only in the presence of glucose and showed substrate saturation kinetics, with an apparent affinity constant for transport and a maximum velocity of 0.073 μM and 0.55 pmol min−1 mg of dry cells−1, respectively. The other dominant species of iodine in terrestrial and marine environments, iodate (IO3), was not transported.  相似文献   

12.
The hexa-coordinate heme in the H2S-generating human enzyme cystathionine β-synthase (CBS) acts as a redox-sensitive regulator that impairs CBS activity upon binding of NO or CO at the reduced iron. Despite the proposed physiological relevance of this inhibitory mechanism, unlike CO, NO was reported to bind at the CBS heme with very low affinity (Kd = 30–281 μm). This discrepancy was herein reconciled by investigating the NO reactivity of recombinant human CBS by static and stopped-flow UV-visible absorption spectroscopy. We found that NO binds tightly to the ferrous CBS heme, with an apparent Kd ≤0.23 μm. In line with this result, at 25 °C, NO binds quickly to CBS (kon ∼ 8 × 103 m−1 s−1) and dissociates slowly from the enzyme (koff ∼ 0.003 s−1). The observed rate constants for NO binding were found to be linearly dependent on [NO] up to ∼ 800 μm NO, and >100-fold higher than those measured for CO, indicating that the reaction is not limited by the slow dissociation of Cys-52 from the heme iron, as reported for CO. For the first time the heme of human CBS is reported to bind NO quickly and tightly, providing a mechanistic basis for the in vivo regulation of the enzyme by NO. The novel findings reported here shed new light on CBS regulation by NO and its possible (patho)physiological relevance, enforcing the growing evidence for an interplay among the gasotransmitters NO, CO, and H2S in cell signaling.  相似文献   

13.
Phytoplankton is composed of a broad-sized spectrum of phylogenetically diverse microorganisms. Assessing CO2-fixation intra- and inter-group variability is crucial in understanding how the carbon pump functions, as each group of phytoplankton may be characterized by diverse efficiencies in carbon fixation and export to the deep ocean. We measured the CO2-fixation of different groups of phytoplankton at the single-cell level around the naturally iron-fertilized Kerguelen plateau (Southern Ocean), known for intense diatoms blooms suspected to enhance CO2 sequestration. After the bloom, small cells (<20 µm) composed of phylogenetically distant taxa (prymnesiophytes, prasinophytes, and small diatoms) were growing faster (0.37 ± 0.13 and 0.22 ± 0.09 division d−1 on- and off-plateau, respectively) than larger diatoms (0.11 ± 0.14 and 0.09 ± 0.11 division d−1 on- and off-plateau, respectively), which showed heterogeneous growth and a large proportion of inactive cells (19 ± 13%). As a result, small phytoplankton contributed to a large proportion of the CO2 fixation (41–70%). The analysis of pigment vertical distribution indicated that grazing may be an important pathway of small phytoplankton export. Overall, this study highlights the need to further explore the role of small cells in CO2-fixation and export in the Southern Ocean.Subject terms: Biogeochemistry, Biogeochemistry, Stable isotope analysis, Microbial ecology  相似文献   

14.
White and orange mats are ubiquitous on surface sediments associated with gas hydrates and cold seeps in the Gulf of Mexico. The goal of this study was to determine the predominant pathways for carbon cycling within an orange mat in Green Canyon (GC) block GC 234 in the Gulf of Mexico. Our approach incorporated laser-scanning confocal microscopy, lipid biomarkers, stable carbon isotopes, and 16S rRNA gene sequencing. Confocal microscopy showed the predominance of filamentous microorganisms (4 to 5 μm in diameter) in the mat sample, which are characteristic of Beggiatoa. The phospholipid fatty acids extracted from the mat sample were dominated by 16:1ω7c/t (67%), 18:1ω7c (17%), and 16:0 (8%), which are consistent with lipid profiles of known sulfur-oxidizing bacteria, including Beggiatoa. These results are supported by the 16S rRNA gene analysis of the mat material, which yielded sequences that are all related to the vacuolated sulfur-oxidizing bacteria, including Beggiatoa, Thioploca, and Thiomargarita. The δ13C value of total biomass was −28.6‰; those of individual fatty acids were −29.4 to −33.7‰. These values suggested heterotrophic growth of Beggiatoa on organic substrates that may have δ13C values characteristic of crude oil or on their by-products from microbial degradation. This study demonstrated that integrating lipid biomarkers, stable isotopes, and molecular DNA could enhance our understanding of the metabolic functions of Beggiatoa mats in sulfide-rich marine sediments associated with gas hydrates in the Gulf of Mexico and other locations.  相似文献   

15.
The majority of overwintering insects avoid lethal freezing by lowering the temperature at which ice spontaneously nucleates within their body fluids. We examined the effect of ice-nucleating-active bacteria on the cold-hardiness of the lady beetle, Hippodamia convergens, a freeze-intolerant species that overwinters by supercooling to ca. −16°C. Topical application of the ice-nucleating-active bacteria Pseudomonas syringae increased the supercooling point to temperatures as high as −3°C. This decrease in cold tolerance was maintained for at least 3 days after treatment. Various treatment doses (108, 106, and 104 bacteria per ml) and modes of action (bacterial ingestion and topical application) were also compared. At the highest concentration of topically applied P. syringae, 50% of the beetles froze between −2 and −4°C. After topical application at the lowest concentration, 50% of the individuals froze by −11°C. In contrast, beetles fed bacteria at this concentration did not begin to freeze until −10°C, and 50% were frozen only at temperatures of −13°C or less. In addition to reducing the supercooling capacity in H. convergens, ice-nucleating-active bacteria also significantly reduced the cold-hardiness of four additional insects. These data demonstrate that ice-nucleating-active bacteria can be used to elevate the supercooling point and thereby decrease insect cold tolerance. The results of this study support the proposition that ice-nucleating-active bacteria may be used as a biological insecticide for the control of insect pests during the winter.  相似文献   

16.
Cleaning and disinfection of open surfaces in food industry premises leave some microorganisms behind; these microorganisms build up a resident flora on the surfaces. Our goal was to explore the phenomena involved in the establishment of this biofilm. Ceramic coupons were contaminated, once only, with Pseudomonas fluorescens suspended in meat exudate incubated at 10°C. The mean adhering population after 1 day was 102 CFU·cm−2 and 103 total cells·cm−2, i.e., the total number of cells stained by DAPI (4′,6′-diamidino-2-phenylindole). The coupons were subjected daily to a cleaning product, a disinfectant, and a further soiling with exudate. The result was a striking difference between the numbers of CFU, which reached 104 CFU·cm−2, and the numbers of total cells, which reached 2 × 106 cells·cm−2 in 10 days. By using hypotheses all leading to an overestimation of the number of dead cells, we showed that the quantity of nonculturable cells (DAPI-positive cells minus CFU) observed cannot be accounted for as an accumulation of dead cells. Some nonculturable cells are therefore dividing on the surface, although cell division is unable to continue to the stage of macrocolony formation on agar. The same phenomenon was observed when only a chlorinated alkaline product was used and the number of cells capable of reducing 5-cyano-2,3-ditolyl tetrazolium chloride was close to the number of total cells, confirming that most nonculturable cells are viable but nonculturable. Furthermore, the daily shock applied to the cells does not prompt them to enter a new lag phase. Since a single application of microorganisms is sufficient to produce this accumulation of cells, it appears that the phenomenon is inevitable on open surfaces in food industry premises.  相似文献   

17.
Microbially induced carbonate precipitation (MICP) applied in the construction industry poses several disadvantages such as ammonia release to the air and nitric acid production. An alternative MICP from calcium formate by Methylocystis parvus OBBP is presented here to overcome these disadvantages. To induce calcium carbonate precipitation, M. parvus was incubated at different calcium formate concentrations and starting culture densities. Up to 91.4% ± 1.6% of the initial calcium was precipitated in the methane-amended cultures compared to 35.1% ± 11.9% when methane was not added. Because the bacteria could only utilize methane for growth, higher culture densities and subsequently calcium removals were exhibited in the cultures when methane was added. A higher calcium carbonate precipitate yield was obtained when higher culture densities were used but not necessarily when more calcium formate was added. This was mainly due to salt inhibition of the bacterial activity at a high calcium formate concentration. A maximum 0.67 ± 0.03 g of CaCO3 g of Ca(CHOOH)2−1 calcium carbonate precipitate yield was obtained when a culture of 109 cells ml−1 and 5 g of calcium formate liter−1 were used. Compared to the current strategy employing biogenic urea degradation as the basis for MICP, our approach presents significant improvements in the environmental sustainability of the application in the construction industry.  相似文献   

18.
Bacterial Communities in Acidic and Circumneutral Streams   总被引:2,自引:0,他引:2       下载免费PDF全文
The relationship between pH and the abundance and activity of bacteria in streams was examined as part of a study of the effect of acidification on stream communities. Of the bacterial communities examined, the epilithic community appeared to be the most significantly affected by acidification. Microbial biomass, as quantified by measuring the ATP level, on rock surfaces was significantly correlated with pH. Also, bacterial production by the epilithic bacteria, indicated by incorporation of tritiated thymidine into DNA, was always higher at high-pH sites than at low-pH sites of the same stream order and elevation. Bacterioplankton concentrations varied between 0.53 × 105 and 9.42 × 105 cells · ml−1 in the first- to fourth-order streams examined. The bacterioplankton concentration in one sample from a spring was 0.17 × 105 cells · ml−1. Bacterioplankton concentrations were not correlated with pH but were significantly correlated with seston concentrations. The correlation with seston is a result of increases in particle-associated bacteria at high seston concentrations. The proportion of bacterioplankton attached to particles varied from 0 to 70%. Bacterial numbers and production in the sediments were significantly correlated with the organic content of the sediment rather than with the pH of the overlying water. Thus, reduced abundance and activity of bacteria as a result of acidification could be detected only for the relatively active community on rock surfaces; this community was exposed to the low pH because of the unbuffered nature of its environment.  相似文献   

19.
Industrial aquaculture wastewater contains large quantities of suspended particles that can be easily broken down physically. Introduction of macro-bio-filters, such as bivalve filter feeders, may offer the potential for treatment of fine suspended matter in industrial aquaculture wastewater. In this study, we employed two kinds of bivalve filter feeders, the Pacific oyster Crassostrea gigas and the blue mussel Mytilus galloprovincialis, to deposit suspended solids from marine fish aquaculture wastewater in flow-through systems. Results showed that the biodeposition rate of suspended particles by C. gigas (shell height: 8.67±0.99 cm) and M. galloprovincialis (shell height: 4.43±0.98 cm) was 77.84±7.77 and 6.37±0.67 mg ind−1•d−1, respectively. The total solid suspension (TSS) deposition rates of oyster and mussel treatments were 3.73±0.27 and 2.76±0.20 times higher than that of the control treatment without bivalves, respectively. The TSS deposition rates of bivalve treatments were significantly higher than the natural sedimentation rate of the control treatment (P<0.001). Furthermore, organic matter and C, N in the sediments of bivalve treatments were significantly lower than those in the sediments of the control (P<0.05). It was suggested that the filter feeders C. gigas and M. galloprovincialis had considerable potential to filter and accelerate the deposition of suspended particles from industrial aquaculture wastewater, and simultaneously yield value-added biological products.  相似文献   

20.
Hypernatremia stimulates the secretion of oxytocin (OT), but the physiological role of OT remains unclear. The present study sought to determine the involvement of OT and renal nerves in the renal responses to an intravenous infusion of hypertonic saline. Male Wistar rats (280–350 g) were anesthetized with sodium thiopental (40 mg. kg−1, i.v.). A bladder cannula was implanted for collection of urine. Animals were also instrumented for measurement of mean arterial pressure (MAP) and renal blood flow (RBF). Renal vascular conductance (RVC) was calculated as the ratio of RBF by MAP. In anesthetized rats (n = 6), OT infusion (0.03 µg • kg−1, i.v.) induced renal vasodilation. Consistent with this result, ex vivo experiments demonstrated that OT caused renal artery relaxation. Blockade of OT receptors (OXTR) reduced these responses to OT, indicating a direct effect of this peptide on OXTR on this artery. Hypertonic saline (3 M NaCl, 1.8 ml • kg−1 b.wt., i.v.) was infused over 60 s. In sham rats (n = 6), hypertonic saline induced renal vasodilation. The OXTR antagonist (AT; atosiban, 40 µg • kg−1 • h−1, i.v.; n = 7) and renal denervation (RX) reduced the renal vasodilation induced by hypernatremia. The combination of atosiban and renal denervation (RX+AT; n = 7) completely abolished the renal vasodilation induced by sodium overload. Intact rats excreted 51% of the injected sodium within 90 min. Natriuresis was slightly blunted by atosiban and renal denervation (42% and 39% of load, respectively), whereas atosiban with renal denervation reduced sodium excretion to 16% of the load. These results suggest that OT and renal nerves are involved in renal vasodilation and natriuresis induced by acute plasma hypernatremia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号