首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The stability of growth-hormone releasing factor (growth regulating factor; GRF) analogs in porcine plasma was examined. GRF analogs were incubated in porcine plasma at 37 degrees C, extracted and subsequently analyzed using high performance liquid chromatography (HPLC). GRF(1-29)-NH2 was rapidly broken down in the plasma with a degradation rate of t1/2 = 13 min. The primary degradation product was identified as GRF(3-29)-NH2. Substitution of Gly15 by Ala15 slightly prolonged the plasma half-life (t1/2 = 17 min) and the major degradative fragment was found to be [Ala15]GRF(3-29)-NH2. The cleavage between the 2 and 3 position of the peptide was not inhibited by trasylol at a concentration of 1,000 KIU/ml but was dramatically reduced by the combined use of diprotin A and trasylol. Absence of the free amino group at the N-terminus and/or substitution of a D-amino acid residue at the penultimate position completely prevented cleavage between the 2 and 3 position in the structural linear GRF analogs. Side-chain to side-chain cyclization between Asp8 and Lys12 amino acid residues significantly improved the stability of GRF in plasma with t1/2 greater than 2 hr. An additional stability was provided by substitution of D-Ala2 for Ala2 in the structural cyclic analog. Cyclization between Lys21 and Asp25 also improved the stability of the GRF peptide in the plasma. Stability was further enhanced by the presence of D-Ala2 or by forming a dicyclic analog through an additional linkage between Asp8 and Lys12.  相似文献   

2.
125I[D-Ala2, Met5] enkephalin with high specific activity (122-185 Ci/mmol) was prepared and purified by Sep-Pak C18 reverse phase cartridge followed by high performance liquid chromatography (HPLC). HPLC at pH 3.0 resolved 125I[D-Ala2, Met5] enkephalin into two fractions, which ran as a single spot in thin-layer chromatography with the same Rf values. Alkaline hydrolysates of the HPLC-purified fractions showed a single spot corresponding to monoiodotyrosine standard when analysed by thin-layer chromatography. Binding kinetics of the tracer was found to approach equilibrium after 30 min at 24 degrees. Scatchard analysis of the saturation equilibrium binding studies gave an equilibrium dissociation constant of 3.58 nM and the number of binding site of 30 fmol/mg protein. Enkephalin analogs were capable of displacing 125I[D-Ala2, Met5] enkephalin binding from the rat brain plasma membrane. The effective concentration of [D-Ala2, Met5] enkephalin and [D-Ala2, Leu5] enkephalin for 50% inhibition of 125I[D-Ala2, Met5] enkephalin binding was estimated to be 79 nM and 23 nM, respectively. Both substance P and gastrin tetrapeptide failed to displace the 125I[D-Ala2, Met5] enkephalin binding to any significant extent. The 125I[D-Ala2, Met5] enkephalin prepared by the present procedure is therefore a useful tracer. This method of preparing radioiodinated peptide may be applicable to other enkephalin analogs or neuropeptides in general.  相似文献   

3.
Morphine and the synthetic opioid met-enkephalin analog [D-Ala2, MePhe4, Met(0)5ol] enkephalin (FK 33-824) injected intraperitoneally to rats at doses of 5-20 and 0.5-2 mg/kg respectively showed a protective effect on gastric lesion induced by cold-restraint stress. This protective effect was abolished by pretreatment with indomethacin. This suggests a role for prostaglandins in the protection, induced by opioids of the gastric mucosa against the development of stress-induced ulcers.  相似文献   

4.
The opioid receptor preference for dermorphin and several dimerized structural analogues was investigated using rat brain synaptosomes and correlated with the potencies of intracerebroventricularly administered dimeric dermorphin peptides to inhibit gastric acid secretion. The carboxyl terminus of dermorphin or amino-terminal dermorphin analogues was bridged by dihydrazide or (poly)ethylenediamine structures. Synaptosomal membranes were prepared for radioligand binding assay in the presence of soybean trypsin inhibitor and preincubated to remove endogenously bound opioid peptides before storage at -70 degrees C. Specific radiolabeled agonists used in the radioligand binding assays were [D-Ala2,N-methyl-Phe4,Gly-ol5] [3H] enkephalin for mu-receptors and [D-Ala2,D-Leu5] [3H]enkephalin for delta-receptors. delta-Receptor binding assays were conducted in the presence of 2.6 microM [N-Me-Phe3,D-Pro4]morphiceptin to suppress peptide binding to mu-receptors. [D-Ala2,N-methyl-Phe4,Gly-ol5]enkephalin and dermorphin had affinities of 1.39 and 1.22 nM for mu-receptors and 355.8 and 178.6 nM for delta-receptors, respectively. Affinities of dimeric-dermorphin0 for mu- and delta-receptors, and the mu-selectivity ratio, exceeded values characteristic of dermorphin. The dimerized amino-terminal dermorphin analogues are peptides whose receptor binding differed from the parent molecule; e.g. the affinity of dimeric tetrapeptides toward mu-receptors was reduced but was increased for delta-receptors relative to monomeric dermorphin-(1-4)-amide. Dimeric tetradermorphin linked by a bridge containing 12 methylene units (di-tetra-dermorphin12), exhibited a dramatic loss in the mu-selectivity ratio as a result of diminished mu-affinity. On the other hand, substitution of Gly4 by Sar in di-tetra-dermorphin2 enhanced binding to mu-receptors: substitution of D-Arg2 for D-Ala resulted in an increased binding to mu-receptors while decreasing binding to delta-receptors, yielding a peptide with the highest mu-selectivity ratio. These substitutions of D-Arg2 and Sar4 in dimeric amino-terminal dermorphin pentapeptides enhanced binding to both mu- and delta-receptors relative to dermorphin-(1-5)-amide, but led to a decrease in its mu-selectivity ratio. Several dimeric dermorphin analogues exhibited an enhanced mu-selectivity ratio relative to their monomeric analogues. Dimeric peptides, which had a relatively high affinity for mu-receptors, were effective in the suppression of gastric acid secretion.  相似文献   

5.
Treatment of NG108-15 cells in culture with the opiate peptide [D-Ala2,D-Leu5]enkephalin produces maximal inhibition of cyclic AMP synthesis in less than 15 min. The activity of [GM3]:N-acetylgalactosaminyltransferase is similarly inhibited, but maximal inhibition is not observed for at least 30 min following the addition of [D-Ala2,D-Leu5]enkephalin. Conversely, the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine rapidly potentiates the intracellular accumulation of cyclic AMP and, in a more gradual fashion, increases [GM3]:N-acetylgalactosaminyltransferase activity. The reductions in the activity of [GM3]:N-acetylgalactosaminyltransferase that occur following treatment of NG108-15 cells with indomethacin argues for a direct role of cyclic AMP in the observed changed in [GM3]:N-acetylgalactosaminyltransferase activity. By adding low concentrations of cyclic AMP (but not cyclic GMP) to microsomes derived from neonatal rat brain, we were able to demonstrate a dose-dependent phosphorylation of membrane protein and subsequent doubling of [GM3]:N-acetylgalactosaminyltransferase activity.  相似文献   

6.
The interaction of beta-endorphin with opiate receptors was studied by using the radioiodinated, metabolically stable D-Ala2 derivative of human beta-endorphin. This analog binds specifically to rat brain membrane preparations with an apparent Kd of about 2.5 x 10-9 M. The ability of various enkephalin analogs, as well as opiate agonists and antagonists, to inhibit the binding of beta-endorphin clearly demonstrates that this peptide can bind to opiate receptors. However, the effects of various cations on the binding of 125I-[D-Ala2]beta-endorphin are markedly different from those found for enkephalin binding. Sodium ion at physiological concentrations decreases substantially the binding of enkephalins but only slightly decreases endorphin binding, whereas manganese enhances enkephalin binding but has no effect on endorphin binding. Moreover, potassium (100 mM) decreases the binding of beta-endorphin but does not affect enkephalin binding. These results suggest that beta-endorphin and enkephalin bind differently to the same receptor or bind to different receptors with overlapping specificity.  相似文献   

7.
A cystamine-enkephalin dimer, containing two molecules of [D-Ala2, Leu5] enkephalin cross-linked at the COOH-terminal leucine residue with cystamine, (NH2-CH2-CH2-S-)2, has been synthesized in order to examine directly the dimerization effect of an enkephalin molecule on the opiate receptor interactions. In a comparison of potencies against [3H]-[D-Ala2,D-Leu5] enkephalin (3H-DADLE) and [3H]-[D-Ala2,MePhe4,Gly-ol5] enkephalin (3H-DAGO) as delta and mu tracers, respectively, enkephalin dimer showed a very high affinity, especially for the delta opiate receptors. Dimer was almost threefold more potent than DADLE, which is one of the most utilized delta ligand to date. When the binding affinity of cystamine-dimer was compared with that of its reduced thiol-monomer, namely [D-Ala2,Leu5,cysteamine6] enkephalin, the increment in affinity was four to fivefold for both delta and mu receptors. The results strongly indicate that the dimeric enkephalin is more potent presumably due to the simultaneous interaction with the two binding sites of the opiate receptors.  相似文献   

8.
The interaction between fibrinogen gamma-peptide 392-411, LTIGEGQQHHLGGAKQAGDV, and monoclonal antibody 4A5, an antibody with a high affinity for both for the peptide and native fibrinogen, is being studied as a model for peptide-antibody interaction. Two-dimensional NMR studies of the free peptide at pH 5.2 indicated the presence of a significant population, about 60%, of type II beta-turn, spanning residues Gln407-Asp410. At pH 2.7, little, if any, turn structure is present. The D-Ala409 analog, which, for steric reasons, would be expected to preserve the beta-turn, and the L-Ala409 analog, which would not be expected to have this conformational feature, were synthesized, and NMR studies confirmed the respective structural predictions. The affinity of the D-Ala analog for antibody 4A5 is even greater than that displayed by native gamma 392-411, while the affinity of the L-Ala analog is less than one-tenth that of the native peptide. Both conformational and steric effects involving residues 407-410 may be important in recognition by antibody 4A5. Since gamma 392-411 includes a platelet receptor binding locus of fibrinogen, and this and related peptides are inhibitors of platelet aggregation, the D-Ala409 and L-Ala409 analogs were tested for platelet binding. Neither of the analogs displays any measurable platelet binding, indicating that the recognition requirements for the platelet receptor differ considerably from those for antibody 4A5.  相似文献   

9.
A photoreactive [D-Ala2, p-N3-Phe4-Met5]enkephalin was synthesized by classical solution peptide synthetic methods. The hydroxysuccinimide ester was used in all the coupling steps in the presence of a weak base, triethylamine. The deprotected enkephalin analogue was purified on high performance liquid chromatography using a Waters, C18 muBondapak reverse phase column and its purity was assessed by thin-layer chromatography. The composition of the analogue was determined and confirmed by elemental analysis and amino acid analysis. Its photoreactivity was demonstrated by the time dependent ultraviolet spectral changes on exposure to light. Competition receptor binding showed that [D-Ala2, p-N3-Phe4-Met5]enkephalin was 4-fold more potent than [D-Ala2, Met5]-enkephalin in competing for binding to the enkephalin binding site. The data presented suggest that this photoreactive enkephalin analogue may be suitable for use in the in situ photoaffinity labeling of the enkephalin receptor.  相似文献   

10.
To understand better how [Leu]enkephalin (LE) acts to modulate learning and memory in rats, the plasma uptake, disappearance, and metabolism of LE were investigated following its intraperitoneal administration. Concentrations of [3H]-LE and its radioactive metabolites were determined by thin layer chromatography in plasma samples withdrawn from rats at various times after injection of peptide. As measured in rats receiving an IP injection of a dose of LE (3 micrograms/kg) that impairs active avoidance conditioning, the LE was very rapidly metabolized, with greater than 95% of plasma [3H] in the form of metabolites by 1 min after injection. Despite this rapid metabolism, low but measurable quantities of intact LE were detectable in plasma at all sampling times. Consistent with a greater potency of D-Ala2-[D-Leu5]enkephalin (DADLE) than of LE in modulating avoidance conditioning, DADLE was less rapidly metabolized than was LE following its IP administration. The metabolism of DADLE and LE in vivo was more rapid than it was in plasma in vitro, suggesting a role for membrane bound enzymes in the metabolism of IP-administered enkephalins. The data demonstrate that, despite a rapid hydrolysis of LE in vivo, sufficient LE is present in plasma following IP administration of a behaviorally active dose to support a role of circulating intact LE in the modulation of avoidance conditioning.  相似文献   

11.
Skin of the frog Phyllomedusa sauvagei contains a cDNA sequence that codes for the selective mu-receptor peptide dermorphin and a new heptapeptide we have designated as dermorphin gene-associated peptide (DGAP). Investigation of the opioid receptor binding characteristics of synthetic DGAP and [D-Met2]DGAP revealed that the latter peptide had high affinity and selectivity for delta-type opioid receptors in rat brain synaptosomes. The IC50 values for DGAP on mu- and delta-receptors were only 28 microM and 670 nM, respectively, while that for [D-Met2]DGAP was 0.80 nM for delta-receptors and greater than 1 microM for mu-receptors yielding a very high delta selectivity ratio (SR) of 1345. In comparison, the SR values for [D-Ala2,D-Leu5]enkephalin, [D-Ser2,Leu5,Thr6]enkephalin, and [D-Pen2,5]enkephalin, ligands which are considered to be specific for delta-receptors, were 20, 42, and 301, respectively. Dermorphin, which contains a D-Ala2 residue and is a selective mu-receptor ligand (Lazarus, L.H., Guglietta, A., Wilson, W.E., Irons, B.J., and de Castiglione, R. (1989) J. Biol. Chem. 264, 354-362), exhibits a SR of 0.0055 similar to that for the conventional mu-agonist [D-Ala2,NMePhe4,Gly-ol]enkephalin (0.0040). This finding that frog skin cDNA contains the information to code for dermorphin and DGAP, or the presumed [D-Met2]DGAP molecule, which are among the most selective high affinity opioid ligands described for mu- and delta-receptors, may permit new insight into the design of future opioid receptor agonists and antagonists.  相似文献   

12.
Some kinetic features of D-Ala2-[Tyr-3.5-3H]enkephalin (5-D-Leu) binding to opiate receptors of rat brain were studied. It was shown that the Leu-enkephalin D analog interacts with the high and low affinity binding sites of opiate receptors, the equilibrium constants being equal to 0.71 and 8.4 nM, respectively. The rate constant for the label association with the high affinity binding sites in 2 . 10(8) M-1 min-1; those for the label dissociation from the opiate receptor binding sites with high and low affinities are 7.2 . 10(-3) and 0.16 min-1, respectively. Hence, the half-life time of these complexes is 95.7 and 4.3 min, respectively. Na+, K+ and Li+ markedly decrease the specific finding of the label, while Mg2+, Mn2+ and Ca2+ at the concentrations studied markedly increase its specific binding. It is concluded that the Leu-enkephalin D-analog under study acts as a morphine agonist and reveals a much higher affinity for rat brain opiate receptors than does Leu- or Met-enkephalin. This makes it a useful tool for study of the enkephalin reception under normal and pathological conditions.  相似文献   

13.
Dimeric pentapeptide enkephalin: a novel probe of delta opiate receptors   总被引:1,自引:0,他引:1  
A dimeric pentapeptide enkephalin (DPE2) consisting of two molecules of [D-Ala 2, Leu 5] enkephalin linked at C-terminal leucine with ethylenediamine, (H-Tyr-D-Ala-Gly-Phe-Leu-NH-Ch2)2 is a bivalent ligand for the delta enkephalin receptors of rat brain and neuroblastoma-glioma hybrid (NG108-15) cells. This new enkephalin analog shows dramatically increased affinity in radioligand assays using whole brain membranes when delta but not mu specific radioligands are employed. When membranes from NG108-15 cells are used, the dimer shows greatly increased activity irrespective of the mu or delta specificity of the tracer. The dimer DPE2 shows a four-fold, "sodium shift" in its IC50 for competition with [3H]naloxone, suggestive of agonist behavior. Agonist activity was confirmed by demonstrating that DPE2 inhibits cyclic AMP production in prostaglandin E1 stimulated NG108-15 cells, and by demonstrating very high potency in the mouse vas deferens bioassay. DPE2 binds to the same delta sites as the delta-selective monomer [D-Ala2, D-Leu5] enkephalin, since the two ligands show complete crossdisplacement. Radiolabeled 3H-DPE2 shows a five-fold higher affinity constant, a 2.5-fold higher association rate constant, and a two-fold lower dissociation rate than the monomer. These results are consistent with the hypothesis that the dimeric pentapeptide enkephalin can bridge two delta receptors. This enkephalin dimer provides a valuable new probe of opiate receptors and their organization in cell membranes.  相似文献   

14.
The in vitro opioid activities of a series of leucine enkephalin analogs containing a thioamide linkage in place of the peptide bond at various positions of the backbone were determined in mu- and delta-receptor-selective bio- and binding-assays. Thioamide substitution in the 1-2 position resulted in an inactive compound, whereas the same modification in the 2-3 and 4-5 position produced potency enhancement. Most interestingly, the 2-3 modified analog showed a 3 to 5 times higher preference for delta- over mu-receptors than natural leucine enkephalin. These results suggest that subtle backbone modifications can have a profound effect on receptor affinity and selectivity of biologically active peptides.  相似文献   

15.
For the elucidation of structural elements in the opiate receptors, a thiol-containing enkephalin analog [D-Ala2, cysteamine 5]enkephalin, and its dimeric analog were synthesized and evaluated in the radio-ligand receptor binding assays using rat brain membranes. The dimeric analog was very potent in both delta and mu assays. Comparison of receptor affinities of the thiol-containing enkephalin with those of standard mu or delta receptor specific ligands suggested that the mu receptor contains an essential thiol group which may interact with the thiol group at the C-terminus of the enkephalin analog. It also appears that no metal-ion site, postulated for the delta receptors, is present in the delta binding site.  相似文献   

16.
Fab fragments from a monoclonal antibody, OR-689.2.4, directed against the opioid receptor, selectively inhibited opioid binding to rat and guinea pig neural membranes. In a titratable manner, the Fab fragments noncompetitively inhibited the binding of the mu selective peptide [D-Ala2,(Me)Phe4,Gly(OH)5][3H] enkephalin and the delta selective peptide [D-Pen2,D-Pen5] [3H]enkephalin (where Pen represents penicillamine) to neural membranes. In contrast, kappa opioid binding, as measured by the binding of [3H]bremazocine to rat neural membranes and guinea pig cerebellum in the presence of mu and delta blockers, was not significantly altered by the Fab fragments. In addition to blocking the binding of mu and delta ligands, the Fab fragments displaced bound opioids from the membranes. When mu sites were blocked with [D-Ala2,(Me)Phe4,Gly(OH)5]enkephalin, the Fab fragments suppressed the binding of [D-Pen2,D-Pen5][3H]enkephalin to the same degree as when the mu binding site was not blocked. The Fab fragments also inhibited binding to the mu site regardless of whether or not the delta site was blocked with [D-Pen2,D-Pen5]enkephalin. This monoclonal antibody is directed against a 35,000-dalton protein. Since the antibody is able to inhibit mu and delta binding but not kappa opioid binding, it appears that this 35,000-dalton protein is an integral component of mu and delta opioid receptors but not kappa receptors.  相似文献   

17.
The fluorescent amino acid, L-1-pyrenylalanine (Pya) was incorporated into [D-Ala2,Leu5]enkephalin and its methyl ester at position 4 or 5. Pya-enkephalins showed strong fluorescent intensity and displayed high binding affinity for opiate receptors. Pya4-enkephalins showed high specificity for the mu receptors, while Pya5-enkephalins showed high specificity and selectivity for the delta receptors. Particularly, [D-Ala2,Pya5]enkephalin was as potent as the most utilized delta-specific ligand of [D-Ala2,D-Leu5]enkephalin (DADLE), and yet its delta-selectivity was about 5-times greater than that of DADLE. Thus, Pya-enkephalins per se can be utilized as a fluorescent probe or tracer for the opiate receptor-binding assays.  相似文献   

18.
To investigate the biologically active conformation of enkephalin, molecular-dynamics simulations were applied to [Met5]- and [D-Ala2,Met5]-enkephalins. The dynamic trajectory of monomeric extended [Met5]-enkephalin was analysed in terms of relative mobility between respective torsions of backbone chain. After 10 ps of the dynamics simulation, the conformational transition was converged into a stationary state among the beta-bend folded forms, where they are stabilized by several intramolecular hydrogen-bond formations. Similar conformational transition was also observed in the dynamics simulation of [D-Ala2,Met5]enkephalin, which is a more mu-receptor-specific peptide than [Met5]enkephalin. The geometrical correspondence between the monomeric enkephalin conformation in the stationary state and morphine molecule (a mu-specific rigid opiate) was surveyed by virtue of the triangular substructures generated by choosing three functional atoms in each molecule, and good resemblances were observed. On the other hand, the dynamics simulation of the antiparallel extended [Met5]enkephalin dimer showed a trajectory different from that of the monomeric one. Two intermolecular hydrogen bonds at Tyr1 (NH3+)...Met5(CO2-) end residues were held throughout the 100 ps simulation, the dimeric structure being consequently kept. The conformational transition of the backbone chains from the antiparallel extended form to the twisted one took place via an intermediate state. Many conformations revealed during the dynamics simulation showed that the relative orientations of each two Tyr1, Gly3, Phe4 and Met5 residues in the dimer are nearly related by a pseudo-C2-symmetry respectively, and both halves of the dimer structure could be further fitted to the monomeric folded enkephalin conformation. The monomeric and dimeric conformations of enkephalin at their stationary states are discussed in relation to the substrate-specificity for mu- and delta-opioid receptors.  相似文献   

19.
Selective binding of [3H]bremazocine and [3H]-ethylketocyclazocine to kappa-opioid receptor sites in frog (Rana esculenta) brain membranes is irreversibly inactivated by the sulfhydryl group alkylating agent N-ethylmaleimide (NEM). Pretreatment of the membranes with kappa-selective compounds [ethylketocyclazocine (EKC), dynorphin (1-13), or U-50,488H] but not with [D-Ala2,N-Me-Phe4,Gly5-ol]enkephalin (DAGO; mu specific ligand) or [D-Ala2,N-Me-Phe4,Gly5-ol]enkephalin (DADLE; delta specific ligand) strongly protects the binding of the radioligands against NEM inactivation. These results provide more evidence for the existence of kappa-opioid receptors in frog brain. The relatively high concentrations of NEM that are needed to decrease the specific binding of [3H]bremazocine together with the observation of an almost complete protection of its binding sites by NaCl suggest that bremazocine may act as an opioid antagonist in frog brain.  相似文献   

20.
Partially purified opioid receptors, obtained from rat brains using an affinity resin, AF-Amino Toyopearl with [D-Ala2, Leu5]enkephalin, were reconstituted with an inhibitory GTP-binding protein (Gi). In the reconstituted system, the displacement curve for the binding of a delta-agonist, [D-Ala2, D-Leu5]enkephalin, showed two states, high and low affinity binding ones, with different affinities for the agonist. The high affinity binding was eliminated by the addition of a guanine nucleotide analog to the system. These results directly showed that opioid receptors, at least the delta-type, could interact with Gi.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号