首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Assignment of the 1H and 31P NMR spectra of a tandem G.A mismatched base pair decamer oligodeoxyribonucleotide duplex, d(CCAAGATTGG)2, has been made by two-dimensional 1H-1H and heteronuclear 31P-1H correlated spectroscopy. Unusual downfield 31P resonances have been assigned by a pure absorption phase constant-time heteronuclear 31P-1H correlated spectrum to be associated with the phosphates on the 5'- and 3'-sides of the mismatched guanosine residue. JH3'-P coupling constants for each of the phosphates of the decamer were obtained from the 1H-31P J-resolved selective proton-flip 2D spectrum. The two most downfield-shifted 31P resonances each appear to consist of two overlapping signals that can be resolved into two distinct doublets with different coupling constants in the J-resolved spectrum. This as well as the temperature dependence of the 31P spectra demonstrates that two distinct conformations exist at lower temperatures. By use of a modified Karplus relationship, the C4'-C3'-O3'-P torsional angles (epsilon) were obtained. A linear correlation between 31P chemical shifts and the measured coupling constants is quite good (only when the larger set of coupling constants of the two most downfield 31P signals is included). The 31P chemical shifts as well as the measured coupling constants tend to follow the positional variation seen in other duplexes of interior phosphates resonating more upfield than terminal residues and of interior phosphates exhibiting smaller coupling constants; however, this pattern is disrupted at the site of the mismatch. Modeling and initial NOESY distance restrained molecular mechanics energy minimization and restrained molecular dynamics support previous observations that the mismatched guanine and adenine bases are both in anti conformations. Most significantly, the epsilon backbone torsional angle variaions calculated from the NOESY distance restrained structures are in agreement with both the crystal structure values and the measured JH3'-P coupling constants.  相似文献   

2.
Assignment of the 1H and 31P NMR spectra of an extrahelical adenosine tridecamer oligodeoxyribonucleotide duplex, d(CGCAGAATTCGCG)2, has been made by two-dimensional 1H-1H and heteronuclear 31P-1H correlated spectroscopy. The downfield 31P resonance previously noted by Patel et al. (1982) has been assigned by both 17O labeling of the phosphate as well as a pure absorption phase constant-time heteronuclear 31P-1H correlated spectrum and has been associated with the phosphate on the 3' side of the extrahelical adenosine. JH3'-P coupling constants for each of the phosphates of the tridecamer were obtained from the 1H-31P J-resolved selective proton-flip 2D spectrum. By use of a modified Karplus relationship the C4-C3'-O3-P torsional angles (epsilon) were obtained. There exists a good linear correlation between 31P chemical shifts and the epsilon torsional angle. The 31P chemical shifts and epsilon torsional angles follow the general observation that the more internal the phosphate is located within the oligonucleotide sequence, the more upfield the 31P resonance occurs. Because the extrahelical adenosine significantly distorts the deoxyribose phosphate backbone conformation even several bases distant from the extrahelical adenosine, 31P chemical shifts show complex site- and sequence-specific variations. Modeling and NOESY distance-restrained energy minimization and restrained molecular dynamics suggest that the extrahelical adenosine stacks into the duplex. However, a minor conformation is also observed in the 1H NMR, which could be associated with a structure in which the extrahelical adenosine loops out into solution.  相似文献   

3.
Complete assignment of the (1)H and (13)C NMR spectra of all possible d-glucopyranosyl-d-glucopyranosides was performed and the (1)H chemical shifts and proton-proton coupling constants were refined by computational spectral analyses (using PERCH NMR software) until full agreement between the calculated and experimental spectra was achieved. To support the experimental results, the (1)H and (13)C chemical shifts and the spin-spin coupling constants between the non-hydroxyl protons of alpha- and beta-d-glucopyranose (1a and 1b) were calculated with density functional theory (DFT) methods at the B3LYP/pcJ-2//B3LYP/6-31G(d,p) level of theory. The effects of different glycosidic linkage types and positions on the glucose ring conformations and on the alpha/beta-ratio of the reducing end hydroxyl groups were investigated. Conformational analyses were also performed for anomerically pure forms of methyl d-glucopyranosides (13a and 13b) and fully protected derivatives such as 1,2,3,4,6-penta-O-acetyl-d-glucopyranoses (14a and 14b).  相似文献   

4.
The119Sn and 13C NMR spectra of ten trivinyltin(IV) compounds in solutions of non-coordinating (deuteriochloroform, trideuterionitromethane) and coordinating (hexadeuteriodimethyl sulphoxide) solvents have been studied. From δ(119Sn) chemical shifts and 1J(119Sn,13C) coupling constants an evaluation of the coordination number of the central tin atom and the shape of coordination polyhedra around the tin atom has been carried out. Various effects on the δ(13C) chemical shifts of both carbon atoms of the vinyl group are also discussed.  相似文献   

5.
Hydrogen bonding of adenine derivatives to tyrosine side chain.   总被引:1,自引:0,他引:1       下载免费PDF全文
High resolution proton magnetic resonance measurements provide evidence for the formation of hydrogen-bonded complexes between 9-ethyladenine and p-cresol used as a model of tyrosine side chain in CDCl3. We have calculated the sum of the association constants corresponding to the three existing 1:1 complexes: K=6.3+/-0.15. By methylation of the amino group of adenine, we were able to calculate the ratio of the two strongest equilibrium constants K7/K1=1.6+/-0.3. Theoretical computations by the complete neglect of differential overlap (CNDO/2) method indicate that several hydrogen-bonded planar complexes can form between 9-methyladenine and phenol. The computed energy of the complexes with 6-dimethylamino adenine removes some ambiguity concerning the computed ratio of the association constants. Comparison of the calculated energies with free energies experimentally determined in organic solvent shows that despite the competition with CDCl3, which associates with both solute molecules, the preferential order of association is conserved. The small variations of charge density of adenine carbon atoms when complexed with phenol are in agreement with very small chemical shifts observed by 13C-nuclear magnetic resonance.  相似文献   

6.
13C Nuclear magnetic resonance chemical shifts, 1JC-C scalar coupling constants, spin-lattice relaxation times, and nuclear Overhauser effects were determined for taurine-[1, 2 13C] and a taurine-[1 13C] and taurine-[2 13C] mixture in the presence and absence of calcium. Ionization constants for taurine amino and sulfonic acid groups and chemical shifts of N-methylene and S-methylene carbons of the taurine cation, zwitterion, and anion were obtained from simultaneous least squares analysis of 13C titration curves of both taurine carbons. Comparison of taurine titration shifts to values for related compounds reveals some unusual electronic properties of the taurine molecule. Stability constants of 1:1 calcium complexes with taurine zwitterions and anions, as well as their 13C chemical shifts, were obtained by least squares analysis of titration curves measured in the presence of calcium. The stability constants of calcium-taurine complexes were significantly lower than previous values and led to estimates that only approximately one percent of intracellular calcium of mammalian myocardial cells would exist in a taurine complex. The implications of these results with respect to the effect of taurine on calcium ion flux are discussed.  相似文献   

7.
The pH-dependence of selected 13C chemical shifts reflects the state of ionization of the imidazole ring in both imidazole and L-histidine. Titration of the amino and carboxyl groups of histidine also perturbs the shifts. The coupling constants 1J (13C(2),H) and 1J (13C(5),H) for both compounds also vary with pH, but in L-histidine these constants are relatively insensitive to the titration of groups outside the imidazole ring.  相似文献   

8.
The conformation of the acyclic biscystine peptide S,S'-bis(Boc-Cys-Ala-OMe) has been studied in the solid state by x-ray diffraction, and in solution by 1H- and 13C-nmr, ir, and CD methods. The peptide molecule has a twofold rotation symmetry and adopts an intramolecular antiparallel beta-sheet structure in the solid state. The two antiparallel extended strands are stabilized by two hydrogen bonds between the Boc CO and Ala NH groups [N...O 2.964 (3) A, O...HN 2.11 (3) A, and NH...O angle 162 (3) degrees]. The disulfide bridge has a right-handed conformation with the torsion angle C beta SSC beta = 95.8 (2) degrees. In solution the presence of a twofold rotation symmetry in the molecule is evident from the 1H- and 13C-nmr spectra. 1H-nmr studies, using solvent and temperature dependencies of NH chemical shifts, paramagnetic radical induced line broadening, and rate of deuterium-hydrogen exchange effects on NH resonances, suggest that Ala NH is solvent shielded and intramolecularly hydrogen bonded in CDCl3 and in (CD3)2SO. Nuclear Overhauser effects observed between Cys C alpha H and Ala NH protons and ir studies provide evidence of the occurrence of antiparallel beta-sheet structure in these solvents. The CD spectra of the peptide in organic solvents are characteristic of those observed for cystine peptides that have been shown to adopt antiparallel beta-sheet structures.  相似文献   

9.
We have previously suggested that variations in the 31P chemical shifts of individual phosphates in duplex oligonucleotides are attributable to torsional angle changes in the deoxyribose phosphate backbone. This hypothesis is not directly supported by analysis of the 1H/31P two-dimensional J-resolved spectra of a number of mismatch dodecamer oligonucleotide duplexes including the following sequences: d-(CGTGAATTCGCG), d(CGUGAATTCGCG), d(CGGGAATTCGCG), d(CGAGAATTCGCG), and d(CGCGAATTCACG). The 31P NMR signals of the dodecamer mismatch duplexes were assigned by 2D 1H/31P pure absorption phase constant time (PAC) heteronuclear correlation spectra. From the assigned H3' and H4' signals, the 31P signals of the base-pair mismatch dodecamers were identified. JH3'-P coupling constants for each of the phosphates of the dodecamers were obtained from 1H/31P J-resolved selective proton flip 2D spectra. By use of a modified Karplus relationship, the C4'-C3'-O3'-P torsional angles (epsilon) were obtained. JH3'-P coupling constants were measured for many of the oligonucleotides as a function of temperature. There exists a good linear correlation between 31P chemical shifts and the epsilon torsional angle. This correlation can be further extended to the C3'-O3'-P-O5' torsional angle (zeta) by using a linear relationship between epsilon and zeta obtained from crystal structure studies. The 31P chemical shifts follow the general observation that the more internally the phosphate is located within the oligonucleotide sequence, the more upfield the 31P resonance occurs. In addition, 31P chemical shifts show sequence- and site-specific variations. Analysis of the backbone torsional angle variations from the coupling constant analysis has provided additional information regarding the origin of these variations in 31P chemical shifts.  相似文献   

10.
An octapeptide containing a central -Aib-Gly- segment capable of adopting beta-turn conformations compatible with both hairpin (beta(II') or beta(I')) and helical (beta(I)) structures has been designed. The effect of solvent on the conformation of the peptide Boc-Leu-Val-Val-Aib-Gly-Leu-Val-Val-OMe (VIII; Boc: t-butyloxycarbonyl; OMe: methyl ester) has been investigated by NMR and CD spectroscopy. Peptide VIII adopts a well-defined beta-hairpin conformation in solvents capable of hydrogen bonding like (CD(3))(2)SO and CD(3)OH. In solvents that have a lower tendency to interact with backbone peptide groups, like CDCl(3) and CD(3)CN, helical conformations predominate. Nuclear Overhauser effects between the backbone protons and solvent shielding of NH groups involved in cross-strand hydrogen bonding, backbone chemical shifts, and vicinal coupling constants provide further support for the conformational assignments in different solvents. Truncated peptides Boc-Val-Val-Aib-Gly-Leu-Val-Val-OMe (VII), Boc-Val-Val-Aib-Gly-Leu-Val-OMe (VI), and Boc-Val-Aib-Gly-Leu-OMe (IV) were studied in CDCl(3) and (CD(3))(2)SO by 500 MHz (1)H-NMR spectroscopy. Peptides IV and VI show no evidence for hairpin conformation in both the solvents. The three truncated peptides show a well-defined helical conformation in CDCl(3). In (CD(3))(2)SO, peptide VII adopts a beta-hairpin conformation. The results establish that peptides may be designed, which are poised to undergo a dramatic conformational transition.  相似文献   

11.
Ten new structures of a series of the title compounds were synthesized and screened for their activity to inhibit choline kinase under ex vivo conditions. Their inhibitory potency correlates with the 13C chemical shifts (in CD3OD) of the methylene group bearing the positively charged nitrogen. The inhibitory effect on proliferation against the HT-29 cell line is strongly dependent on its ability to inhibit the production of phosphorylcholine.  相似文献   

12.
The interaction of phosphorycholine-binding mouse myeloma protein M603 and the isotopically substituted hapten phosphoryl[methyl-13C] choline has been investigated using 13C and 31P nuclear magnetic resonance (NMR) spectroscopy. Upon binding to antibody, upfield shifts of 0.7 and 1.5 ppm are observed for the hapten 13C and 31P resonances, respectively, and both spectra are in the "slow" exchange limit. Linewidth analysis indicates some immobilization of the phosphate group but essentially unrestricted methyl group rotation for the bound hapten. Hapten-antibody dissociation rate constants of 10 and 38 s-1 are calculated from 13C and 31P NMR spectra, respectively, suggesting the possibility of differential dissociation rates for the two opposing ends of the phosphorylcholine molecule. The NMR data are entirely consistent with the known x-ray structure of the M603 Fab'-phosporylcholine complex (Segal,D.M., Padlan, E.A., Cohen G.H., Rudikoff S., Potter,M., and Davies, D.R. (1974), Proc. Natl. Acad. Sci. U.S.A. 71, 4298).  相似文献   

13.
A cyclic pentapeptide endothelin antagonist, cyclo(dTrp-dAsp-Pro-dVal-Leu), recently reported (K. Ishikawa et al., 13th Am. Pept. Symp., Cambridge MA, 1991) has been studied by NMR spectroscopy and molecular modeling. A stable structure has been determined without the use of nuclear Overhauser effects and is based primarily on homonuclear and heteronuclear three bond coupling constants. The 13C-edited TOCSY experiment is demonstrated at natural abundance and approximately 30 mM peptide concentrations. Three bond 13C-1H coupling constants obtained by this method are shown to reduce the ambiguity in phi angle determination which exists when only interproton coupling constants are used. Three out of four phi angles were determined uniquely by this method and the fourth was reduced to two possible values. The proline phi angle was determined to be -78 degrees based on the 3JH alpha, H beta and 3JH alpha, H beta coupling constants. Comparison of amide proton temperature dependence, chemical shifts and vicinal proton coupling constants in a 20% acetonitrile/80% water solvent mixture and in (CD3)2SO indicates that the structure is similar in both solvents.  相似文献   

14.
The 1H and 13C NMR parameters of the anomeric pairs of aldopyranosyl phosphates and their rigid 1,2-phosphate derivatives are reported.The derivatives of D-glucose, D-galactose, and D-mannose exist in the 4C1 conformation while the L-fuco derivatives are in the C4 conformation. As judged by 31P--1H and 31P--13C coupling constants, all of the alpha anomers of the aldopyranosyl phosphates have the phosphate moiety predominantly trans to C(2) while in the beta anomers other rotamers make significant contributions. This relationship remains the same for the biologically important nucleoside diphosphate sugars (UDPGlc, UDPGal, GDPMan, and GDPFuc). From the pH dependence of 13C chemical shifts, observed in 0.5 M solutions, the pK'a2 of the alpha anomers is 6.1 while the pK'a2 of the beta anomers is 0.6--0.8 pH unit lower. In the 1.2-phosphates, the chair conformation of the parent aldose is retained while an envelope conformation is formed by the cyclic phosphate. In the alpha anomers, the plane is formed between C(2), C(1), O(1), and P while O(2) is above the plane. In the beta anomers, O(1) is out of the plane formed by the other atoms. The beta anomers have phosphorus coupled to C(3) with coupling constants of 10.8--11.7 Hz, approximately 2 Hz greater than the maximum reported for trans coupling (Lapper, R. D., & Smith, I. C. P. (1973) J. Am. Chem. Soc. 95, 2880).  相似文献   

15.
The 13C NMR spectra of a variety of furocoumarins, dihydrofurocoumarins and furochromones are reported. The signals were assigned using carbon-proton coupling constants, ring annullation shifts, nuclear Overhauser effect considerations and shift effects caused by monothioester formation. Substituent effects on 13C chemical shifts and carbon-proton coupling constants are discussed. Methoxyl induced shifts of 5- and 8-substituted furocoumarins are additive, but their effects cannot be transferred to the furochromone system.  相似文献   

16.
We used solid-state NMR techniques to probe the interactions of cholesterol (Chol) with bovine brain sphingomyelin (SM) and for comparison of the interactions of Chol with dipalmitoylphosphatidylcholine (DPPC), which has a similar gel-to-liquid crystalline transition temperature. (1)H-, (31)P-, and (13)C-MASNMR yielded high-resolution spectra from multilamellar dispersions of unlabeled brain SM and Chol for analysis of chemical shifts and linewidths. In addition, (2)H-NMR spectra of oriented lipid membranes with specific deuterium labels gave information about membrane ordering and mobility. Chol disrupted the gel-phase of pure SM and increased acyl chain ordering in the liquid crystalline phase. As inferred from (13)C chemical shifts, the boundaries between the ordered and disordered liquid crystalline phases (L and L) were similar for SM and DPPC. The solubility limit of Chol in SM was ~50 mol %, the same value as previously reported for DPPC membranes. We found no evidence for specific H-bonding between Chol and the amide group of SM. The order parameters of a probe molecule, d31-sn1-DPPC, in SM were slightly higher than in DPPC for all carbons except the terminal groups at 30 mol % but were not significantly different at 5 and 60 mol % Chol. These studies show a general similarity with some subtle differences in the way Chol interacts with DPPC and SM. In the environment of a typical biomembrane, the higher proportion of saturated fatty acyl chains in SM compared to other phospholipids may be the most significant factor influencing interactions with Chol.  相似文献   

17.
We describe the production and characterization of actinomycin D labeled with 15N at all twelve nitrogen positions. Cultures of Streptomyces parvulus were incubated in the presence of racemic [15N]glutamic acid and, following an initial delay, labeled antibiotic was produced. Evidence is presented that the D enantiomorph of glutamic acid was ultimately used for actinomycin biosynthesis. The 15N NMR spectrum at 10.14 and 20.47 MHz of the labeled drug in CDCl3 is presented. All nitrogens except the phenoxazone chromophore nitrogen are inverted when spectra are obtained under broad-band proton irradiation conditions. All 15N resonances have been assigned, and the proton-nitrogen one-bond coupling constants were determined in CDCl3 to be 92.5 +/- 0.3 Hz for the valine and threonine amide protons by both 1H and 15N NMR. 15N NMR spectra were also obtained in dimethyl sulfoxide, methanol, and water in order to probe solvent interactions with the peptide nitrogens and carbonyl groups. Large downfield shifts (greater than 5 ppm) were seen for the Pro, sarcosine, and methylvaline resonances when the solvent was changed from dimethyl sulfoxide to water. Smaller downfield shifts were observed for the Val and Thr peaks. These results are discussed in terms of a model for the solution conformation of the actinomycin pentapeptide rings based on different hydrogen-bonding interactions in the monomer in organic solvents and the dimer which is formed in water.  相似文献   

18.
The solution conformation of the antibiotic peptide alamethicin was investigated using multi-nuclear spectroscopy and the distance geometry/simulated annealing algorithms from the program DSPACE. 1H-, 13C-, and 15N-nmr chemical shifts and homonuclear 1H coupling constants suggest that the molecule is flexible in the vicinity of Gly-11 and Leu-12. The temperature dependence of the amide proton chemical shifts indicates that there is flexibility in the middle of the 20 residue peptide and provides evidence that, at the very N-terminus, the molecule adopts a 310-helical conformation. The large differences in the 13C chemical shifts of the pro-R and pro-S methyls of the α-aminoisobutyric acid residues were used to constrain those residues to the right-handed helical conformation in the distance geometry/simulated annealing algorithms. A family of 24 structures was generated but did not converge to a common conformation when superimposed over the entire polypeptide sequence. The molecules did converge to a helical conformation over residues 1–10 and residues 13–18. The lack of convergence when the entire lengths of the molecules are superimposed is explained by the flexibility of the peptide near Gly-11/Leu-12. The results suggest that the protein consists of two helices connected by a flexible “hinge.” The flexibility of the molecule is discussed with respect to the macrodipole model of voltage gating. © 1995 John Wiley & Sons, Inc.  相似文献   

19.
Phosphorus-31 nuclear magnetic resonance (31P NMR) spectroscopy has been used to study accumulation of N-acyl-ethanolamine phospholipids in rat brains during post-decapitative ischemia. Lipids were extracted from rat brain homogenates and the extracts were thoroughly washed with aq. potassium ethylenediaminetetraacetic acid (EDTA). The lower organic phases were isolated and evaporated to dryness under a stream of nitrogen and the lipids were redissolved in CDCl3-CH3OH-H2O 100.0:29.9:5.2 (v/v/v) for NMR analysis. Increasing the period of post-decapitative ischemia resulted in an accumulation of two signals in the NMR spectra at 0.18 and 0.22 ppm (relative to the chemical shift of 1,2-diacyl-sn-glycero-3-phosphocholine (PCDIACYL) at -0.84 ppm). These signals were identified as originating from 1,2-diacyl-sn-glycero-3-phospho-(N-acyl)-ethanolamine (NAPEDIACYL) and 1-(1'-alkenyl)-2-acyl-sn -glycero-3-phospho-(N-acyl)-ethanolamine (NAPEPLAS), respectively, by spiking with authentic materials. Additionally, the identification was verified by thin-layer chromatography, which also showed the accumulation of N-acyl-ethanolamine phospholipids. The use of K-EDTA instead of the commonly used Cs-EDTA in the preparation of the NMR samples allowed the separation of the chemical shifts of N-acyl-ethanolamine phospholipids from those of the ethanolamine phospholipids. Moreover, the chemical shift of cardiolipin was moved from 0.15 ppm observed with Cs-EDTA to about 0.31 ppm with K-EDTA.The present study demonstrates that it is possible to detect and quantify post-decapitative accumulation of NAPE subclasses (NAPEDIACYL and NAPEPLAS) in rat brains by the use of 31P NMR spectroscopy.  相似文献   

20.
13C-NMR of ribosyl ApApA, ApApG and ApUpG   总被引:2,自引:0,他引:2  
The chemical shifts as well as the 13C-31P coupling constants of the carbon-13 nuclei in single-stranded ApApA, ApApG, and ApUpG are sensitive to sequence and temperature. ApApA and ApApG have similar properties with large shielding (up to 1.7 ppm) of many of the base carbons upon decreasing the temperature from 70 degrees C to 11 degrees C; the base carbons have smaller shielding changes in ApUpG. Large shielding and deshielding effects are observed for the 1', 3', 4' and 5'-carbons over this temperature range. Analysis of the 13C-31P couplings measured at the 4' ribose carbons show that the population of the anti rotamer about O5'-C5' varies from 98 to 75%, and is higher in ApApA and ApApG than in ApUpG. The CCOP coupling data at 2' and 4' is consistent with a blend of the -antiperiplanar/-synclinal nonclassical rotamers about the C3'-O3' bond, varying from 89/11% in ApApG to 55/45% in ApUpG. The coupling and chemical shift data support the thesis that ApUpG is stacked much less than the other two molecules. The stacked forms of all three trinucleotides is most easily interpreted by a standard A-RNA model. It is not necessary to invoke the "bulged base" hypothesis [Lee, C.-H. and Tinoco, Jr., I. (1981) Biophysical Chemistry 1, 283-294; Lankhorst, P.P., Wille, G., van Boom., J.H., Altona, C., and Haasnoot, C.A.G. (1983) Nucleic Acids Research 11, 2839-2856] to explain the contrast in 13C spectroscopic properties of ApUpG in comparison to ApApG and ApApA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号