共查询到20条相似文献,搜索用时 0 毫秒
1.
DNA双链断裂损伤修复系统研究进展 总被引:3,自引:1,他引:3
多种内源或外源因素都能造成细胞基因组DNA损伤,细胞内建立了复杂的修复系统来应对不同形式的损伤。其中DNA双链断裂(DNA double-strand breaks,DSBs)作为最严重的损伤形式,主要激活同源重组修复(Homologous recombination repair)和非同源末端连接(Non-homologous end joining)通路。这两条通路都是由多个修复元件参与、经过多步反应的复杂过程。两者各具特点、协同作用,共同维护细胞基因组的稳定性。对其分子机制的阐明为肿瘤放化疗的辅助治疗提供了潜在的作用靶点。 相似文献
2.
3.
DNA repair and cell survival in haploid and its diploid derivative strains ofSaccharomyces cerevisiae were studied after 100 krad X-ray irradiation. The cells were in theG
1 stage of the cell cycle, where haploid cells had only one copy of genetic material per genome and diploid had two copies. It was found that diploid could repair double-strand breaks in its DNA after 48 hr of liquid holding which was accompanied by a four-fold rise in survival. In contrast a haploid strain failed to repair its DNA and showed no increase in survival after liquid holding. It is concluded that (1) repair of DNA double-strand breaks requires the availability of two homologous DNA duplexes, (2) restoration of cell viability during liquid holding is connected with repair of DNA double-strand breaks and (3) this repair is a slow process possibly associated with slow finding and conjugation of homologous chromosomes. 相似文献
4.
Differences in ex vivo cell culture conditions can drastically affect stem cell physiology. We sought to establish an assay for measuring the effects of chemical, environmental, and genetic manipulations on the precision of repair at a single DNA double-strand break (DSB) in pluripotent and somatic human cells. DSBs in mammalian cells are primarily repaired by either homologous recombination (HR) or nonhomologous end-joining (NHEJ). For the most part, previous studies of DSB repair in human cells have utilized nonspecific clastogens like ionizing radiation, which are highly nonphysiologic, or assayed repair at randomly integrated reporters. Measuring repair after random integration is potentially confounded by locus-specific effects on the efficiency and precision of repair. We show that the frequency of HR at a single DSB differs up to 20-fold between otherwise isogenic human embryonic stem cells (hESCs) based on the site of the DSB within the genome. To overcome locus-specific effects on DSB repair, we used zinc finger nucleases to efficiently target a DSB repair reporter to a safe-harbor locus in hESCs and a panel of somatic human cell lines. We demonstrate that repair at a targeted DSB is highly precise in hESCs, compared to either the somatic human cells or murine embryonic stem cells. Differentiation of hESCs harboring the targeted reporter into astrocytes reduces both the efficiency and precision of repair. Thus, the phenotype of repair at a single DSB can differ based on either the site of damage within the genome or the stage of cellular differentiation. Our approach to single DSB analysis has broad utility for defining the effects of genetic and environmental modifications on repair precision in pluripotent cells and their differentiated progeny. 相似文献
5.
Age-dependent decline in rejoining of X-ray-induced DNA double-strand breaks in normal human lymphocytes 总被引:2,自引:0,他引:2
Unstimulated human peripheral blood lymphocytes (HPBL), separated by density centrifugation from anticoagulated whole blood, were X-irradiated (30 Gy) on ice and incubated in medium at 37 degrees C for repair times of 15, 30, and 120 min. Blood donors were 18 normotensive, non-smoking Caucasians aged 23-78, free from overt pathology and not taking any medications. Neutral filter elution was used to assay DNA double-strand break (DSB) induction and completeness of DSB rejoining (plus rejoining of any X-ray-induced alkali-labile sites converted to DSBs in vitro at pH 9.6). After 30 or 120 min repair incubation, the percentage of DSBs rejoined by cells from older donors (aged 66-78 years) was less than half the percentage of DSBs rejoined by cells from younger donors (aged 23-39 and 42-57). When data from the 3 age groups were pooled, the age-related decline in percent DSBs rejoined was significant for repair times 30 min (r = -0.63, p less than 0.005) and 120 min (r = -0.64, p less than 0.005) but not for 15 min (r = -0.04). These age-related declines were observed even though DNA from older donors sustained fewer strand breaks as demonstrated by the negative correlation between donor age and DSB induction (r = -0.65, p less than 0.005). These results suggest that the efficacy of X-ray-induced DSB repair diminishes with in vivo age in unstimulated HPBL. 相似文献
6.
It has been suggested that the technique for measuring repair fidelity of radiation-induced DNA double-strand breaks (DSBs) using Southern blotting and hybridization to defined regions of the genome could be compromised by broken or poorly-digested DNA. Since misrepair of DNA DSBs is an important aspect of radiation-induced chromosome aberrations, mutations, and cell killing, we checked for such a supposition in non-transformed human fibroblasts. DSB misrepair was assessed in a NotI-cleavable DNA fragment of 3.2 Mbp located on the long arm of chromosome 21 and detected by D21S1 probe. We hypothesized that the suggested DNA degradation, whether spurious in nature or the results of irradiation-induced phenomena such as apoptosis and/or necrosis, should be detectable with or without NotI restriction enzyme treatment. When the DNA embedded in agarose plugs was separated by electrophoresis without prior NotI restriction, no significant difference was observed in the relative amount of migrating DNA between the control (no irradiation) and 24 h of repair following 80 Gy irradiation. Furthermore, only about 10% of the total signal was located below the 3.2 Mbp band. This suggests that the amount of DNA fragmentation due to biological (apoptosis or necrosis) or technical processes was negligible. The Tunel assay supported these results, as there was little to no apoptosis detectable in these fibroblasts up to 24 h after irradiation. We conclude that in primary human fibroblasts, the NotI method for measuring radiation-induced misrepair is not compromised by DNA degradation. 相似文献
7.
Wachsberger PR Li WH Guo M Chen D Cheong N Ling CC Li G Iliakis G 《Radiation research》1999,151(4):398-407
The role of Ku80 in the repair of DNA double-strand breaks (DSBs) was examined in fibroblasts derived from a Ku80 knockout mouse model described by Nussenzweig et al. (Nature 382, 551-555, 1996). Primary fibroblasts from Ku80+/+ and Ku80-/- mice were immortalized by transfection with plasmids containing either the human MYC proto-oncogene or the Simian virus 40 (SV40) T antigen and were used to measure induction and rejoining of DSBs after exposure to ionizing radiation. The number of DSBs in the cells was quantified by either asymmetric field-inversion gel electrophoresis (AFIGE) or clamped homogeneous electrical-field gel electrophoresis (CHEF). The latter method was introduced for a more reliable quantification of repair even when DNA degradation occurs in a fraction of the irradiated cell population during the postirradiation incubation time. The results confirm that Ku80-deficient mouse fibroblasts are sensitive to ionizing radiation and demonstrate that the increased radiosensitivity may result from a deficiency in DSB rejoining. The results further indicate that unless techniques are employed that allow for distinction between DNA degradation and DNA repair, erroneous conclusions may be drawn regarding the potential of cells to repair DSBs. 相似文献
8.
Mammalian cells primarily repair DSBs by nonhomologous end joining (NHEJ). To assess the ability of human cells to mediate end joining of complex DSBs such as those produced by chemicals, oxidative events, or high- and low-LET radiation, we employed an in vitro double-strand break repair assay using plasmid DNA linearized by these various agents. We found that human HeLa cell extracts support end joining of complex DSBs and form multimeric plasmid products from substrates produced by the radiomimetic drug bleomycin, 60Co gamma rays, and the effects of 125I decay in DNA. End joining was found to be dependent on the type of DSB-damaging agent, and it decreased as the cytotoxicity of the DSB-inducing agent increased. In addition to the inhibitory effects of DSB end-group structures on repair, NHEJ was found to be strongly inhibited by lesions proximal to DSB ends. The initial repair rate for complex non-ligatable bleomycin-induced DSBs was sixfold less than that of similarly configured (blunt-ended) but less complex (ligatable) restriction enzyme-induced DSBs. Repair of DSBs produced by gamma rays was 15-fold less efficient than repair of restriction enzyme-induced DSBs. Repair of the DSBs produced by 125I was near the lower limit of detection in our assay and was at least twofold lower than that of gamma-ray-induced DSBs. In addition, DSB ends produced by 125I were shown to be blocked by 3'-nucleotide fragments: the removal of these by E. coli endonuclease IV permitted ligation. 相似文献
9.
Joseph R. Perera Alexander V. Glasunov Vadim M. Glaser Alla V. Boreiko 《Molecular & general genetics : MGG》1988,213(2-3):421-424
Summary We studied the repair of double-strand breaks (DSB) in plasmid DNA introduced into haploid cells of the yeast Saccharomyces cerevisiae. The efficiency of repair was estimated from the frequency of transformation of the cells by an autonomously replicated linearized plasmid. The frequency of lithium transformation of Rad+ cells was increased greatly (by 1 order of magnitude and more) compared with that for circular DNA if the plasmid was initially linearized at the XhoI site within the LYS2 gene. This effect is due to recombinational repair of the plasmid DNA. Mutations rad52, rad53, rad54 and rad57 suppress the repair of DSB in plasmid DNA. The kinetics of DSB repair in plasmid DNA are biphasic: the first phase is completed within 1 h and the second within 14–18 h of incubating cells on selective medium. 相似文献
10.
Persistence of DNA double-strand breaks in normal human cells induced by radiation-induced bystander effect 总被引:1,自引:0,他引:1
Our previous study suggested that the DNA double-strand breaks (DSBs) induced by very low X-ray doses are largely due to bystander effects. The aim of this study was to verify whether DSBs created by radiation-induced bystander effects are likely to be repaired. We examined the generation of DSBs in cells by enumeration of phosphorylated ataxia telangiectasia mutated (ATM) foci, which are correlated with DSB repair, in normal human fibroblast cells (MRC-5) after X irradiation at doses ranging from 1 to 1000 mGy. At 24 h after irradiation, 100% (1.2 mGy), 58% (20 mGy), 12% (200 mGy) and 8.5% (1000 mGy) of the initial number of phosphorylated ATM foci were detected. The number of phosphorylated ATM foci in MRC-5 cells treated with lindane, an inhibitor of radiation-induced bystander effects, prior to X irradiation was assessed; phosphorylated ATM foci were not observed at 5 h (20 mGy) or 24 h (200 mGy) postirradiation. We also counted the number of phosphorylated ATM foci in MRC-5 cells cocultured with MRC-5 cells irradiated with 20 mGy. After 48 h of coculture, 81% of the initial numbers of phosphorylated ATM foci remained. These findings suggest that DSBs induced by the radiation-induced bystander effect persist for long periods, whereas DSBs induced by direct radiation effects are repaired relatively quickly. 相似文献
11.
Double-strand breaks (DSBs), a common type of DNA lesion, occur daily in human cells as a result of both endogenous and exogenous damaging agents. DSBs are repaired in two general ways: by the homology-dependent, error-free pathways of homologous recombination (HR) and by the homology-independent, error-prone pathways of nonhomologous end-joining (NHEJ), with NHEJ predominating in most cells. DSBs with compatible ends can be re-joined in vitro with DNA ligase alone, which raises the question of whether such DSBs require the more elaborate machinery of NHEJ to be repaired in cells. Here we report that chromosomal DSBs with compatible ends introduced by the rare-cutting endonuclease, ISceI, are repaired by precise ligation nearly 100% of the time in human cells. Precise ligation depends on the classical NHEJ components Ku70, XRCC4, and DNA ligase IV, since siRNA knockdowns of these factors significantly reduced the efficiency of precise ligation. Interestingly, knockdown of the tumor suppressors p53 or BRCA1 showed similar effects as the knockdowns of NHEJ factors. In contrast, knockdown of components involved in alternative NHEJ, mismatch repair, nucleotide excision repair, and single-strand break repair did not reduce precise ligation. In summary, our results demonstrate that DSBs in human cells are efficiently repaired by precise ligation, which requires classical NHEJ components and is enhanced by p53 and BRCA1. 相似文献
12.
An in vitro system based upon extracts of Escherichia coli infected with bacteriophage T7 was used to monitor repair of double-strand breaks in the T7 genome. The efficiency of double-strand break repair was markedly increased by DNA molecules ('donor' DNA) consisting of a 2.1 kb DNA fragment, generated by PCR, that had ends extending approximately 1 kb on either side of the break site. Repair proceeded with greater than 10% efficiency even when T7 DNA replication was inhibited. When the donor DNA molecules were labelled with 32P, repaired genomes incorporated label only near the site of the double-strand break. When repair was carried out with unlabelled donor DNA and [32P]-dCTP provided as precursor for DNA synthesis the small amount of incorporated label was distributed randomly throughout the entire T7 genome. Repair was performed using donor DNA that had adjacent BamHI and PstI sites. When the BamHI site was methylated and the PstI site was left unmethylated, the repaired genomes were sensitive to PstI but not to BamHI endonuclease, showing that the methyl groups at the BamHI recognition site had not been replaced by new DNA synthesis during repair of the double-strand break. These observations are most consistent with a model for double-strand break repair in which the break is widened to a small gap, which is subsequently repaired by physical incorporation of a patch of donor DNA into the gap. 相似文献
13.
14.
15.
It was studied for human skin fibroblasts, whether the induction or repair of DNA double-strand breaks (dsb) depend on the differentiation status. These studies were performed (a) with a fibroblast strain (HSF1) kept in progenitor state (mitotic fibroblasts, MF) or triggered to premature terminal differentiation (postmitotic fibrocytes, PMF) by exposure to mitomycin C or (b) with 20 fibroblast strains differing intrinsically in their differentiation status. The differentiation status was quantified by determining the fraction of postmitotic fibrocytes by light microscopy. DNA dsb were measured by constant-field gel electrophoresis, and the fraction of apoptotic cells by comet assay. MF and PMF cultures of HSF1 cells were irradiated with X-ray doses up to 160 Gy, and dsb were measured either immediately after irradiation or after a repair incubation of 4 or 24 h. There were a difference neither in the number of initial nor residual dsb. PMF cultures, however, showed a slightly higher number of dsb already present in non-irradiated cells, which was measured to result from a small fraction of 5% apoptotic cells. The 20 analysed fibroblast strains showed a substantial variation in the fraction of postmitotic fibrocytes (9-51%) as well as in the number of dsb remaining at 24 h after irradiation (1.9-4.9%), but there was no correlation between these two parameters. These data demonstrate that for fibroblasts the terminal differentiation has an effect neither on the induction nor the repair of radiation-induced dsb. This result indicates that the variation in dsb-repair capacity previously observed for fibroblast strains and which was considered to be the main cause for the variation in the cellular radiosensitivity, cannot be ascribed to differences in the differentiation status. 相似文献
16.
Escherichia coli dam mutants are sensitized to the cytotoxic action of base analogs, cisplatin and N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), while their mismatch repair (MMR)-deficient derivatives are tolerant to these agents. We showed previously, using pulse field gel electrophoresis (PFGE), that MMR-mediated double-strand breaks (DSBs) are produced by cisplatin in dam recB(Ts) cells at the non-permissive temperature. We demonstrate here that the majority of these DSBs require DNA replication for their formation, consistent with a model in which replication forks collapse at nicks or gaps formed during MMR. DSBs were also detected in dam recB(Ts) ada ogt cells exposed to MNNG in a dose- and MMR-dependent manner. In contrast to cisplatin, the formation of these DSBs was not affected by DNA replication and it is proposed that two separate mechanisms result in DSB formation. Replication-independent DSBs arise from overlapping base excision and MMR repair tracts on complementary strands and constitute the majority of detectable DSBs in dam recB(Ts) ada ogt cells exposed to MNNG. Replication-dependent DSBs result from replication fork collapse at O(6)-methylguanine (O(6)-meG) base pairs undergoing MMR futile cycling and are more likely to contribute to cytotoxicity. This model is consistent with the observation that fast-growing dam recB(Ts) ada ogt cells, which have more chromosome replication origins, are more sensitive to the cytotoxic effect of MNNG than the same cells growing slowly. 相似文献
17.
Long interspersed element-1 (L1) is an autonomous retroelement that is active in the human genome. The proposed mechanism of insertion for L1 suggests that cleavage of both strands of genomic DNA is required. We demonstrate that L1 expression leads to a high level of double-strand break (DSB) formation in DNA using immunolocalization of gamma-H2AX foci and the COMET assay. Similar to its role in mediating DSB repair in response to radiation, ATM is required for L1-induced gamma-H2AX foci and for L1 retrotransposition. This is the first characterization of a DNA repair response from expression of a non-long terminal repeat (non-LTR) retrotransposon in mammalian cells as well as the first demonstration that a host DNA repair gene is required for successful integration. Notably, the number of L1-induced DSBs is greater than the predicted numbers of successful insertions, suggesting a significant degree of inefficiency during the integration process. This result suggests that the endonuclease activity of endogenously expressed L1 elements could contribute to DSB formation in germ-line and somatic tissues. 相似文献
18.
Although major efforts in elucidating different DNA double-strand break (DSB) repair pathways and their contribution to accurate repair or misrepair have been made, little is known about the influence of chromatin structure on the fidelity of DSB repair. Here, the repair of ionizing radiation-induced DSBs was investigated in heterochromatic centromeric regions of human cells in comparison with other genomic locations. A hybridization assay was applied that allows the quantification of correct DSB rejoining events in specific genomic regions by measuring reconstitution of large restriction fragments. We show for two primary fibroblast lines (MRC-5 and 180BR) and an epithelial tumor cell line that restriction fragment reconstitution is considerably more efficient in the centromere than in average genomic locations. Importantly, however, DNA ligase IV-deficient 180BR cells show, compared with repair-proficient MRC-5 cells, impaired restriction fragment reconstitution both in average DNA and in the centromere. Thus, the efficient repair of DSBs in centromeric DNA is dependent on functional non-homologous end joining. It is proposed that the condensed chromatin state in the centromere limits the mobility of break ends and leads to enhanced restriction fragment reconstitution by increasing the probability for rejoining correct break ends. 相似文献
19.
20.
Single-strand breaks (ssb) in opposite strands of DNA can be sufficiently near that a double-strand break (dsb) results. A theory is presented by which the maximum number h of base pairs which cannot prevent double-strand breakage can be determined from the rates of production of ssb and dsb. The assumptions required to derive the necessary equations as well as the range of validity of the equations are discussed in detail. In the experiments ssb and dsb were produced by x-irradiation in buffers which do not eliminate indirect effects and were measured by analytical ultracentrifugation. Values of h have been determined in low and high ionic strength and in low ionic strength over a range of temperatures. The values, 2.64 and 15.8, were obtained for high and low ionic strength, respectively. 相似文献