首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Examination of 76 homologous neurotoxin sequences suggested that the "toxic" domain of these compounds consists of twelve highly conserved residues. Five of these, namely Lys-27, Trp-29, Asp-31, Arg-33 and Glu-38, together with a variant residue at position 36 are organized into a pattern which resembles that of d-tubocurarine. Two lines of experimental evidence are in agreement with the proposed topology of the "toxic" site in Naja nigricollis toxin alpha--Three highly conserved residues (Lys-27, Trp-29 and Lys-47) have been modified individually in toxin alpha. These modifications induce a decrease in binding affinity of toxin alpha for its target, the nicotinic acetylcholine receptor. In contrast, modifications of three residues (Leu-1, Lys-15 and Lys-51) excluded from the "toxic" domain, do not alter the binding properties of toxin alpha.--Five toxin derivatives carrying a nitroxide group at residues 1, 15, 27, 47 or 51 have been prepared. ESR spectra have been recorded for each derivative in both the free state and bound to the receptor. Mobility of the probes of the residues excluded from the "toxic" site is not altered upon receptor binding. In contrast mobility of the nitroxide of the presumed "toxic" Lys-47 becomes markedly reduced after toxin receptor complex formation. Lys-27 nitroxide is immobilized in both the free and bound state. The antigenic structure of N. nigricollis toxin alpha has been partially clarified using two different approaches. --Fifteen antigenically important residues of toxin alpha have been identified by analyzing cross-reactions between toxin alpha and eleven homologous neurotoxins, using polyclonal antibodies.--- One monoclonal antibody (M alpha 1) specific for toxin alpha has been prepared. Competition experiments, made with (3H) toxin alpha, six mono modified toxin derivatives or alpha three homologous neurotoxins, showed that the binding site of (M alpha 1) comprises the N-terminal group, Lys-15, Pro-18 and probably Thr-16. This site is topographically different from the "toxic" domain. (M alpha 1) inhibits the toxicity of toxin alpha under both in vivo and in vitro conditions. In addition, (M alpha 1) is capable of "removing" toxin molecules bound to the receptor, allowing a rapid recovery of the functional properties of the receptor.  相似文献   

2.
M E Johnson 《Biochemistry》1978,17(7):1223-1228
The spin label Tempo-maleimide, when "immobilized" in hemoglobin, is shown to exhibit motional fluctuation whose amplitude and/or frequency depend on temperature and solution conditions. These motional fluctuations are observable by several electron spin resonance techniques. For desalted hemoglobin the fluctuations are detectable at approximately -15 degrees C using saturation transfer techniques and at approximately +25 degrees C using line-width measurements of normal absorption spectra. In ammonium sulfate precipitated hemoglobin, however, motional fluctuations are not detectable by either technique up to at least 40 degrees C. The most probable mechanism for spin-label motion appears to be either fluctuations in protein conformation which affect the label binding site or conformational transitions of the nitroxide ring itself. These motional fluctuations are shown to introduce a librational character to the overall label motion during hemoglobin rotational diffusion, with the librational motion significantly affecting the use of spin-label spectral shapes to calculate hemoglobin rotational correlation times.  相似文献   

3.
The spin-label 2,2,5,5-tetramethyl-1-oxy-3-pyrroline-3-carboxylic acid was attached to the inhibitor carboxyatractylate of the mitochondrial ADP/ATP carrier. Being closely linked to the inhibitor, the spin-label should reflect the mobility of the carboxyatractylate. When bound to the carrier in mitochondria, spin-labeled carboxyatractylate reveals a most unusual hyperfine splitting of 72 G. A second spectral component with a hyperfine splitting of 62 G is also mainly due to carrier-bound inhibitor. A similar spectrum with somewhat reduced hyperfine splitting was observed with the detergent-solubilized protein, whereas reincorporation into phospholipid membranes yielded almost the same spectra as in mitochondria. The carrier-bound spin-label is concluded to be highly immobilized. The less immobilized spectral component is discussed in terms of strongly anisotropic label motion. In addition, the unusual splitting is interpreted to indicate the highly polar environment of the nitroxide. The interpretations are supported by the temperature dependence, which indicates a reversible progressive spin-label mobilization up to 50 degrees C. Membrane-impermeable reducing agents showed that the spin-label is easily accessible from the aqueous phase.  相似文献   

4.
Site-directed spin-labeling and electron paramagnetic resonance are powerful tools for studying structure and conformational dynamics of proteins, especially in membranes. The position of the spin label is used as an indicator of the position of the site to which it is attached. The interpretation of these experiments is based on the assumptions that the spin label does not affect the peptide configuration and that it has a fixed orientation and distance with respect to the protein backbone. Here, the validity of these assumptions is examined through implicit membrane molecular dynamics simulations of the influenza hemagglutinin fusion peptide that has been labeled with methanethiosulfonate spin label. We find that the methanethiosulfonate spin label can occasionally induce peptide orientations that differ from those adopted by the wild-type peptide. Furthermore, the spin-label resides, on average, several Angstroms deeper in the membrane than the corresponding backbone C(alpha)-atom even at sites pointing toward the solvent. The nitroxide spin label exhibits flexibility and adopts various configurations depending on the surrounding residues.  相似文献   

5.
Distance measurements in spin-labeled lysozyme   总被引:2,自引:0,他引:2  
P G Schmidt  I D Kuntz 《Biochemistry》1984,23(18):4261-4266
The single His-15 of hen egg lysozyme reacts with 2,2,6,6-tetramethyl-4-(bromoacetamido)piperidinyl-1-oxy or 2,2,5,5-tetramethyl-3-(bromoacetamido)pyrrolidinyl-1-oxy to give a spin-labeled enzyme [Wien, R. W., Morrisett, J. D., & McConnell, H. M. (1972) Biochemistry 11, 3707-3716]. High-field 1H NMR spectra (300 and 500 MHz) of these species in 2H2O contain protein peaks selectively broadened by dipolar coupling to the unpaired electron spin. While usually difficult to discern in the spectrum itself, broadened resonances are revealed in difference spectra obtained by subtracting the original spectrum from one taken after reduction of the nitroxide radical with ascorbate. The heights of difference spectra peaks are related in a simple way to r-6, where r is the label to proton distance. These distances were used to solve for the location of the electron spin by using algorithms from distance geometry. The spin was found to lie in a hydrophobic groove between Phe-3 and Asp-87. These results demonstrate the feasibility of spin-labeling for accurate distance measurements in proteins through the use of distance geometry.  相似文献   

6.
A first thiol-specific pH-sensitive nitroxide spin-label of the imidazolidine series, methanethiosulfonic acid S-(1-oxyl-2,2,3,5,5-pentamethylimidazolidin-4-ylmethyl) ester (IMTSL), has been synthesized and characterized. X-Band (9 GHz) and W-band (94 GHz) EPR spectral parameters of the new spin-label in its free form and covalently attached to an amino acid cysteine and a tripeptide glutathione were studied as a function of pH and solvent polarity. The pKa value of the protonatable tertiary amino group of the spin-label was found to be unaffected by other ionizable groups present in side chains of unstructured small peptides. The W-band EPR spectra were shown to allow for pKa determination from precise g-factor measurements. Is has been demonstrated that the high accuracy of pKa determination for pH-sensitive nitroxides could be achieved regardless of the frequency of measurements or the regime of spin exchange: fast at X-band and slow at W-band. IMTSL was found to react specifically with a model protein, iso-1-cytochrome c from the yeast Saccharomyces cerevisiae, giving EPR spectra very similar to those of the most commonly employed cysteine-specific label MTSL. CD data indicated no perturbations to the overall protein structure upon IMTSL labeling. It was found that for IMTSL, g iso correlates linearly with A iso, but the slopes are different for the neutral and charged forms of the nitroxide. This finding was attributed to the solvent effects on the spin density at the oxygen atom of the NO group and on the excitation energy of the oxygen lone-pair orbital.  相似文献   

7.
A new bifunctional spin-label (BSL) has been synthesized that can be immobilized on the surface of proteins, allowing measurement of rotational motion of proteins by saturation-transfer electron paramagnetic resonance (STEPR). The spin-label contains a photoactivatable azido moiety, a cleavable disulfide, and a nitroxide spin with restricted mobility relative to the rest of the label. The label reacts with surface lysine residues modified with beta-mercaptopropionate. Bifunctional attachment is achieved by photoactivation of the azido group. Any spin-label that remains monofunctionally attached after photolysis is removed by reduction of the disulfide. Only bifunctionally attached BSL remains on the protein. Hemoglobin was used to test the utility of the BSL in STEPR by comparison with hemoglobin modified with maleimide spin-label (MSL), a commonly used standard for the STEPR technique. MSL is a monofunctional spin-label which is fortuitously immobilized by local protein structure within hemoglobin. The BSL labeling of hemoglobin did not significantly affect the quaternary structure of hemoglobin as determined by gel filtration chromatography. The conventional EPR spectra of the mono- and bifunctionally attached BSL-hemoglobin were similar to the MSL-hemoglobin spectrum, indicating that both forms of BSL were rigidly bound to hemoglobin. In contrast, the spectrum obtained by reaction of modified hemoglobin lysine residues with MSL indicated that these labels were highly mobile. The monofunctionally attached BSL was mobilized upon octyl glucoside addition whereas bifunctionally attached BSL was only slightly mobilized, suggesting that hydrophobic interactions immobilize the monofunctionally attached label on hemoglobin. The response of STEPR spectra of mono- and bifunctionally attached BSL-hemoglobin to changes in hemoglobin rotational correlation time was similar to the MSL-hemoglobin over the range of 10(-5)-10(-3) s. The spectra of bifunctionally attached BSL indicated slightly less motion than corresponding spectra for MSL or monofunctionally attached BSL. The new BSL is a good reporter of protein rotation and does not require unique protein structures for its immobilization on the protein. Thus, the BSL should be more generally applicable for STEPR studies of membrane protein rotation than existing monofunctional spin-labels.  相似文献   

8.
A Munding  M Drees  K Beyer  M Klingenberg 《Biochemistry》1987,26(26):8637-8644
Binding of spin-labeled maleimides to the mitochondrial ADP/ATP carrier was investigated both in mitochondria and in the detergent-solubilized carrier protein. In mitochondria, spin-label binding to the carrier was evaluated by preincubation with the inhibitor carboxyatractyloside. The membrane sidedness of SH groups in the carrier molecule was determined by chemical reduction of nitroxides on the cytosolic membrane surface by Fe2+ or by pretreatment of the mitochondria with impermeant SH reagents. These experiments suggest that each subunit of the dimeric carrier incorporates one spin-labeled maleimide. Roughly half of the carrier-bound spin-labels were found on either side of the mitochondrial membrane. The detergent-solubilized carrier protein was labeled with a series of maleimide derivatives containing a spacer of increasing length between the maleimide and nitroxide moieties. A total spin-label binding of 2-3 mol/mol of protein dimer, depending on the spin-label length, was found. The electron spin resonance spectra of the spin-labeled protein invariably showed strongly and weakly immobilized components. Increasing the distance of the nitroxide from the maleimide ring resulted in a strong increase of the contribution of the weakly immobilized component. These observations led to the conclusions that the geometrical constraint of spin-label mobility changes at a distance of about 10 A from the maleimide binding site.  相似文献   

9.
A new, highly reactive, thiol-specific spin label, (1-oxyl-2,2,5,5-tetramethyl-Δ3-pyrroline-3-methyl)methanethiosulfonate was synthesized. Its unique specificity was demonstrated with the active thiol protease, papain, which was stoichiometrically inhibited within 5 min, resulting in a conformationally sensitive spectrum, which was identical over the pH range 4.5–7.5. The spin-label modification yielded a mixed disulfide between Cys 25 of papain and the 3-methylpyrroline nitroxide which was rapidly and completely reversed by exposing the labeled papain to mild concentrations of dithiothreitol. The concentration of released nitroxide corresponded exactly to the number of reactive thiol groups in the original enzyme. Full enzymatic activity was restored after the spin label was removed. This spin label is useful as a sensitive thiol titrating agent as well as a specific conformational probe of thiol site structure by virtue of its minimal rotational freedom and distance from the covalent disulfide linkage to the macromolecule under study.  相似文献   

10.
S C Lee  A F Russell 《Biopolymers》1989,28(6):1115-1127
The complete assignment of resonances in the proton nmr spectrum of the 1-34 amino acid fragment of human parathyroid hormone [hPTH(1-34)], determined using a combination of one- and two-dimensional nmr techniques at 500 MHz, is described. In particular, homonuclear Hartmann-Hahn experiments, recorded in H2O and D2O, are used to resolve ambiguities in the connectivities between the highly overlapped resonances in the aliphatic region of the spectrum. One-dimensional multiple quantum filtering experiments are used to identify serine and phenylalanine spin systems. Analyses of the through-bond and through-space connectivities in the alpha H-NH fingerprint regions of the correlated spectroscopy (COSY) and nuclear Overhauser effect spectroscopy (NOESY) spectra lead to the assignment of resonances to specific amino acid residues in the polypeptide. Examination of the observed NOE cross peaks indicates that hPTH(1-34) has no detectable secondary structural elements in aqueous solution.  相似文献   

11.
K M Lee  A G Marshall 《Biochemistry》1987,26(17):5534-5540
Base-pair sequences for 5S and 5.8S RNAs are not readily extracted from proton homonuclear nuclear Overhauser enhancement (NOE) connectivity experiments alone, due to extensive peak overlap in the downfield (11-15 ppm) proton NMR spectrum. In this paper, we introduce a new method for base-pair proton peak assignment for ribosomal RNAs, based upon the distance-dependent broadening of the resonances of base-pair protons spatially proximal to a paramagnetic group. Introduction of a nitroxide spin-label covalently attached to the 3'-terminal ribose provides an unequivocal starting point for base-pair hydrogen-bond proton NMR assignment. Subsequent NOE connectivities then establish the base-pair sequence for the terminal stem of a 5S RNA. Periodate oxidation of yeast 5S RNA, followed by reaction with 4-amino-2,2,6,6-tetramethylpiperidinyl-1-oxy (TEMPO-NH2) and sodium borohydride reduction, produces yeast 5S RNA specifically labeled with a paramagnetic nitroxide group at the 3'-terminal ribose. Comparison of the 500-MHz 1H NMR spectra of native and 3'-terminal spin-labeled yeast 5S RNA serves to identify the terminal base pair (G1 . C120) and its adjacent base pair (G2 . U119) on the basis of their proximity to the 3'-terminal spin-label. From that starting point, we have then identified (G . C, A . U, or G . U) and sequenced eight of the nine base pairs in the terminal helix via primary and secondary NOE's.  相似文献   

12.
13.
Five derivatives of Naja nigricollis toxin alpha, spin-labeled on a single amino group, were prepared. The toxin derivatives were purified to homogeneity by ion-exchange and high-pressure liquid chromatographies. The modified amino groups are localized at residue 1 and lysines 15, 27, 47 and 51. Competition data show that incorporation of spin label at residues 27 or 47 reduces the affinity of the toxin for the nicotinic acetylcholine receptor (AcChR), while incorporation at residues 1 or 15 diminishes toxin affinity for a monoclonal toxin-specific immunoglobulin (M alpha 1). Classical and/or saturation transfer electron spin resonance (ESR) analysis was carried out on each derivative, either in the free state or bound to AcChR or M alpha 1. The data obtained give the following indications. In the free state, the nitroxides incorporated at residues 1, 15, 47 and 51 have their own rapid motion, while that at residue 27 had no residual mobility and reflects the toxin rotation. Binding of AcChR to the toxin reduces the motion of the nitroxide bound to Lys47. Binding of M alpha 1 to the toxin immobilizes the two nitroxides fixed on residues 1 and 15. ESR spectra show that Lys27-bound nitroxide remains immobilized upon binding of either AcChR or M alpha 1. The change in nitroxide immobilization observed upon AcChR or M alpha 1 binding correlates well with the variation of nitroxide accessibility to a water-soluble paramagnetic N2+i ion. Binding of the labeled Lys47 toxin derivative to AcChR yields a complex ESR signal, disclosing the existence of a physical difference between the two toxin binding sites on AcChR. All the data indicate that AcChR and M alpha 1 bind at two topographically distinct sites on the toxin surface.  相似文献   

14.
The two key structural features of alpha 2-macroglobulin (alpha 2M) involved in inhibitory caging of proteases are the thiol ester and the bait region. This paper examines the environment of the hydrolyzed thiol ester in methylamine-treated human alpha 2M and the separation between the bait region and the thiol ester and between the four thiol esters in the tetramer to try to further our understanding of how bait region proteolysis triggers thiol ester cleavage. The sulfhydryl groups of Cys-949, formed upon cleavage of the thiol ester by methylamine, were specifically labeled with the nitroxide spin-labels 3-(2-iodoacetamido)-PROXYL (iodo-I) (PROXYL = 2,2,5,5-tetramethylpyrrolidine-1-oxyl), 3-[2-(2-iodoacetamido)acetamido]-PROXYL (iodo-II), and 4-(2-iodoacetamido)-2,2,6,6-tetramethylpiperidine-1-oxyl (iodo-III). ESR spectra of these alpha 2M derivatives showed that label I is firmly held and label II has limited freedom of rotation consistent with location of the cysteine residue in a narrow cavity. Label III has much greater motional freedom. From the absence of dipole-dipole splittings in the ESR spectra, it is concluded that the four nitroxide groups in the tetramer are more than 20 A apart for both label I and label II. Label I broadens 1H NMR signals from one phenylalanyl, one tyrosyl, and four histidyl residues in the bait region. Separations of 11-17 A are estimated between the nitroxide of label I and these residues. Label II is further away and only broadens resonances from one of the histidines.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
2-N3-SL-ATP [2-azido-2',3'-O-(1-oxyl-2,2,5,5-tetramethyl-3-carbonyl-pyrroline) adenosine triphosphate], a photoaffinity spin-labeled derivative of ATP with a nitroxide moiety attached to the ribose ring and an azido group attached to C2 of the adenine ring, was used to study the nucleotide-binding site stoichiometry of sarcoplasmic reticulum (SR) Ca2+-ATPase. The label was shown to bind at the catalytic site of the enzyme, even though the rate of hydrolysis was poor. A maximal binding ratio of 1 mol/mol of ATPase was found. The ESR spectra showed signals from spin-spin interactions between two radicals corresponding to a distance of about 15 A between labels bound to adjacent sites on the enzyme. This indicates that the minimal functional unit of the Ca2+-ATPase is a dimer with the nucleotide-binding sites in close proximity.  相似文献   

16.
A DNA-based model system is described for studying electron spin-spin interactions between a paramagnetic metal ion and a nitroxide spin label. The modified base deoxythymidine-EDTA (dT-EDTA) chelates the divalent or trivalent metal ion and produces a new feature in the circular dichroism (CD) spectra that makes it possible to monitor local DNA melting. Based on the results of optical and electron paramagnetic resonance (EPR) experiments, we find that the terminus of the DNA duplex that incorporates dT-EDTA and the spin-label melts at a higher temperature than the rest of the DNA duplex. EPR microwave progressive power saturation experiments performed at 77 K are consistent with the specific binding of Dy(III) at the EDTA site and an intramolecular dipole-dipole interaction between the nitroxide spin-label and the chelated Dy(III). This model system should be suitable for studying the relaxation properties of metal ions by saturation-recovery EPR.  相似文献   

17.
D-beta-Hydroxybutyrate dehydrogenase (EC 1.1.1.30) is a membrane-bound, lipid-requiring enzyme which has a reactive sulfhydryl in the vicinity of the active center. The spin-probe-spin-label technique has been used to estimate the distance of separation of the reactive sulfhydryl of D-beta-hydroxybutyrate dehydrogenase from the bilayer surface. The reactive sulfhydryl of the enzyme was derivatized with the maleimide spin-label reagent 4-maleimido-2,2,6,6-tetramethylpiperidinyl-1-oxy in the presence of the cofactor NAD+. The derivatized enzyme, inserted (inlaid orientation) into phospholipid vesicles, was titrated with spin probes, either Mn2+ or Gd3+, until the spin-label EPR spectrum was reduced in amplitude to its residual (limiting) value. From this limiting amplitude, the dipolar interaction coefficient was obtained, which is related to the reciprocal of the distance to the sixth power. The radial distances of closest approach of the paramagnetic Mn2+ and Gd3+ ions to the spin-label nitroxide on the enzyme were found to be 18 and 16 A, respectively. These calculated distances were in accord with those determined by comparison with a phosphatidylcholine calibration system having 2,2-dimethyloxazolidinyl-1-oxy spin-labels located at selected positions along the sn-2 fatty acyl chain. Since the distal nitroxide moiety of the maleimide spin-label (17 A from the bilayer surface) is 8 A from the sulfhydryl addition site, the two limiting distances of immersion of the reactive sulfhydryl within the bilayer are 9 and 25 A. The shorter distance is considered more compatible with facile access of the coenzyme to the active site of the enzyme.  相似文献   

18.
The catalytic site of Escherichia coli F1 was probed using a reactive ATP analogue, adenosine triphosphopyridoxal (AP3-PL). For complete loss of enzyme activity, about 1 mol of AP3-PL bound to 1 mol of F1 was estimated to be required in the presence or absence of Mg2+. About 70% of the label was bound to the alpha subunit and the rest to the beta subunit in the absence of Mg2+, and the alpha Lys-201 and beta Lys-155 residues, respectively, were the major target residues (Tagaya, M., Noumi, T., Nakano, K., Futai, M., and Fukui, T. (1988) FEBS Lett. 233, 347-351). Addition of Mg2+ decreased the AP3-PL concentration required for half-maximal inhibition, and predominant labeling of the beta subunit (beta Lys-155 and beta Lys-201) with the reagent. ATP and ADP were protective ligands in the presence and absence of Mg2+. The alpha subunit mutation (alpha Lys-201----Gln or alpha Lys-201 deletion) were active in oxidative phosphorylation. However, purified mutant F1s showed impaired low multi-site activity, although their uni-site catalyses were essentially normal. Thus alpha Lys-201 is not a catalytic residue, but may be important for catalytic cooperativity. Mutant F1s were inhibited less by AP3-PL in the absence of Mg2+, and consistent with this, modifications of their alpha subunits by AP3-PL were reduced. AP3-PL was more inhibitory to the mutant enzymes in the presence of Mg2+, and bound to the beta Lys-155 and beta Lys-201 residues of mutant F1 (alpha Lys-201----Gln). These results strongly suggest that alpha Lys-201, beta Lys-155, and beta Lys-201 are located close together near the gamma-phosphate group of ATP bound to the catalytic site, and that the two beta residues and the gamma-phosphate group become closer to each other in the presence of Mg2+.  相似文献   

19.
Electron-spin resonance (ESR) spectra of a nitroxide spin-label attached to residue i6A-37 of yeast tRNATyr were measured in complexes of deacylated tRNATyr with Escherichia coli ribosomes. A Scatchard plot, obtained in the absence of mRNA, indicated strong binding with an association constant of 1 X 10(7) l X mol-1, suggesting the P-site binding. The ESR spectrum of free tRNATyr, characteristic for a rapidly tumbling nitroxide, changes to a spectrum with extensively broadened lines in the ribosome-tRNA complex. The original spectrum can be restored upon long incubations of the complex with an excess of extraneous tRNA. ESR spectra suggest that the spin-label motion is drastically perturbed though not completely blocked in the ribosome-tRNATyr complex. Since ESR spectra of a spin-label attached to the opposite, i.e. 5', side of the anticodon loop are only slightly perturbed by the messenger-free binding to ribosomes [Rodriguez et al. (1980) J. Biol. Chem. 255, 8116-8120], it is concluded that the two sides of the anticodon loop face entirely different environments when bound to the P site, the 3' side being oriented towards the surface of the ribosome, and the other side towards its environment or a large cavity.  相似文献   

20.
We describe a simple experimental approach for the rapid determination of protein global folds. This strategy utilizes site-directed spin labeling (SDSL) in combination with isotope enrichment to determine long-range distance restraints between amide protons and the unpaired electron of a nitroxide spin label using the paramagnetic effect on relaxation rates. The precision and accuracy of calculating a protein global fold from only paramagnetic effects have been demonstrated on barnase, a well-characterized protein. Two monocysteine derivatives of barnase, (H102C) and (H102A/Q15C), were 15N enriched, and the paramagnetic nitroxide spin label, MTSSL, attached to the single Cys residue of each. Measurement of amide 1H longitudinal relaxation times, in both the oxidized and reduced states, allowed the determination of the paramagnetic contribution to the relaxation processes. Correlation times were obtained from the frequency dependence of these relaxation processes at 800, 600, and 500 MHz. Distances in the range of 8 to 35 A were calculated from the magnitude of the paramagnetic contribution to the relaxation processes and individual amide 1H correlation times. Distance restraints from the nitroxide spin to amide protons were used as restraints in structure calculations. Using nitroxide to amide 1H distances as long-range restraints and known secondary structure restraints, barnase global folds were calculated having backbone RMSDs <3 A from the crystal structure. This approach makes it possible to rapidly obtain the overall topology of a protein using a limited number of paramagnetic distance restraints.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号