首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
探讨了辽宁盘锦辽河三角洲地区中华绒螯蟹(Eriocheir sinensis)生态育苗池中出现的近亲真宽水蚤(Eurytemor affinis)和细巧华哲水蚤(Sinocalanus tenellus)与中华绒螯蟹幼体的关系.结果表明:近亲真宽水蚤和细巧华哲水蚤都严重地影响Ⅰ期中华绒螯蟹溞状幼体的成活率,其密度越大,Ⅰ期溞状幼体的成活率就越低(P<0.01); Ⅲ期中华绒螯蟹溞状幼体可捕食桡足类无节幼体,且捕食量随着无节幼体密度增加而变大(P<0.01);Ⅴ期中华绒螯蟹溞状幼体和大眼幼体容易捕食到近亲真宽水蚤而很难捕食到细巧华哲水蚤;蟹苗池中大眼幼体的产量与育苗初期池塘中桡足类的数量呈负相关关系,且不同桡足类密度下大眼幼体收获量差异极显著(P<0.01).提出了控制和利用蟹苗池中桡足类的措施.  相似文献   

2.
小黑山岛海域刺参、魁蚶和紫贻贝生境适宜性分析   总被引:1,自引:0,他引:1  
以小黑山岛临近海域为研究对象,利用生境适宜性指数(habitat suitability index,HSI)模型选划适宜刺参(Stichopus japonicas)、魁蚶(Scapharca broughtonii)和紫贻贝(Mytilus edulis)增殖修复的区域。分别针对每个修复物种筛选出7个生境评价因子,结合专家赋值法和层次分析法确定每个评价因子的权重,利用GIS空间分析模块将现状调查数据进行插值、重分类和栅格计算,绘制研究区域目标种群生境适宜性地图。结果表明:对于刺参和紫贻贝,研究区域均适宜其生长繁殖,同一物种,相同季节在空间上无站位差异,但各季节的生境适宜性分区变化明显;对于魁蚶来说,东北部海域较适宜增殖,其次为西部海域,四季均以较适宜生境为主,仅冬季出现基本适宜生境。水温是造成季节差异的主要因素,底质类型则是引起生境站位差异的重要原因。可为后续的生物多样性保育和生态修复提供基础资料参考。  相似文献   

3.
【目的】为探究转Cry1Ac/1Ab基因棉花对异色瓢虫生长发育及其捕食功能的影响。【方法】以转Cry1Ac/1Ab基因棉与其亲本常规棉为实验材料,利用取食不同棉花品种叶片的棉铃虫饲喂异色瓢虫幼虫。【结果】与常规亲本棉相比,取食饲喂转基因棉花叶片的初孵棉铃虫幼虫的异色瓢虫幼虫从1龄发育至化蛹期时间延长0.77 d,但差异不显著;除1龄幼虫体重增加(0.0773 mg)外,其余各龄期幼虫体重均有所下降,但差异均不显著;异色瓢虫1、2、3、4龄幼虫对初孵棉铃虫捕食量均随棉铃虫密度的增加而增加,捕食功能反应均符合HollingⅡ圆盘方程。【结论】转Cry1Ac/1Ab基因棉花对异色瓢虫生长发育无显著影响,饲喂取食转Cry1Ac/1Ab基因棉花的棉铃虫对异色瓢虫捕食功能无显著差异。  相似文献   

4.
研究了低盐度海水(盐度为15)和淡水(盐度为0)对中华绒螯蟹(Eriocheir sinensis,以下简称河蟹)性腺发育及交配行为的影响,并比较了河蟹交配和产卵前后的性腺指数及肝胰腺指数的变化。实验分为4组,分别为低盐度海水雌蟹组、淡水雌蟹组、低盐度海水雄蟹组和淡水雄蟹组。结果表明,(1)各组河蟹的成活率均在80%左右,无显著差异(P>0.05);(2)实验第15天、30天和45天时,低盐度海水雌蟹组的卵巢指数显著高于淡水雌蟹组(P<0.05),低盐度海水雄蟹组的性腺指数也略高于淡水雄蟹组,但差异不显著(P>0.05);(3)实验第30天时,低盐度海水雌蟹组的肝胰腺指数显著低于淡水雌蟹组(P<0.05),其余采样时间两组雌体间或两组雄体间的肝胰腺指数差异不显著(P>0.05),实验期间,两组雌体的肝胰腺指数均显著下降(P<0.05);(4)实验第45天,低盐度海水雌蟹组和雄蟹组实验个体全部能够交配,有66.7%的低盐度海水雌蟹组的个体交配后2 d内产卵,淡水雄蟹组有部分个体在低盐度海水中有发情行为;(5)低盐度海水组,雌蟹产卵后和雄蟹交配后的性腺指数均显著下降(P<0.05),但肝胰腺指数下降不显著(P>0.05)。  相似文献   

5.
新疆西伯利亚落叶松固碳速率时空分异研究   总被引:1,自引:1,他引:0  
邱琳  郑江华  王蕾  轩俊伟  高亚琪  罗磊 《生态学报》2018,38(19):6953-6963
气候变化对高海拔物种的生长影响较为显著,高海拔物种的时空分布直接影响区域生态平衡。基于新疆森林资源连续清查数据,使用一元生物量模型估测新疆天山及阿尔泰山西伯利亚落叶松生物量,计算其固碳速率,利用全局莫兰指数(Moran's I)和热点分析(Getis-Ord Gi~*)研究新疆西伯利亚落叶松固碳速率空间聚集特征,并分析其近年来在空间上的变化趋势,再结合气象数据运用相关和偏相关分析,分析其空间分异的影响因素。结果表明:(1)天山东部西伯利亚落叶松固碳速率高于阿尔泰山西伯利亚落叶松固碳速率,2001—2016年期间,新疆西伯利亚落叶松固碳速率整体呈增长趋势,阿尔泰山西伯利亚落叶松固碳速率由0.43 t hm~(-2)a~(-1)增长至0.76 t hm~(-2)a~(-1),天山东部西伯利亚落叶松固碳速率由0.89 t hm~(-2)a~(-1)增长至1.06 t hm~(-2)a~(-1)。(2)天山东部西伯利亚落叶松固碳速率呈离散分布但不显著(P0.05),阿尔泰山西伯利亚落叶松固碳速率空间聚集特征趋于显著,其高固碳速率逐渐从东南部的青河县向西北部的阿尔泰市和哈巴河县移动,而低固碳速率从阿尔泰山的西北部的阿勒泰市向东南部的青河县移动。(3)通过偏相关分析得出,2001—2016年时期新疆西伯利亚落叶松固碳速率与温度成极显著正相关(P0.01),2001—2006年和2006—2011年时期与降水成正相关,但不显著,至2011—2016年时期转变为与降水成极显著正相关(P0.01),2001—2016年期间,其与纬度梯度成极显著负相关(P0.01)转变成无显著相关性,与海拔梯度无显著相关。新疆西伯利亚落叶松固碳速率与纬度梯度呈显著负相关的空间分布格局已发生显著变化,其空间分布格局由东南部高西北部低,逐渐变成西北部高东南部低。  相似文献   

6.
分别以鲤、鳜、斑点叉尾、黄颡鱼、瓦氏黄颡鱼、大口鲇和乌鳢作为捕食者,以中华绒螯蟹幼蟹作为猎物,在室内水泥池(2.4 m3)进行捕食试验。以日捕获率和日摄食率为指标,评估这些鱼类对幼蟹的捕食作用和危害程度,为提高湖泊幼蟹放流效果、建立蟹—鱼复合的优质高效养殖模式提供科学依据。在幼蟹完全暴露的条件下,经过多次(至少9次)重复的试验(短期1d和长期7d),鳜对不同大小的硬壳和软壳(刚蜕壳的)幼蟹没有任何捕食作用;黄颡鱼对硬壳和软壳幼蟹也没有捕食作用,但还需做进一步观察;虽然鲤、瓦氏黄颡鱼对硬壳蟹的捕获率低,但对软壳的幼蟹有较大的危害性,对幼蟹的日摄食率分别为0.070%、0.012%;大口鲇、斑点叉尾、乌鳢对幼蟹具有较强的捕食能力,对幼蟹的日摄食率分别为0.122%、0.188%和0.284%。根据这些研究结果,可以建议:(1)在池塘和湖泊河蟹养殖中,完全可以将鳜作为套养或混养对象,以期提高养殖效益;(2)在河蟹放养的湖泊,需要抑制乌鳢和大口鲇种群,适当减少鲤和瓦氏黄颡鱼丰度,以期减少这些鱼类的捕食作用,提高幼蟹存活率;(3)在河蟹养殖池塘,不能放养乌鳢、大口鲇、斑点叉尾、瓦氏黄颡鱼和鲤。  相似文献   

7.
颗石藻Pleurochrysis carterae是沿海水域中常见钙化微藻,易形成高密度水华,也是养殖环境致害种之一。抗捕食防御能力可能是其种群增殖优势的一个重要原因。以卤虫作为捕食者,分析了颗石藻P.carterae抗捕食现象,以及在捕食压力下的重要生理生化响应特征,以期为颗石藻P.carterea抗捕食机制研究及其高密度增殖机理提供参考。研究结果显示:(1)当颗石藻P.carterae比例增加时,卤虫对微藻的摄食率显著降低,且存活率显著下降,显示该藻具抗捕食能力。(2)以卤虫饵料微藻球等鞭金藻(Isochrysis galbana)为对照,比较研究发现,相同的捕食压力下,饵料金藻的叶绿素荧光参数(电子传递速率ETR和最大量子产率Fv/Fm)显著降低,但颗石藻P.carterae的ETR和Fv/Fm没有显著变化,显示颗石藻P.carterae对卤虫抗捕食作用。(3)相对于没有捕食压力的对照组,捕食压力下,饵料金藻I.galbana的脂类组成没有显著差异。但是,颗石藻P.carterae的脂类组成则发生了显著变化,主要表现在对细胞叶绿体有重要作用的单半乳糖甘油二酯(MGDG),双半乳糖甘油二酯(DGDG),磷脂酰甘油二酯(PG)含量上升,与促细胞分裂相关的二酰甘油(DAG)和磷脂酰肌醇(PI)也上升。这些脂类代谢物的变化可能在其种群水平上抵抗捕食并实现种群增殖中发挥作用。(4)培养介质中磷的状态对颗石藻P.carterae细胞二甲基巯基丙酸(Dimethyl sulfonio propionate,DMSP)含量有显著影响,且影响颗石藻P.carterae对卤虫的致害效应:缺磷条件下生长的颗石藻P.carterae首先使卤虫受害。当培养液中仅以ATP为磷源时,颗石藻P.carterae的卤虫致害效应则降低。研究证明,颗石藻P.carterae具有抗捕食能力,细胞的脂类代谢物质以及DMSP可能在抗捕食防御中发挥作用。  相似文献   

8.
文章研究了稻田黄鳝(Monopterus albus)天然饵料生物资源、稻田黄鳝对克氏原螯虾(Procambarus clarkii)捕食选择及不同投喂策略下黄鳝对克氏原螯虾的捕食强度,旨在为构建与优化稻-虾-鳝综合种养模式提供依据。结果表明,稻田中黄鳝天然饵料生物种类丰富,达16种(属);克氏原螯虾是黄鳝最喜猎物,其次为米虾,再次为蚯蚓和水生寡毛类;稻田黄鳝自然生长期间,其胃和肠前端食物团中,克氏原螯虾重量百分比均显著高于其他猎物,其中8月份占比最大,达93.90%, 4月份占比最小,为76.85%;当克氏原螯虾为唯一食物时,每尾大规格成鳝(≥200 g)日均捕食量为(1.63±0.065) g;当克氏原螯虾、米虾和蚯蚓作为食物时,黄鳝主要捕食克氏原螯虾且不捕食蚯蚓,对三者的选择指数分别为0.066、–0.266和–1;若以克氏原螯虾、鱼糜-饲料为食物时,黄鳝主要摄食鱼糜-饲料,极少捕食克氏原螯虾,对两者的选择指数分别为–0.846和0.591。  相似文献   

9.
刘艳华  牛莹莹  周绍春  张子栋  梁卓  杨娇  鞠丹 《生态学报》2021,41(17):6913-6923
在动物生境研究中,移动生境和卧息生境是生境研究的焦点。开展移动生境和卧息生境选择,并在此基础上进行生境评价,有利于深入了解动物对移动和卧息生境条件的需求,制定科学合理的栖息地保护计划。以东北虎(Panthera tigris altaica)的主要猎物物种之一-狍(Capreolus pygargus)为研究对象,于2017-2019年冬季积雪覆盖期在老爷岭南部通过随机布设28个大样方和84条用于足迹链跟踪的样线收集狍的移动点和卧息点信息,再结合近年来收集的东北虎出现点,利用广义可加模型(GAM)和最大熵模型(MaxEnt)进行狍移动、卧息生境选择及评价研究。移动生境选择研究表明,狍在移动的过程中偏好选择坡度小、距农田距离>500 m、远离道路、居民点和低海拔或较高海拔的区域;移动生境评价分析表明,移动适宜和次适宜生境面积之和为1318.16 km2,占研究区域面积的51.28%,当加入虎活动点影响因子后,狍移动适宜和次适宜生境面积之和为901.52 km2,适宜和次适宜生境面积之和减少了31.61%。狍卧息生境选择研究表明,水源、农田、道路和雪深是影响狍卧息的关键因素,其中雪深对狍卧息生境选择的贡献率达到70.13%;卧息生境评价表明,卧息适宜和次适宜生境面积之和为1243.77 km2,占研究区域面积的48.39%,当加入虎出现点因子后,适宜生境和次适宜生境面积之和减少了61.00%,仅为485.02 km2。研究认为,虎的出现对狍移动和卧息生境选择均产生影响,虎的活动及捕食行为可能会减少狍的活动范围和频次,狍远离虎活动区域卧息休息,压缩了狍适宜卧息的空间。  相似文献   

10.
砂藓(Racomitrium canescens)是一种具有极强耐脱水性的苔藓植物,编码磷脂酶D的基因RcPLD能够在砂藓的脱水和复水过程中产生显著的表达响应,它可能参与了砂藓的强耐脱水性功能。该研究使用已克隆的RcPLD编码序列构建拟南芥(Arabidopsis thaliana)过量表达转基因株系rcpld-oe,初步考察过表达株系的干旱胁迫耐受能力及其相关的生理生化指标,分析RcPLD增强拟南芥抗旱性的机制。结果表明:(1)利用已克隆的RcPLD编码序列构建了植物中的过表达载体,成功构建了RcPLD的过表达转基因拟南芥株系rcpld-oe,并获得了多个T_3代rcpld-oe纯合体株系。(2)在正常生长条件下,rcpld-oe株系T_3代纯合体植株比野生型拟南芥植株体积小,但营养生长期较长,抽薹较晚,莲座叶衰老速率较慢;在干旱处理条件下,rcpld-oe株系表现出比野生型拟南芥更强的干旱耐受能力。(3)在干旱胁迫处理过程中,rcpld-oe株系莲座叶的水分散失速率降低,可能在一定程度上降低了干旱对膜完整性的损伤和光合作用的抑制,但其渗透调节物质含量的变化相对较小。研究发现,在干旱胁迫条件下,rcpld-oe植株莲座叶的水分散失速率和光合作用抑制程度显著降低,从而表现出明显强于野生型的干旱耐受能力,这为后续RcPLD功能的深入研究和更多砂藓抗旱功能基因的挖掘奠定了基础。  相似文献   

11.
The intentional introduction of a species for the enhancement of stock or establishment of new fisheries, often has unforeseen effects. The red king crabs, Paralithodes camtschaticus, which was introduced into the Barents Sea by Russian scientists, has established a self-sustaining population that has expanded into Norwegian waters. As top benthic predators, the introduced red king crabs may have possible effects upon native epifaunal scallop (Chlamys islandica) communities. These benthic communities may be a source of prey species in late spring, when the red king crabs feed most intensively. Foraging rates (consumption, killing or severely damaging) of red king crab on native prey organisms were measured by factorial manipulation of crab density (0.5, 1.5 and 3 per m 2), size classes (immature, small mature, and large mature crabs), and by evaluating prey consumption after 48 h, in order to extrapolate a scenario of the likely impacts. Foraging rates of the red king crab on scallops ranged between 150 and 335 g per m2 within 48 h. These rates did not change when crab density was altered, though an increased amount of crushed scallops left uneaten at the tank floor, were correlated with high density of small mature crabs. Foraging rate changed significantly with crab size. Consequently, the susceptibility of native, shallow water epibenthic communities to red king crab predation in the early life history stages, and during the post-mating/molting spring period, must be considered significant when foraging rates are contrasted with natural scallop biomass between 400 and 1200 g scallops per m2.  相似文献   

12.
Although the impact of plant invasions on benthic communities, especially burrowing crabs, has received increasing attention, the results from past studies are mixed. The exotic plant Spartina alterniflora has become the most abundant species in the salt marshes of the Yangtze River estuary since it was first found just over a decade ago, but its effects on crabs in the salt marshes is largely unknown. To examine whether the invasions of this exotic plant affected native crabs, we compared the biomass and abundance of the dominant burrowing crab Sesarma dehaani in an exotic Spartina marsh, native Phragmites australis marsh and mudflats of the Yangtze River estuary, China. To explain the differences of S. dehaani populations between different habitats, feeding preference of S. dehaani for Spartina and Phragmites was investigated. Results showed crab abundance and biomass in the Spartina marsh were significantly greater than those in the Phragmites marsh and mudflats. Soil water content and plant community characteristics in the Spartina marsh also significantly differed in the Phragmites marsh and mudflats. Moreover, the feeding preference experiment showed that crabs consumed Spartina more than twice as much as Phragmites. In summary, this study showed that Spartina provided compatible habitats for native crab S. dehaani through offering suitable food source and moderate environmental conditions.  相似文献   

13.
We investigated the effect of substrate (glass bottom, sand, granule, pebble) on predation of juvenile sea scallops (Placopecten magellanicus) by sea stars (Asterias vulgaris) and rock crabs (Cancer irroratus) at two prey sizes (11-15 mm and 24-28 mm shell height), and two prey densities (10 and 30 scallops per aquarium) in laboratory experiments. Specifically, we quantified predation rate and underlying behaviours (proportion of time a predator spent searching for and handling prey, encounter rate between predators and prey, and various outcomes of encounters). We detected a significant gradual effect of particle size of natural substrates on sea star predation: specifically, predation rate on and encounter rate with small scallops tended to decrease with increasing particle size (being highest for sand, intermediate for granule, and lowest for pebble). Substrate type did not significantly affect predation rates or behaviours of sea stars preying on large scallops or of rock crabs preying on either scallop size classes. Other factors, such as prey size and density, were important in the scallop-sea star and scallop-rock crab systems. For example, predation rate by sea stars and crabs and certain sea star behaviours (e.g. probability of consuming scallops upon capture) were significantly higher with small scallops than with large scallops. As well, in interactions between small scallops and sea stars, predation rate and encounter rate increased with prey density, and the proportion of time sea stars spent searching was higher at low prey density than high prey density. Thus, substrate type may be a minor factor determining predation risk of seeded scallops during enhancement operations; prey size and prey density may play a more important role. However, substrate type still needs to be considered when choosing a site for scallop enhancement, as it may affect other scallop behaviours (such as movement).  相似文献   

14.
Large invasive predators like the king crab, Paralithodes camtschaticus, deserve particular attention due to their potential for catastrophic ecological impact on recipient communities. Conspicuous, epibenthic prey species, such as the slow growing commercial scallop Chlamys islandica, are particularly exposed to the risk of local extinction. A research program integrating experiments and field monitoring is attempting to predict and track the impact of invasive king crab on scallop beds and associated fauna along the north Norwegian coast. The claw gape of the crab shows no limitations in handling the flat-bodied scallop. However, the potential impact of the crab on scallop may depend on the availability of other calcified prey associated with scallop beds, such as the sea star, sea urchin, and blue mussel, all species recorded in the diet of P. camtschaticus. To address this issue, a laboratory experiment on foraging behaviour of P. camtschaticus was conducted. The experimental results show that all size classes of red king crab prefer scallops, but small juveniles and medium sized crabs demonstrate active selection for starfish (Asterias rubens) that equals or surpasses the electivity of the large crab. The selection of sea urchin (Strongylocentrotus droebachiensis) and blue mussel (Mytilus edulis) is slightly positive or neutral for the three crab size classes. These results suggest that scallop beds with a rich associated fauna are less vulnerable to red king crabs predation and possibly more resilient than beds with few associated species. Also, crab size distribution is likely relevant for invasion impact, with increasing abundance of small and medium sized crabs being detrimental for alternative calcified prey associated with scallop beds. Successive stages of crab invasion will see an acceleration of scallop mortality rates associated with (i) decreasing availability of alternative prey, due to protracted predation pressure intensified by recruitment of juvenile crabs, and (ii) increased number of large crabs. Estimates of crab density and intake rates suggest that the accelerated loss rates will eventually endanger scallop beds persistence.  相似文献   

15.
Crab: snail size-structured interactions and salt marsh predation gradients   总被引:4,自引:0,他引:4  
We studied size-structured predator-prey interactions between blue crabs (Callinectes sapidus) and marsh periwinkles (Littoraria irrorata) with a combination of field studies, laboratory experiments and individual-based modeling. Size distributions of Littoraria differed among years at the same sites in a salt marsh and could largely be explained by dominance of strong cohorts in the population. At a given site, abundance increased with elevation above tidal datum. Size-selective predation by blue crabs does not appear to be an important regulator of snail size distributions but may have a major effect on local abundance. Laboratory studies indicated that predator-prey interactions between Callinectes and Littoraria are strongly size-dependent. Crabs were generally effective at feeding on periwinkles at size ratios greater than approximately 6 (crab width: snail length). At lower size ratios crabs were far less effective at manipulating the snails, which often survived but with damaged shells. An individual-based model which incorporated information about incidence of snail shell scarring (resulting from non-lethal interactions) and snail density, predicted reduced predation rates and smaller average crab size with distance from the low tide refugium for crabs.  相似文献   

16.
To manage the impacts of biological invasions, it is important to determine the mechanisms responsible for the effects invasive species have on native populations. When predation by an invader is the mechanism causing declines in a native population, protecting the native species will involve elucidating the factors that affect native vulnerability. To examine those factors, this study measured how a native species responded to an introduced predator, and whether the native response could result in a refuge from predation. Predation by the green crab, Carcinus maenas, has contributed to the decline in numbers of native soft-shell clams, Mya arenaria, and efforts to eradicate crabs have proven futile. We tested how crab foraging affected clam burrowing, and how depth in the sediment affected clam survival. Clams responded to crab foraging by burrowing deeper in the sediment. Clams at shallow depths were more vulnerable to predation by crabs. Results suggest soft-shell clam burrowing is an inducible defense in response to green crab predation because burrowing deeper results in a potential refuge from predation by crabs. For restoring the native clam populations, tents could exclude crabs and protect clams, but when tents must be removed, exposing the clams to cues from foraging crabs should induce the clams to burrow deeper and decrease vulnerability. In general, by exposing potential native prey to cues from introduced predators, we can test how the natives respond, identify whether the response results in a potential refuge, and evaluate the risks to native species survival in invaded communities.  相似文献   

17.
We investigated the sublethal effects of a predatory crab, Cancer productus (Randall), on the behavior and growth of its snail prey, Littorina sitkana, by setting up controlled rearing and prey-size selection experiments. L. sitkana were collected from three sites on San Juan Island, WA, USA. These sites varied in snail size, abundance, and vertical distribution, and in the abundance of the crab predator C. productus. Snails from all three populations were raised for 34 days under the following treatments: no-crab control, a non-feeding C. productus encased in mesh box, and an encased C. productus feeding on L. sitkana. The non-feeding crab treatment did not affect snail foraging behavior or growth rate in comparison with the no-crab control. In contrast, the presence of a feeding crab elicited escape behavior in the snails, halted grazing, and consequently reduced growth rates. A population difference in escape behavior was observed: upward migration in snails from rocky shores and hiding in crevices in snails from a mud flat. It thus appears that chemicals leaching from crushed conspecific snails, rather than the presence of the crab predator, act as the “alarm substance” to which L. sitkana react. The magnitude of the growth depression in the presence of feeding crabs was 85%, with no difference among the three populations. Once the feeding crab stimulus was removed, snails in all populations resumed normal growth, suggesting that this response to feeding predators is reversible with changing environmental conditions. Laboratory experiments were set up to determine if all size classes of L. sitkana are equally susceptible to C. productus predation. C. productus consistently selected the largest of three size classes of L. sitkana. These results suggest that slow growth rate and small size in L. sitkana may actually be an adaptation for coexisting with high C. productus abundance, rather than simply a cost of escape behavior.  相似文献   

18.
Experiments were conducted to determine whether locally abundant crab species prefer co-occurring littleneck clams, Protothaca staminea (Conrad, 1837) and Tapes philippinarum (A. Adams and Reeve, 1850), relative to a recently introduced species, the varnish clam, Nuttallia obscurata, (Reeve, 1857). Prey preference, handling time, pick-up success, profitability and consumption rates were investigated for two crab species, Dungeness crab, Cancer magister (Dana, 1852) and red rock crab, Cancer productus (Randall, 1839) crabs. Both crab species preferred varnish clams over the native species. This may be attributable to the lower handling time, higher pick-up success and increased profitability of consuming varnish clams. Handling time appeared to be a factor not only in species preference, but also in the degree of preference, with shorter handling times corresponding to stronger preference values. Both native and introduced bivalves burrow into the substratum, with the varnish clam burrowing deepest. When feeding on clams in limited substratum both crab species preferred the varnish clam. In the unlimited substratum trials Dungeness crabs preferred varnish clams (although to a lesser degree) while red rock crabs preferred littleneck clams. This was likely due to the significantly deeper burial of the varnish clam, making it less accessible. Although the morphology (i.e. thin shell, compressed shape) of the invader increases its vulnerability to predation, burial depth provides a predation refuge. These results demonstrate how interactions between native predators and the physical characteristics and behaviour of the invader can be instrumental in influencing the success of an invasive species.  相似文献   

19.
In this paper, we address the question of whether the presence of the burrowing crab Chasmagnathus granulatus affects the habitat use of the fiddler crab Uca uruguayensis. Field samples showed that the species have a disjoint spatial distribution. Male fiddler crab density decreased in zones with C. granulatus, however, female density increased. Male fiddler crabs avoided feeding on sediment affected by C. granulatus and were more preyed. Predation was higher during the fiddler crab reproductive season and, probably due to predation risk, males showed lower reproductive display in shared zones. Field experiments shows that when C. granulatus were excluded, densities of U. uruguayensis increased mainly due to an increase in density of males. Habitat differentiation of these species may be because C. granulatus affects U. uruguayensis in several ways, including direct predation, disturbance and behavioural changes associated to predation risk. Males and females are affected differentially probably because of the extreme sexual dimorphism of this crab species. Coloration on enlarged claw and waving activities are all factors that increase predation risk for male and the presence of only one feeding claw may increase sediment-mediated effects.  相似文献   

20.
Predator-prey relationships between the panopeid crab, Dyspanopeus sayi, and the mytilid, Musculista senhousia, were investigated. Through laboratory experiments, prey-handling behavior, prey size selection, predator foraging behavior and preferences for two types of prey (M. senhousia and the Manila clam Ruditapes philippinarum) were assessed. Handling time differed significantly with respect to the three prey sizes offered (small: 15.0-20.0 mm shell length, SL; medium: 20.1-25.0 mm SL; and large: 25.1-30.0 mm SL); mud crabs were more efficient in predating medium-small than large prey. Although differences in prey profitability were not evident, D. sayi exhibited a marked reluctance to feed on larger-sized prey whilst smaller, more easily predated mussels were available. Size selection may be the result of a mechanical process in which encountered prey are attacked but rejected if they remain unbroken after a certain number of opening attempts. D. sayi exhibited inverse density-dependent foraging. A significant higher mortality of prey was evident at low prey density. Thus, at low predator density, the D. sayi-M. senhousia interaction was a destabilizing type II functional response. Interference responses affected the magnitude of predation intensity by D. sayi on M. senhousia, since as the density of foraging crabs increased, their foraging success fell. At high density (4 crabs tank−1), crabs engaged in a high amount of agonistic activity when encountering a conspecific specimen, greatly diminished prey mortality. Finally, presenting two types of prey, Manila clam juveniles were poorly predated by mud crabs, which focused their predation mostly on M. senhousia. It is hypothesized that, when more accessible prey is available, mud crabs will have a minimal predatory impact on commercial R. philippinarum juvenile stocks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号