首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To examine whether changes in autonomic activity have an effect on the latency of the vagally mediated cardiac baroreflex response in humans, we investigated the effects of neck suction fluctuating sinusoidally at 0.2 Hz on R-R intervals (known to be mediated mainly by vagal activity) in the supine position, during 15 degrees head-down tilt and 60 degrees head-up tilt, and during vagotonic (2 microg/kg) and vagolytic (10 microg/kg) doses of atropine while the subjects breathed at 0.25 Hz. The phase shift between fluctuations in neck chamber pressure and in R-R interval was calculated by complex transfer function analysis and was used as a measure of the time delay between carotid baroreceptor stimulation and cardiac effector response. Cardiac baroreflex responsiveness increased significantly during low-dose atropine and decreased during head-up tilt or 10 microg/kg atropine. With increasing tilt angle, the time delay between cyclic baroreceptor stimulation and oscillations in R-R interval increased from 0.32 +/- 0.27 s (head down), to 0.59 +/- 0.25 s (supine position, P < 0.05 vs. head down), and to 0.86 +/- 0.27 s (head up, P < 0.01 vs. supine). Low-dose atropine had a similar effect to head-down tilt on baroreflex latency, whereas 10 microg/kg atropine increased the time delay markedly to 1.24 +/- 0.30 s. Our results demonstrate that changes in autonomic activity, generated either by gravitational stimulus or by atropine, not only affect baroreflex responsiveness but also have a major influence on the latency of the vagally mediated carotid baroreceptor-heart rate reflex. The prolonged baroreflex latency during decreased parasympathetic function may contribute to an unstable regulation of heart rate in patients with cardiac disease.  相似文献   

2.
This study tested the hypothesis that ventilatory responses to chemoreceptor stimulation are affected by the level of arterial pressure and degree of baroreceptor activation. Carotid chemoreceptors were stimulated by injection of nicotine into the common carotid artery of anesthetized dogs. Arterial pressure was reduced by bleeding the animals and raised by transient occlusion of the abdominal aorta. The results indicate that ventilatory responses to chemoreceptor stimulation were augmented by hypotension and depressed by hypertension. In additional studies we excluded the possibility that the findings were produced by a direct effect of changes in arterial pressure on chemoreceptors. Both carotid bifurcations were perfused at constant flow. In one carotid bifurcation, perfusion pressure was raised to stimulate carotid sinus baroreceptors. In the other carotid bifurcation, pressure was constant and nicotine was injected to stimulate carotid chemoreceptors. Stimulation of baroreceptors on one side attenuated the ventilatory response to stimulation of contralateral chemoreceptors. This inhibition was observed before and after bilateral cervical vagotomy. We conclude that there is a major central interaction between baroreceptor and chemoreceptor reflexes so that changes in baroreceptor activity modulate ventilatory responses to chemoreceptor stimulation.  相似文献   

3.
A central motor command arising from the mesencephalic locomotor region (MLR) is widely believed to be one of the neural mechanisms that reset the baroreceptor reflex upward during exercise. The nucleus tractus solitarius (NTS), a dorsal medullary site that receives input from baroreceptors, may be the site where central command inhibits baroreceptor input during exercise. We, therefore, examined the effect of electrical stimulation of the MLR on the impulse activity of cells in the NTS in decerebrate paralyzed cats. Of 129 NTS cells tested for baroreceptor input by injection of phenylephrine (7-25 microg/kg iv) or inflation of a balloon in the carotid sinus, 58 were stimulated and 19 were inhibited. MLR stimulation (80-150 microA) inhibited the discharge of 48 of the 58 cells stimulated by baroreceptor input. MLR stimulation had no effect on the discharge of the remaining 10 cells, each of which displayed no spontaneous activity. In contrast to the 77 NTS cells responsive to baroreceptor input, there was no change in activity of 52 cells when arterial pressure was increased by phenylephrine injection or balloon inflation. MLR stimulation activated each of the 52 NTS cells. For 23 of the cells, the onset latency to MLR stimulation was clearly discernable, averaging 6.4 +/- 0.4 ms. Our findings provide electrophysiological evidence for the hypothesis that the MLR inhibits the baroreceptor reflex by activating NTS interneurons unresponsive to baroreceptor input. In turn, these interneurons may release an inhibitory neurotransmitter onto NTS cells receiving baroreceptor input.  相似文献   

4.
Aspects of cardiovascular reflexes in pathologic states   总被引:1,自引:0,他引:1  
Cardiovascular reflexes that are mediated by receptors in the heart and blood vessels control a variety of important hemodynamic and humoral functions. The action of these receptors can be shown to be abnormal in several pathologic states. Left atrial receptors exhibit a depressed discharge sensitivity in dogs with chronic congestive heart failure caused by an aortocaval fistula. The reflex effects of atrial receptor stimulation are also depressed in heart failure. Left ventricular receptor stimulation has been implicated in the abnormal vascular responses to exercise in patients with aortic stenosis. The arterial baroreflex control of heart rate is abnormal in animals and humans with various forms of hypertension. Arterial baroreceptors from hypertensive animals show a resetting of their pressure-discharge curve to higher pressures. The arterial baroreflex is also depressed in chronic heart failure. This effect may result from an abnormality of the efferent limb of the reflex arc or from changes in the interaction between baroreceptors and cardiac receptors centrally. A final possibility may be abnormal arterial baroreceptor discharge characteristics in heart failure.  相似文献   

5.
We developed a new model to examine the role of arterial baroreceptors in the long-term control of mean arterial pressure (MAP) in dogs. Baroreceptors in the aortic arch and one carotid sinus were denervated, and catheters were implanted in the descending aorta and common carotid arteries. MAP and carotid sinus pressure (CSP) averaged 104 +/- 2 and 102 +/- 2 mmHg (means +/- 1 SE), respectively, during a 5-day control period. Baroreceptor unloading was induced by ligation of the common carotid artery proximal to the innervated sinus (n = 6 dogs). MAP and CSP averaged 127 +/- 7 and 100 +/- 3 mmHg, respectively, during the 7-day period of baroreceptor unloading. MAP was significantly elevated (P < 0.01) compared to control, but CSP was unchanged. Heart rate and plasma renin activity increased significantly in response to baroreceptor unloading. Removal of the ligature to restore normal flow through the carotid resulted in normalization of all variables. Ligation of the carotid below a denervated sinus (n = 4) caused a significant decrease in CSP but no systemic hypertension. These results indicate that chronic unloading of carotid baroreceptors can produce neurogenic hypertension and provide strong evidence that arterial baroreceptors are involved in the long-term control of blood pressure.  相似文献   

6.
Recent data indicate that bilateral carotid sinus denervation in patients results in a chronic impairment in the rapid reflex control of blood pressure during orthostasis. These findings are inconsistent with previous human experimental investigations indicating a minimal role for the carotid baroreceptor-cardiac reflex in blood pressure control. Therefore, we reexamined arterial baroreflex [carotid (CBR) and aortic baroreflex (ABR)] control of heart rate (HR) using newly developed methodologies. In 10 healthy men, 27 +/- 1 yr old, an abrupt decrease in mean arterial pressure (MAP) was induced nonpharmacologically by releasing a unilateral arterial thigh cuff (300 Torr) after 9 min of resting leg ischemia under two conditions: 1) ABR and CBR deactivation (control) and 2) ABR deactivation. Under control conditions, cuff release decreased MAP by 13 +/- 1 mmHg, whereas HR increased 11 +/- 2 beats/min. During ABR deactivation, neck suction was gradually applied to maintain carotid sinus transmural pressure during the initial 20 s after cuff release (suction). This attenuated the increase in HR (6 +/- 1 beats/min) and caused a greater decrease in MAP (18 +/- 2 mmHg, P < 0.05). Furthermore, estimated cardiac baroreflex responsiveness (DeltaHR/DeltaMAP) was significantly reduced during suction compared with control conditions. These findings suggest that the carotid baroreceptors contribute more importantly to the reflex control of HR than previously reported in healthy individuals.  相似文献   

7.
Interactions between mechanisms governing ventilation and blood pressure (BP) are not well understood. We studied in 11 resting normal subjects the effects of sustained isocapnic hyperventilation on arterial baroreceptor sensitivity, determined as the alpha index between oscillations in systolic BP (SBP) generated by respiration and oscillations present in R-R intervals (RR) and in peripheral sympathetic nerve traffic [muscle sympathetic nerve activity (MSNA)]. Tidal volume increased from 478 +/- 24 to 1,499 +/- 84 ml and raised SBP from 118 +/- 2 to 125 +/- 3 mmHg, whereas RR decreased from 947 +/- 18 to 855 +/- 11 ms (all P < 0.0001); MSNA did not change. Hyperventilation reduced arterial baroreflex sensitivity to oscillations in SBP at both cardiac (from 13 +/- 1 to 9 +/- 1 ms/mmHg, P < 0.001) and MSNA levels (by -37 +/- 5%, P < 0.0001). Thus increased BP during hyperventilation does not elicit any reduction in either heart rate or MSNA. Baroreflex modulation of RR and MSNA in response to hyperventilation-induced BP oscillations is attenuated. Blunted baroreflex gain during hyperventilation may be a mechanism that facilitates simultaneous increases in BP, heart rate, and sympathetic activity during dynamic exercise and chemoreceptor activation.  相似文献   

8.
Carotid baroreceptors were stimulated with neck suction in 47 healthy subjects. Pulse interval lengthening was measured and the time course of the response was evaluated. Eight intensities of neck chamber suction were applied to select a criterion for computing the "RR response" that gives a significant linear relationship with the magnitude of the stimuli in the highest number of individuals. The best criterion was the maximal RR prolongation within 5 seconds after the onset of the stimulus. The slope of this relationship was defined as baroreflex sensitivity. The effect of physical fitness on baroreceptor function was investigated in 24 cycling tourists with a wide range of peak oxygen uptake and training characteristics. Baroreflex sensitivity averaged 7.3 +/- 0.8 msec X mm Hg-1 and was not significantly related to age, weight, basal heart rate, peak oxygen uptake and ventilation and other training characteristics. The results suggest that in man the so defined sensitivity of the carotid baroreflex control of heart rate is not influenced by the level of physical fitness and therefore the measurement of these characteristics can be neglected in evaluating baroreflex sensitivity.  相似文献   

9.
The cause of the age-related impairment of arterial baroreflex function remains ill-defined; moreover, it is unknown whether this impairment results from aging per se or from an inactive lifestyle associated with aging. In this study, we sought to: 1) determine whether elderly individuals who maintained an active lifestyle had an enhanced carotid baroreflex function as compared with their sedentary counterparts; and 2) determine whether this difference was due in part to altered function of the arterial baroreceptor and/or altered central modulation. Eight healthy, sedentary (SED, 68+/-2 yr) and eight physically active (ACT, 68+/-1 yr) elderly men with peak O(2) consumption 25.5+/-1.2 vs 35.7+/-2.4 ml/min/kg (P<0.01), respectively, were assessed with carotid baroreceptor (CBR) function using 5s pulses of neck pressure or suction (ranging from +40 to -80 Torr) delivered to the carotid sinus region at rest and during lower body negative pressure (LBNP) of -15 and -40 Torr. Changes in heart rate (HR) and mean arterial pressure (MAP) were assessed for CBR-HR and CBR-MAP gains, respectively. Overall CBR-HR gains in a range of approximately 120 mmHg of carotid sinus pressure were greater (P<0.01) in ACT than SED at rest and during LBNP. The derived peak CBR-HR slopes between ACT and SED at rest were -0.32+/-0.07 vs -0.11+/-0.02 bpm/mmHg (P=0.007), respectively. However, there was no statistical difference (P=0.37) in CBR-MAP gains between the groups. Neither CBR-MAP (P=0.08) nor CBR-HR (P=0.41) gain was augmented by LBNP in the elderly. CONCLUSION: Active lifestyle enhances the CBR-HR reflex sensitivity as a result of the improved vagal-cardiac function in elderly people. Aging is associated with an absence of central autonomic interaction in the control of blood pressure regardless of physical fitness.  相似文献   

10.
The purpose of this project was to test the hypothesis that baroreceptor modulation of muscle sympathetic nerve activity (MSNA) and heart rate is altered during the cold pressor test. Ten subjects were exposed to a cold pressor test by immersing a hand in ice water for 3 min while arterial blood pressure, heart rate, and MSNA were recorded. During the second and third minute of the cold pressor test, blood pressure was lowered and then raised by intravenous bolus infusions of sodium nitroprusside and phenylephrine HCl, respectively. The slope of the relationship between MSNA and diastolic blood pressure was more negative (P < 0.005) during the cold pressor test (-244.9 +/- 26.3 units x beat(-1) x mmHg(-1)) when compared with control conditions (-138.8 +/- 18.6 units x beat(-1) x mmHg(-1)), whereas no significant change in the slope of the relationship between heart rate and systolic blood pressure was observed. These data suggest that baroreceptors remain capable of modulating MSNA and heart rate during a cold pressor test; however, the sensitivity of baroreflex modulation of MSNA is elevated without altering the sensitivity of baroreflex control of heart rate.  相似文献   

11.
During prolonged, static carotid baroreceptor stimulation by neck suction (NS) in seated humans, heart rate (HR) decreases acutely and thereafter gradually increases. This increase has been explained by carotid baroreceptor adaptation and/or buffering by aortic reflexes. During a posture change from seated to supine (Sup) with similar carotid stimulation, however, the decrease in HR is sustained. To investigate whether this discrepancy is caused by changes in central blood volume, we compared (n = 10 subjects) the effects of 10 min of seated NS (adjusted to simulate carotid stimulation of a posture change), a posture change from seated to Sup, and the same posture change with left atrial (LA) diameter maintained unchanged by lower body negative pressure (Sup + LBNP). During Sup, the prompt decreases in HR and mean arterial pressure (MAP) were sustained. HR decreased similarly within 30 s of NS (65 +/- 2 to 59 +/- 2 beats/min) and Sup + LBNP (65 +/- 2 to 58 +/- 2 beats/min) and thereafter gradually increased to values of seated. MAP decreased similarly within 5 min during Sup + LBNP and NS (by 7 +/- 1 to 9 +/- 1 mmHg) and thereafter tended to increase toward values of seated subjects. Arterial pulse pressure was increased the most by Sup, less so by Sup + LBNP, and was unchanged by NS. LA diameter was only increased by Sup. In conclusion, static carotid baroreceptor stimulation per se causes the acute (<30 s) decrease in HR during a posture change from seated to Sup, whereas the central volume expansion (increased LA diameter and/or arterial pulse pressure) is pivotal to sustain this decrease. Thus the effects of central volume expansion override adaptation of the carotid baroreceptors and/or buffering of aortic reflexes.  相似文献   

12.
Effect of posture on arterial baroreflex control of heart rate in humans   总被引:1,自引:0,他引:1  
Altered baroreflex function may contribute to the cardiovascular changes associated with weightlessness. Since central blood volume (CBV) increases during simulated weightlessness we have examined the possibility that acute changes in CBV may modify baroreceptor function. We used graded head-up tilt (HUT) and head-down tilt (HDT) to induce changes in CBV, and neck suction to stimulate carotid baroreceptors, in 6 subjects. The increase in pulse interval induced by a negative pressure of 8.2 kPa (62 mm Hg) imposed for 10 s while supine was compared with the increase while tilted for 8 min at +/- 15 degrees, +/- 30 degrees and +/- 45 degrees. During HDT at 15 degrees the pulse interval over the first 5 cardiac cycles following suction onset was 51 +/- (SEM) 18 ms longer (p less than 0.05), at 30 degrees it was 61 +/- 20 ms longer (p less than 0.05), and at 45 degrees it was 74 +/- 35 ms longer (p less than 0.01), compared with supine. During HUT at 15 degrees the pulse interval was 25 +/- 9 ms shorter (p less than 0.05) than when supine, but was not significantly different at 30 degrees and 45 degrees. These responses occurred independently of changes in brachial blood pressure. Attenuation was also observed after 5 min (56 +/- 17 ms; less than 0.05), and after 40 min (25 +/- 9 ms; p less than 0.05) of 60 degrees HUT compared with supine. We conclude that posture does modify arterial baroreflex control of heart rate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The aim of this study was to elucidate the role of the baroreflex in blood pressure control in sloths, Bradypus variegatus, since these animals show labile levels in this parameter. Unanesthetized cannulated sloths were positioned in an experimental chair and the arterial catheter was coupled to a strain gauge pressure transducer. Blood pressure was monitored before, during and after the administration of phenylephrine (0.0625 to 4 microg/kg) and sodium nitroprusside (0.0625 to 2 microg/kg), bringing about changes in mean blood pressure from +/-30 mmHg in relation to control values. The relation between heart rate changes due to blood pressure variation was estimated by linear regression analysis. The slope was considered the reflex baroreceptor gain. The results (means+/-SD) showed that the reflex baroreceptor gain was -0.3+/-0.1 bpm/mmHg (r=0.88) to phenylephrine and -0.5+/-0.1 bpm/mmHg (r=0.92) to sodium nitroprusside, denoting a reduced reflex baroreceptor gain when compared with other mammals, suggesting that in sloths the baroreceptors are minimally involved in the buffering reflex response to these drugs. These findings suggest that the labile blood pressure could be influenced or be a result of this lowering in the reflex baroreceptor gain.  相似文献   

14.
Arterial baroreceptors reset rapidly within minutes during acute hypertension; baroreceptor pressure threshold (Pth) is increased and the pressure-baroreceptor activity relation is shifted to the right. The purpose of the present study was to determine if prostacyclin (PGI2) or other prostanoids, released during acute hypertension modulate the magnitude of baroreceptor resetting. Baroreceptor activity was recorded from the vascularly-isolated carotid sinus during distension of the sinus with slow pressure ramp in rabbits anesthetized with chloralose. Pressure-activity curves were generated after holding carotid sinus pressure for 10-15 min from 30 to 100 mmHg. In control, the elevation of holding pressure increased Pth from 44+/- to 65+/-5 mmHg (p < 0.05, n = 12). In the presence of PGI2 (20 microM), Pth averaged 43+/-4 and 45+/-3 mmHg (n = 12) after holding pressure at 30 and 100 mmHg, respectively. In the control group before exposing the carotid sinus to indomethacin, an elevation of holding pressure increased Pth from 49+/-2 to 71+/-3 mmHg (p < 0.05, n = 12). After inhibition of the endogenous formation of prostanoids with indomethacin (20 microM), Pth increased by a significantly greater extent from 61+/-2 to 90+/-3 mmHg (p < 0.05, n = 12) with the increase in holding pressure. The slope of the pressure-activity curve (baroreceptor gain) was not influenced by the change in holding pressure. It was increased significantly by PGI2, while decreased by indomethacin. Neither the change in holding pressure nor PGI2 affected the circumferential wall strain of carotid sinus over a wide range of pressure alteration. The results suggest that PGI2 or other prostanoids released during acute hypertension sensitizes baroreceptors and provides a negative feedback mechanism that opposes and limits the magnitude of rapid baroreceptor resetting.  相似文献   

15.
李智  何瑞荣 《生理学报》1989,41(4):328-337
对81只麻醉兔,在静脉注射新福林和硝普钠升降血压而改变动脉压力感受器活动的条件下,观察心率,后肢血管阻力和肾交感神经活动的反射性变化。主要结果如下:(1) 由新福林升高血压时,心率减慢、后肢血管阻力降低和肾交感神经活动抑制;硝普钠降低血压时引起相反效应。各指标的反射性变化有良好的可重复性。(2) 切断两侧减压神经或切断两侧窦神经后,静注新福林和硝普钠诱发的心率反射性变化均显著减弱(P<0.01);切断两侧减压神经较切断两侧窦神经后减弱得更为明显,其中对于新福林升压时的心率减慢反应差异显著(P<(0.05)。相反,对于新福林和硝普钠引起的后肢血管阻力反射性变化,与缓冲神经部分切断之前相比无明显差异;在对照肾交感神经活动已增高的基础上,硝普钠降压时肾交感神经活动的反射性兴奋效应降低,而新福林升压时的肾交感神经活动反射性抑制效应与神经切断前相比无明显差异。(3) 缓冲神经全部切断(SAD)后,新福林和硝普钠引起的平均动脉血压(MAP)变动幅度显著增大(P<0.05)。此时心率、后肢血管阻力和肾交感神经活动的反射调节效应均明显减弱(P<0.001)。(4) 进一步切断两侧迷走神经后,残留的反射效应即行消失。 以上结果表明,颈动脉窦和主动脉弓压力感受器传入以单纯相加的方式对心率进行反射性调节,以主  相似文献   

16.
The aim of this study was to assess carotid baroreflex responses during graded lower body negative pressure (LBNP). In 12 healthy subjects (age 29+/-4 years) we applied sinusoidal neck suction (0 to -30 mmHg) at 0.1 Hz to examine the sympathetic modulation of the heart and blood vessels and at 0.2 Hz to assess the effect of parasympathetic stimulation on the heart. Responses to neck suction were determined as the change in spectral power of RR-interval and blood pressure from baseline values. Measurements were carried out during progressive applications (0 to -50 mmHg) of LBNP. Responses to 0.1 and 0.2 Hz carotid baroreceptor stimulations during low levels of LBNP (-10 mmHg) were not significantly different from those measured during baseline. At higher levels of LBNP, blood pressure responses to 0.1 Hz neck suction were significantly enhanced, but with no significant change in the RR-interval response. LBNP at all levels had no effect on the RR-interval response to 0.2 Hz neck suction. The unchanged responses of RR-interval and blood pressure to neck suction during low level LBNP at -10 mmHg suggest no effect of cardiopulmonary receptor unloading on the carotid arterial baroreflex, since this LBNP level is considered to stimulate cardiopulmonary but not arterial baroreflexes. Enhanced blood pressure responses to neck suction during higher levels of LBNP are not necessarily the result of a reflex interaction but may serve to protect the circulation from fluctuations in blood pressure while standing.  相似文献   

17.
兔肾性高血压时的动脉压力感受器反射   总被引:1,自引:1,他引:0  
李智  何瑞荣 《生理学报》1989,41(4):338-345
14只雄性家兔在双肾缩扎术后12周,经氨基甲酸乙酯静脉麻醉,分别在缓冲神经完整、切断两侧减压神经或切断两侧窦神经后静注新福林或硝普钠升降血压以改变动脉压力感受器活动,观察其心率、后肢血管阻力和肾交感神经活动的反射性变化,并与正常血压兔的反射效应相比较。主要结果如下:(1) 动物双肾动脉缩扎后12周,平均动脉血压(131±9mmHg)较正常动物血压(95±10mmHg)有显著升高(P<0.001);(2) 缓冲神经完整时,新福林和硝普钠升降血压诱发的心率反射性变化与正常血压动物相比显著减弱(P<0.001),而后肢血管阻力和肾交感神经活动的反射性调节无明显改变,表明肾性高血压动物的心率反射性调节与外周循环的反射性调节机能不相平行;而由股动脉内直接注射新福林或硝普钠时,股动脉灌流压的增减幅度与正常血压动物相比并无明显差异;(3) 切断两侧减压神经或切断两侧窦神经后,在正常动物仅使反射性心率调节作用减弱,而后肢血管阻力和肾交感神经活动的反射性调节无明显改变;但在高血压动物,除心率的反射性调节进一步减弱外,新福林和硝普钠升降血压时后肢血管阻力和肾交感神经活动的反射性调节效应也显著地减弱(P<0.001),提示肾性高血压时动脉压力感受器反射的潜在调节能力降低。由此似表明,肾性高血压时动脉压力感受器反射  相似文献   

18.
Telemetered, free-running dogs were studied to determine the role of cardiovascular control systems in modulation of ultradian oscillations of arterial pressure (MAP) and heart rate (HR). Data, aquired (2 Hz) by a stable telemetry system, was stored on a digital computer and analyzed for its harmonic content by a Fast Fourier Transform (FFT) algorithm. Both AP and HR consistently demonstrated rhythms having a period of from 0.6 to 1.0 h. Modulation of these rhythms by arterial pressure control systems was assessed in dogs studied before and carotid sinus baroreceptor denervation, before and after denervation of the aortic arch baroreceptors and before and after a combination of both these procedures. The data indicate the power spectral density (PSD) of MAP, but not HR, is increased (p less than 0.05) after denervation of the carotid sinuses alone, while the primary frequency of the oscillations was unchanged. On the other hand, denervation of the aortic arch baroreceptors alone was without effect on either the frequency or PSD of these oscillations. A combination of both carotid sinus and aortic arch denervation resulted in an increased (p less than 0.05) PSD of MAP oscillations but not in their frequency. These data indicate that the carotid sinuses modulate rhythmic behavior of MAP by buffering the magnitude, but not frequency, of the oscillations. Moreover, since oscillations were present in dogs after denervation of both the carotid sinus and aortic arch baroreceptors, these ultradian oscillations are not a result of a non-linear negative feedback mechanisms arising from these pressure sensitive regions.  相似文献   

19.
Aortic baroreceptor deafferentation in the baboon   总被引:1,自引:0,他引:1  
Previous animal studies have indicated that removal of the aortic baroreceptors causes a moderate increase in arterial pressure that is not fully buffered by receptors in the carotid sinus. However, the role of these separate baroreceptors in the conscious nonhuman primate has not been examined. To address this question, adult male baboons were chronically maintained on a tether system that permitted them to move freely about their cage. With this system, arterial pressure and heart rate could be monitored continuously over 24-h periods with periodic drug administration to test cardiovascular function. Control values of arterial pressure and heart rate were 85.6 +/- 4.0 mmHg and 77.5 +/- 2.9 beats/min, respectively. Following removal of the aortic baroreceptors, arterial pressure rose to 104.6 +/- 5.5 mmHg and heart rate increased to 117.9 +/- 3.1 beats/min. The variability of these parameters did not change following denervation. There was, however, a suppression of the arterial pressure-heart period relationship and an augmentation in the depressor response to ganglionic blockade with hexamethonium. These data indicate that removal of the aortic baroreceptors causes a reduction in the sensitivity of the heart rate baroreflex and subsequent increase in arterial pressure that is a result of an increased sympathetic nervous system function.  相似文献   

20.
Studies of genetically modified mice provide a powerful approach to investigate consequences of altered gene expression in physiological and pathological states. The goal of the present study was to characterize afferent, central, and efferent components of the baroreceptor reflex in anesthetized Webster 4 mice. Baroreflex and baroreceptor afferent functions were characterized by measuring changes in renal sympathetic nerve activity (RSNA) and aortic depressor nerve activity (ADNA) in response to nitroprusside- and phenylephrine-induced changes in arterial pressure. The data were fit to a sigmoidal logistic function curve. Baroreflex diastolic pressure threshold (P(th)), the pressure at 50% inhibition of RSNA (P(mid)), and baroreflex gain (maximum slope) averaged 74 +/- 5 mmHg, 101 +/- 3 mmHg, and 2.30 +/- 0.54%/mmHg, respectively (n = 6). The P(th), P(mid), and gain for the diastolic pressure-ADNA relation (baroreceptor afferents) were similar to that observed for the overall reflex averaging 79 +/- 9 mmHg, 101 +/- 4 mmHg, and 2.92 +/- 0.53%/mmHg, respectively (n = 5). The central nervous system mediation of the baroreflex and the chronotropic responsiveness of the heart to vagal efferent activity were independently assessed by recording responses to electrical stimulation of the left ADN and the peripheral end of the right vagus nerve, respectively. Both ADN and vagal efferent stimulation induced frequency-dependent decreases in heart rate and arterial pressure. The heart rate response to ADN stimulation was nearly abolished in mice anesthetized with pentobarbital sodium (n = 4) compared with mice anesthetized with ketamine-acepromazine (n = 4), whereas the response to vagal efferent stimulation was equivalent under both types of anesthesia. Application of these techniques to studies of genetically manipulated mice can be used to identify molecular mechanisms of baroreflex function and to localize altered function to afferent, central, or efferent sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号