首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

In the absence of other evidence, modelling has been used extensively to help policy makers plan for a potential future influenza pandemic.

Method

We have constructed an individual based model of a small community in the developed world with detail down to exact household structure obtained from census collection datasets and precise simulation of household demographics, movement within the community and individual contact patterns. We modelled the spread of pandemic influenza in this community and the effect on daily and final attack rates of four social distancing measures: school closure, increased case isolation, workplace non-attendance and community contact reduction. We compared the modelled results of final attack rates in the absence of any interventions and the effect of school closure as a single intervention with other published individual based models of pandemic influenza in the developed world.

Results

We showed that published individual based models estimate similar final attack rates over a range of values for R0 in a pandemic where no interventions have been implemented; that multiple social distancing measures applied early and continuously can be very effective in interrupting transmission of the pandemic virus for R0 values up to 2.5; and that different conclusions reached on the simulated benefit of school closure in published models appear to result from differences in assumptions about the timing and duration of school closure and flow-on effects on other social contacts resulting from school closure.

Conclusion

Models of the spread and control of pandemic influenza have the potential to assist policy makers with decisions about which control strategies to adopt. However, attention needs to be given by policy makers to the assumptions underpinning both the models and the control strategies examined.  相似文献   

2.

Background

School closure is a potential intervention during an influenza pandemic and has been investigated in many modelling studies.

Objectives

To systematically review the effects of school closure on influenza outbreaks as predicted by simulation studies.

Methods

We searched Medline and Embase for relevant modelling studies published by the end of October 2012, and handsearched key journals. We summarised the predicted effects of school closure on the peak and cumulative attack rates and the duration of the epidemic. We investigated how these predictions depended on the basic reproduction number, the timing and duration of closure and the assumed effects of school closures on contact patterns.

Results

School closures were usually predicted to be most effective if they caused large reductions in contact, if transmissibility was low (e.g. a basic reproduction number <2), and if attack rates were higher in children than in adults. The cumulative attack rate was expected to change less than the peak, but quantitative predictions varied (e.g. reductions in the peak were frequently 20–60% but some studies predicted >90% reductions or even increases under certain assumptions). This partly reflected differences in model assumptions, such as those regarding population contact patterns.

Conclusions

Simulation studies suggest that school closure can be a useful control measure during an influenza pandemic, particularly for reducing peak demand on health services. However, it is difficult to accurately quantify the likely benefits. Further studies of the effects of reactive school closures on contact patterns are needed to improve the accuracy of model predictions.  相似文献   

3.
Halder N  Kelso JK  Milne GJ 《PloS one》2011,6(7):e22087

Background

We performed an analysis of the cost-effectiveness of pandemic intervention strategies using a detailed, individual-based simulation model of a community in Australia together with health outcome data of infected individuals gathered during 2009–2010. The aim was to examine the cost-effectiveness of a range of interventions to determine the most cost-effective strategies suitable for a future pandemic with H1N1 2009 characteristics.

Methodology/Principal Findings

Using transmissibility, age-stratified attack rates and health outcomes determined from H1N1 2009 data, we determined that the most cost-effective strategies involved treatment and household prophylaxis using antiviral drugs combined with limited duration school closure, with costs ranging from $632 to $777 per case prevented. When school closure was used as a sole intervention we found the use of limited duration school closure to be significantly more cost-effective compared to continuous school closure, a result with applicability to countries with limited access to antiviral drugs. Other social distancing strategies, such as reduced workplace attendance, were found to be costly due to productivity losses.

Conclusion

The mild severity (low hospitalisation and case fatality rates) and low transmissibility of H1N1 2009 meant that health treatment costs were dominated by the higher productivity losses arising from workplace absence due to illness and childcare requirements following school closure. Further analysis for higher transmissibility but with the same, mild severity had no effect on the overall findings.  相似文献   

4.

Background

The impact of a newly emerged influenza pandemic will depend on its transmissibility and severity. Understanding how these pandemic features impact on the effectiveness and cost effectiveness of alternative intervention strategies is important for pandemic planning.

Methods

A cost effectiveness analysis of a comprehensive range of social distancing and antiviral drug strategies intended to mitigate a future pandemic was conducted using a simulation model of a community of ∼30,000 in Australia. Six pandemic severity categories were defined based on case fatality ratio (CFR), using data from the 2009/2010 pandemic to relate hospitalisation rates to CFR.

Results

Intervention strategies combining school closure with antiviral treatment and prophylaxis are the most cost effective strategies in terms of cost per life year saved (LYS) for all severity categories. The cost component in the cost per LYS ratio varies depending on pandemic severity: for a severe pandemic (CFR of 2.5%) the cost is ∼$9 k per LYS; for a low severity pandemic (CFR of 0.1%) this strategy costs ∼$58 k per LYS; for a pandemic with very low severity similar to the 2009 pandemic (CFR of 0.03%) the cost is ∼$155 per LYS. With high severity pandemics (CFR >0.75%) the most effective attack rate reduction strategies are also the most cost effective. During low severity pandemics costs are dominated by productivity losses due to illness and social distancing interventions, while for high severity pandemics costs are dominated by hospitalisation costs and productivity losses due to death.

Conclusions

The most cost effective strategies for mitigating an influenza pandemic involve combining sustained social distancing with the use of antiviral agents. For low severity pandemics the most cost effective strategies involve antiviral treatment, prophylaxis and short durations of school closure; while these are cost effective they are less effective than other strategies in reducing the infection rate.  相似文献   

5.

Objective

To evaluate the new Japanese School Absentees Reporting System for Infectious Disease (SARSID) for pandemic influenza A/H1N1 2009 infection in comparison with the National epidemiological Surveillance of Infectious Disease (NESID).

Methods

We used data of 53,223 students (97.7%) in Takamatsu city Japan. Data regarding school absentees in SARSID was compared with that in NESID from Oct 13, 2009 to Jan 12, 2010.

Results

Similar trends were observed both in SARSID and NESID. However, the epidemic trend for influenza in SARSID was thought to be more sensitive than that in NESID.

Conclusion

The epidemic trend for influenza among school-aged children could be easily and rapidly assessed by SARSID compared to NESID. SARSID might be useful for detecting the epidemic trend of influenza.  相似文献   

6.

Background

Modeling plays a critical role in mitigating impacts of seasonal influenza epidemics. Complex simulation models are currently at the forefront of evaluating optimal mitigation strategies at multiple scales and levels of organization. Given their evaluative role, these models remain limited in their ability to predict and forecast future epidemics leading some researchers and public-health practitioners to question their usefulness. The objective of this study is to evaluate the predictive ability of an existing complex simulation model of influenza spread.

Methods and Findings

We used extensive data on past epidemics to demonstrate the process of predictive validation. This involved generalizing an individual-based model for influenza spread and fitting it to laboratory-confirmed influenza infection data from a single observed epidemic (1998–1999). Next, we used the fitted model and modified two of its parameters based on data on real-world perturbations (vaccination coverage by age group and strain type). Simulating epidemics under these changes allowed us to estimate the deviation/error between the expected epidemic curve under perturbation and observed epidemics taking place from 1999 to 2006. Our model was able to forecast absolute intensity and epidemic peak week several weeks earlier with reasonable reliability and depended on the method of forecasting-static or dynamic.

Conclusions

Good predictive ability of influenza epidemics is critical for implementing mitigation strategies in an effective and timely manner. Through the process of predictive validation applied to a current complex simulation model of influenza spread, we provided users of the model (e.g. public-health officials and policy-makers) with quantitative metrics and practical recommendations on mitigating impacts of seasonal influenza epidemics. This methodology may be applied to other models of communicable infectious diseases to test and potentially improve their predictive ability.  相似文献   

7.

Background

Influenza is a contagious respiratory disease responsible for annual seasonal epidemics in temperate climates. An understanding of how influenza spreads geographically and temporally within regions could result in improved public health prevention programs. The purpose of this study was to summarize the spatial and temporal spread of influenza using data obtained from the Pennsylvania Department of Health''s influenza surveillance system.

Methodology and Findings

We evaluated the spatial and temporal patterns of laboratory-confirmed influenza cases in Pennsylvania, United States from six influenza seasons (2003–2009). Using a test of spatial autocorrelation, local clusters of elevated risk were identified in the South Central region of the state. Multivariable logistic regression indicated that lower monthly precipitation levels during the influenza season (OR = 0.52, 95% CI: 0.28, 0.94), fewer residents over age 64 (OR = 0.27, 95% CI: 0.10, 0.73) and fewer residents with more than a high school education (OR = 0.76, 95% CI: 0.61, 0.95) were significantly associated with membership in this cluster. In addition, time series analysis revealed a temporal lag in the peak timing of the influenza B epidemic compared to the influenza A epidemic.

Conclusions

These findings illustrate a distinct spatial cluster of cases in the South Central region of Pennsylvania. Further examination of the regional transmission dynamics within these clusters may be useful in planning public health influenza prevention programs.  相似文献   

8.

Background

Influenza causes annual epidemics and often results in extensive outbreaks in closed communities. To minimize transmission, a range of interventions have been suggested. For these to be effective, an accurate and timely diagnosis of influenza is required. This is confirmed by a positive laboratory test result in an individual whose symptoms are consistent with a predefined clinical case definition. However, the utility of these clinical case definitions and laboratory testing in mass gathering outbreaks remains unknown.

Methods and Results

An influenza outbreak was identified during World Youth Day 2008 in Sydney. From the data collected on pilgrims presenting to a single clinic, a Markov model was developed and validated against the actual epidemic curve. Simulations were performed to examine the utility of different clinical case definitions and laboratory testing strategies for containment of influenza outbreaks. Clinical case definitions were found to have the greatest impact on averting further cases with no added benefit when combined with any laboratory test. Although nucleic acid testing (NAT) demonstrated higher utility than indirect immunofluorescence antigen or on-site point-of-care testing, this effect was lost when laboratory NAT turnaround times was included. The main benefit of laboratory confirmation was limited to identification of true influenza cases amenable to interventions such as antiviral therapy.

Conclusions

Continuous re-evaluation of case definitions and laboratory testing strategies are essential for effective management of influenza outbreaks during mass gatherings.  相似文献   

9.

Background

School closure is considered as an effective measure to prevent pandemic influenza. Although Japan has implemented many class, grade, and whole school closures during the early stage of the pandemic 2009, the effectiveness of such a school closure has not been analysed appropriately. In addition, analysis based on evidence or data from a large population has yet to be performed. We evaluated the preventive effect of school closure against the pandemic (H1N1) 2009 and examined efficient strategies of reactive school closure.

Materials and Methods

Data included daily reports of reactive school closures and the number of infected students in the pandemic in Oita City, Japan. We used a regression model that incorporated a time delay to analyse the daily data of school closure based on a time continuous susceptible-exposed-infected-removed model of infectious disease spread. The delay was due to the time-lag from transmission to case reporting. We simulated the number of students infected daily with and without school closure and evaluated the effectiveness.

Results

The model with a 3-day delay from transmission to reporting yielded the best fit using R 2 (the coefficient of determination). This result suggests that the recommended period of school closure is more than 4 days. Moreover, the effect of school closure in the simulation of school closure showed the following: the number of infected students decreased by about 24% at its peak, and the number of cumulative infected students decreased by about 8.0%.

Conclusions

School closure was an effective intervention for mitigating the spread of influenza and should be implemented for more than 4 days. School closure has a remarkable impact on decreasing the number of infected students at the peak, but it does not substantially decrease the total number of infected students.  相似文献   

10.

Background

Epidemiological interventions aim to control the spread of infectious disease through various mechanisms, each carrying a different associated cost.

Methodology

We describe a flexible statistical framework for generating optimal epidemiological interventions that are designed to minimize the total expected cost of an emerging epidemic while simultaneously propagating uncertainty regarding the underlying disease model parameters through to the decision process. The strategies produced through this framework are adaptive: vaccination schedules are iteratively adjusted to reflect the anticipated trajectory of the epidemic given the current population state and updated parameter estimates.

Conclusions

Using simulation studies based on a classic influenza outbreak, we demonstrate the advantages of adaptive interventions over non-adaptive ones, in terms of cost and resource efficiency, and robustness to model misspecification.  相似文献   

11.

Background

The US government proposes pandemic influenza mitigation guidance that includes isolation and antiviral treatment of ill persons, voluntary household member quarantine and antiviral prophylaxis, social distancing of individuals, school closure, reduction of contacts at work, and prioritized vaccination. Is this the best strategy combination? Is choice of this strategy robust to pandemic uncertainties? What are critical enablers of community resilience?

Methods and Findings

We systematically simulate a broad range of pandemic scenarios and mitigation strategies using a networked, agent-based model of a community of explicit, multiply-overlapping social contact networks. We evaluate illness and societal burden for alterations in social networks, illness parameters, or intervention implementation. For a 1918-like pandemic, the best strategy minimizes illness to <1% of the population and combines network-based (e.g. school closure, social distancing of all with adults'' contacts at work reduced), and case-based measures (e.g. antiviral treatment of the ill and prophylaxis of household members). We find choice of this best strategy robust to removal of enhanced transmission by the young, additional complexity in contact networks, and altered influenza natural history including extended viral shedding. Administration of age-group or randomly targeted 50% effective pre-pandemic vaccine with 7% population coverage (current US H5N1 vaccine stockpile) had minimal effect on outcomes. In order, mitigation success depends on rapid strategy implementation, high compliance, regional mitigation, and rigorous rescinding criteria; these are the critical enablers for community resilience.

Conclusions

Systematic evaluation of feasible, recommended pandemic influenza interventions generally confirms the US community mitigation guidance yields best strategy choices for pandemic planning that are robust to a wide range of uncertainty. The best strategy combines network- and case-based interventions; network-based interventions are paramount. Because strategies must be applied rapidly, regionally, and stringently for greatest benefit, preparation and public education is required for long-lasting, high community compliance during a pandemic.  相似文献   

12.

Background

School closures as a means of containing the spread of disease have received considerable attention from the public health community. Although they have been implemented during previous pandemics, the epidemiological and economic effects of the closure of individual schools remain unclear.

Methodology

This study used data from the 2009 H1N1 pandemic in Hong Kong to develop a simulation model of an influenza pandemic with a localised population structure to provide scientific justifications for and economic evaluations of individual-level school closure strategies.

Findings

The estimated cost of the study’s baseline scenario was USD330 million. We found that the individual school closure strategies that involved all types of schools and those that used a lower threshold to trigger school closures had the best performance. The best scenario resulted in an 80% decrease in the number of cases (i.e., prevention of about 830,000 cases), and the cost per case prevented by this intervention was USD1,145; thus, the total cost was USD1.28 billion.

Conclusion

This study predicts the effects of individual school closure strategies on the 2009 H1N1 pandemic in Hong Kong. Further research could determine optimal strategies that combine various system-wide and district-wide school closures with individual school triggers across types of schools. The effects of different closure triggers at different phases of a pandemic should also be examined.  相似文献   

13.

Background

The influenza A/H1N1/09 pandemic spread quickly during the Southern Hemisphere winter in 2009 and reached epidemic proportions within weeks of the official WHO alert. Vulnerable population groups included indigenous Australians and remote northern population centres visited by international travellers. At the height of the Australian epidemic a large number of troops converged on a training area in northern Australia for an international exercise, raising concerns about their potential exposure to the emerging influenza threat before, during and immediately after their arrival in the area. Influenza A/H1N1/09 became the dominant seasonal variant and returned to Australia during the Southern winter the following year.

Methods

A duplex nucleic acid amplification assay was developed within weeks of the first WHO influenza pandemic alert, demonstrated in northwestern Australia shortly afterwards and deployed as part of the pathology support for a field hospital during a military exercise during the initial epidemic surge in June 2009.

Results

The nucleic acid amplification assay was twice as sensitive as a point of care influenza immunoassay, as specific but a little less sensitive than the reference laboratory nucleic acid amplification assay. Repetition of the field assay with blinded clinical samples obtained during the 2010 winter influenza season demonstrated a 91.7% congruence with the reference laboratory method.

Conclusions

Rapid in-house development of a deployable epidemic influenza assay allowed a flexible laboratory response, effective targeting of limited disease control resources in an austere military environment, and provided the public health laboratory service with a set of verification tools for resource-limited settings. The assay method was suitable for rapid deployment in time for the 2010 Northern winter.  相似文献   

14.

Objectives

Despite demonstrating only partial efficacy in preventing new infections, available HIV prevention interventions could offer a powerful strategy when combined. In anticipation of combination HIV prevention programs and research studies we estimated the population-level impact of combining effective scalable interventions at high population coverage, determined the factors that influence this impact, and estimated the synergy between the components.

Methods

We used a mathematical model to investigate the effect on HIV incidence of a combination HIV prevention intervention comprised of high coverage of HIV testing and counselling, risk reduction following HIV diagnosis, male circumcision for HIV-uninfected men, and antiretroviral therapy (ART) for HIV-infected persons. The model was calibrated to data for KwaZulu-Natal, South Africa, where adult HIV prevalence is approximately 23%.

Results

Compared to current levels of HIV testing, circumcision, and ART, the combined intervention with ART initiation according to current guidelines could reduce HIV incidence by 47%, from 2.3 new infections per 100 person-years (pyar) to 1.2 per 100 pyar within 4 years and by almost 60%, to 1 per 100 pyar, after 25 years. Short-term impact is driven primarily by uptake of testing and reductions in risk behaviour following testing while long-term effects are driven by periodic HIV testing and retention in ART programs. If the combination prevention program incorporated HIV treatment upon diagnosis, incidence could be reduced by 63% after 4 years and by 76% (to about 0.5 per 100 pyar) after 15 years. The full impact of the combination interventions accrues over 10–15 years. Synergy is demonstrated between the intervention components.

Conclusion

High coverage combination of evidence-based strategies could generate substantial reductions in population HIV incidence in an African generalized HIV epidemic setting. The full impact could be underestimated by the short assessment duration of typical evaluations.  相似文献   

15.
Kelso JK  Halder N  Milne GJ 《PloS one》2010,5(11):e13797

Background

Neuraminidase inhibitors were used to reduce the transmission of pandemic influenza A/H1N1 2009 at the early stages of the 2009/2010 pandemic. Policies for diagnosis of influenza for the purposes of antiviral intervention differed markedly between and within countries, leading to differences in the timing and scale of antiviral usage.

Methodology/Principal Findings

The impact of the percentage of symptomatic infected individuals who were diagnosed, and of delays to diagnosis, for three antiviral intervention strategies (each with and without school closure) were determined using a simulation model of an Australian community. Epidemic characteristics were based on actual data from the A/H1N1 2009 pandemic including reproduction number, serial interval and age-specific infection rate profile. In the absence of intervention an illness attack rate (AR) of 24.5% was determined from an estimated R0 of 1.5; this was reduced to 21%, 16.5% or 13% by treatment-only, treatment plus household prophylaxis, or treatment plus household plus extended prophylaxis antiviral interventions respectively, assuming that diagnosis occurred 24 hours after symptoms arose and that 50% of symptomatic cases were diagnosed. If diagnosis occurred without delay, ARs decreased to 17%, 12.2% or 8.8% respectively. If 90% of symptomatic cases were diagnosed (with a 24 hour delay), ARs decreased to 17.8%, 11.1% and 7.6%, respectively.

Conclusion

The ability to rapidly diagnose symptomatic cases and to diagnose a high proportion of cases was shown to improve the effectiveness of all three antiviral strategies. For epidemics with R0< = 1.5 our results suggest that when the case diagnosis coverage exceeds ∼70% the size of the antiviral stockpile required to implement the extended prophylactic strategy decreases. The addition of at least four weeks of school closure was found to further reduce cumulative and peak attack rates and the size of the required antiviral stockpile.  相似文献   

16.

Background

The epidemic sizes of influenza A/H3N2, A/H1N1, and B infections vary from year to year in the United States. We use publicly available US Centers for Disease Control (CDC) influenza surveillance data between 1997 and 2009 to study the temporal dynamics of influenza over this period.

Methods and Findings

Regional outpatient surveillance data on influenza-like illness (ILI) and virologic surveillance data were combined to define a weekly proxy for the incidence of each strain in the United States. All strains exhibited a negative association between their cumulative incidence proxy (CIP) for the whole season (from calendar week 40 of each year to calendar week 20 of the next year) and the CIP of the other two strains (the complementary CIP) from the start of the season up to calendar week 2 (or 3, 4, or 5) of the next year. We introduce a method to predict a particular strain''s CIP for the whole season by following the incidence of each strain from the start of the season until either the CIP of the chosen strain or its complementary CIP exceed certain thresholds. The method yielded accurate predictions, which generally occurred within a few weeks of the peak of incidence of the chosen strain, sometimes after that peak. For the largest seasons in the data, which were dominated by A/H3N2, prediction of A/H3N2 incidence always occurred at least several weeks in advance of the peak.

Conclusion

Early circulation of one influenza strain is associated with a reduced total incidence of the other strains, consistent with the presence of interference between subtypes. Routine ILI and virologic surveillance data can be combined using this new method to predict the relative size of each influenza strain''s epidemic by following the change in incidence of a given strain in the context of the incidence of cocirculating strains. Please see later in the article for the Editors'' Summary  相似文献   

17.

Background

Individual-based models can provide the most reliable estimates of the spread of infectious diseases. In the present study, we evaluated the diffusion of pandemic influenza in Italy and the impact of various control measures, coupling a global SEIR model for importation of cases with an individual based model (IBM) describing the Italian epidemic.

Methodology/Principal Findings

We co-located the Italian population (57 million inhabitants) to households, schools and workplaces and we assigned travel destinations to match the 2001 census data. We considered different R0 values (1.4; 1.7; 2), evaluating the impact of control measures (vaccination, antiviral prophylaxis -AVP-, international air travel restrictions and increased social distancing). The administration of two vaccine doses was considered, assuming that first dose would be administered 1-6 months after the first world case, and different values for vaccine effectiveness (VE). With no interventions, importation would occur 37–77 days after the first world case. Air travel restrictions would delay the importation of the pandemic by 7–37 days. With an R0 of 1.4 or 1.7, the use of combined measures would reduce clinical attack rates (AR) from 21–31% to 0.3–4%. Assuming an R0 of 2, the AR would decrease from 38% to 8%, yet only if vaccination were started within 2 months of the first world case, in combination with a 90% reduction in international air traffic, closure of schools/workplaces for 4 weeks and AVP of household and school/work close contacts of clinical cases. Varying VE would not substantially affect the results.

Conclusions

This IBM, which is based on country-specific demographic data, could be suitable for the real-time evaluation of measures to be undertaken in the event of the emergence of a new pandemic influenza virus. All preventive measures considered should be implemented to mitigate the pandemic.  相似文献   

18.
19.

Background

Governments are preparing for a potential influenza pandemic. Therefore they need data to assess the possible impact of interventions. Face-masks worn by the general population could be an accessible and affordable intervention, if effective when worn under routine circumstances.

Methodology

We assessed transmission reduction potential provided by personal respirators, surgical masks and home-made masks when worn during a variety of activities by healthy volunteers and a simulated patient.

Principal Findings

All types of masks reduced aerosol exposure, relatively stable over time, unaffected by duration of wear or type of activity, but with a high degree of individual variation. Personal respirators were more efficient than surgical masks, which were more efficient than home-made masks. Regardless of mask type, children were less well protected. Outward protection (mask wearing by a mechanical head) was less effective than inward protection (mask wearing by healthy volunteers).

Conclusions/Significance

Any type of general mask use is likely to decrease viral exposure and infection risk on a population level, in spite of imperfect fit and imperfect adherence, personal respirators providing most protection. Masks worn by patients may not offer as great a degree of protection against aerosol transmission.  相似文献   

20.

Background

There is limited information on influenza and respiratory syncytial virus (RSV) seasonal patterns in tropical areas, although there is renewed interest in understanding the seasonal drivers of respiratory viruses.

Methods

We review geographic variations in seasonality of laboratory-confirmed influenza and RSV epidemics in 137 global locations based on literature review and electronic sources. We assessed peak timing and epidemic duration and explored their association with geography and study settings. We fitted time series model to weekly national data available from the WHO influenza surveillance system (FluNet) to further characterize seasonal parameters.

Results

Influenza and RSV activity consistently peaked during winter months in temperate locales, while there was greater diversity in the tropics. Several temperate locations experienced semi-annual influenza activity with peaks occurring in winter and summer. Semi-annual activity was relatively common in tropical areas of Southeast Asia for both viruses. Biennial cycles of RSV activity were identified in Northern Europe. Both viruses exhibited weak latitudinal gradients in the timing of epidemics by hemisphere, with peak timing occurring later in the calendar year with increasing latitude (P<0.03). Time series model applied to influenza data from 85 countries confirmed the presence of latitudinal gradients in timing, duration, seasonal amplitude, and between-year variability of epidemics. Overall, 80% of tropical locations experienced distinct RSV seasons lasting 6 months or less, while the percentage was 50% for influenza.

Conclusion

Our review combining literature and electronic data sources suggests that a large fraction of tropical locations experience focused seasons of respiratory virus activity in individual years. Information on seasonal patterns remains limited in large undersampled regions, included Africa and Central America. Future studies should attempt to link the observed latitudinal gradients in seasonality of viral epidemics with climatic and population factors, and explore regional differences in disease transmission dynamics and attack rates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号