首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Elevated plasma FFA cause beta-cell lipotoxicity and impair insulin secretion in nondiabetic subjects predisposed to type 2 diabetes mellitus [T2DM; i.e., with a strong family history of T2DM (FH+)] but not in nondiabetic subjects without a family history of T2DM. To determine whether lowering plasma FFA with acipimox, an antilipolytic nicotinic acid derivative, may enhance insulin secretion, nine FH+ volunteers were admitted twice and received in random order either acipimox or placebo (double-blind) for 48 h. Plasma glucose/insulin/C-peptide concentrations were measured from 0800 to 2400. On day 3, insulin secretion rates (ISRs) were assessed during a +125 mg/dl hyperglycemic clamp. Acipimox reduced 48-h plasma FFA by 36% (P < 0.001) and increased the plasma C-peptide relative to the plasma glucose concentration or DeltaC-peptide/Deltaglucose AUC (+177%, P = 0.02), an index of improved beta-cell function. Acipimox improved insulin sensitivity (M/I) 26.1 +/- 5% (P < 0.04). First- (+19 +/- 6%, P = 0.1) and second-phase (+31 +/- 6%, P = 0.05) ISRs during the hyperglycemic clamp also improved. This was particularly evident when examined relative to the prevailing insulin resistance [1/(M/I)], as both first- and second-phase ISR markedly increased by 29 +/- 7 (P < 0.05) and 41 +/- 8% (P = 0.02). There was an inverse correlation between fasting FFA and first-phase ISR (r2 = 0.31, P < 0.02) and acute (2-4 min) glucose-induced insulin release after acipimox (r2 =0.52, P < 0.04). In this proof-of-concept study in FH+ individuals predisposed to T2DM, a 48-h reduction of plasma FFA improves day-long meal and glucose-stimulated insulin secretion. These results provide additional evidence for the important role that plasma FFA play regarding insulin secretion in FH+ subjects predisposed to T2DM.  相似文献   

2.
Glucose tolerance declines with age, resulting in a high prevalence of diabetes and impaired glucose tolerance (IGT) in the older population. Hyperglycemia per se can lead to impaired beta-cell function (glucose toxicity). We tested the role of glucose toxicity in age-related beta-cell dysfunction in older people (65 +/- 8 yr) with IGT treated with the alpha-glucosidase inhibitor acarbose (n = 14) or placebo (n = 13) for 6 wk in a randomized, double-blind study. Baseline and posttreatment studies included 1) an oral glucose tolerance test (OGTT), 2) 1-h postprandial glucose monitoring, 3) a frequently sampled intravenous glucose tolerance test (insulin sensitivity, or S(I)), and 4) glucose ramp clamp (insulin secretion rates, or ISR), in which a variable glucose infusion increases plasma glucose from 5 to 10 mM. The treatment groups had similar baseline body mass index; fasting, 2-h OGTT, and 1-h postprandial glucose levels; and S(I). In these carefully matched older people with IGT, both fasting (5.7 +/- 0.2 vs. 6.3 +/- 0.2 mM, P = 0.002) and 1-h postprandial glucose levels (6.9 +/- 0.3 vs. 8.2 +/- 0.4 mM, P = 0.02) were significantly lower in the acarbose than in the placebo group. Despite this reduction of chronic hyperglycemia in the acarbose vs. placebo group, measures of insulin secretion (ISR area under the curve: 728 +/- 55 vs. 835 +/- 81 pmol/kg, P = 0.9) and acute insulin response to intravenous glucose (329 +/- 67 vs. 301 +/- 54 pM, P = 0.4) remained unchanged and impaired. Thus short-term improvement of chronic hyperglycemia does not reverse beta-cell dysfunction in older people with IGT.  相似文献   

3.
The fasting proinsulin-to-insulin ratio is a currently used marker of beta-cell dysfunction. This ratio is calculated at the basal condition, but its behavior in dynamic conditions, i.e., during glucose stimulation, could be more informative. Given the different kinetics of the peptides, a mathematical model was necessary to analyze the oral glucose tolerance test (OGTT) data of insulin, C-peptide, and proinsulin in 55 healthy (NGT), 30 impaired glucose-tolerant (IGT), and 31 type 2 diabetic (T2DM) subjects. The model provided for secretion and disappearance of the peptides and an index of beta-cell function under dynamic conditions. Total proinsulin secretion during the OGTT was not different (P > 0.053) among NGT (0.17 +/- 0.01 mmol/l in 3 h), IGT (0.22 +/- 0.02), and T2DM (0.21 +/- 0.02) subjects. The proinsulin-to-insulin molar ratio measured from basal samples was higher (P < 0.0001) in T2DM (0.39 +/- 0.05) than in NGT (0.14 +/- 0.01) and IGT (0.13 +/- 0.02) subjects, and similar results (P < 0.003) were found by the dynamic index (0.27 +/- 0.04, 0.14 +/- 0.01, 0.15 +/- 0.01 in T2DM, NGT, IGT subjects, respectively). The basal ratio significantly correlated with the dynamic index, and the regression line slope was lower than 1 (0.43 +/- 0.08, 0.61 +/- 0.10, and 0.56 +/- 0.03 in NGT, IGT, and T2DM subjects, respectively, P < 0.0001). Impaired beta-cell function in T2DM could then be indicated by proinsulin-to-insulin indexes at both basal and dynamic phases.  相似文献   

4.
The mechanisms by which the enteroinsular axis influences beta-cell function have not been investigated in detail. We performed oral and isoglycemic intravenous (IV) glucose administration in subjects with normal (NGT; n = 11) or impaired glucose tolerance (IGT; n = 10), using C-peptide deconvolution to calculate insulin secretion rates and mathematical modeling to quantitate beta-cell function. The incretin effect was taken to be the ratio of oral to IV responses. In NGT, incretin-mediated insulin release [oral glucose tolerance test (OGTT)/IV ratio = 1.59 +/- 0.18, P = 0.004] amounted to 18 +/- 2 nmol/m(2) (32 +/- 4% of oral response), and its time course matched that of total insulin secretion. The beta-cell glucose sensitivity (OGTT/IV ratio = 1.52 +/- 0.26, P = 0.02), rate sensitivity (response to glucose rate of change, OGTT/IV ratio = 2.22 +/- 0.37, P = 0.06), and glucose-independent potentiation were markedly higher with oral than IV glucose. In IGT, beta-cell glucose sensitivity (75 +/- 14 vs. 156 +/- 28 pmol.min(-1).m(-2).mM(-1) of NGT, P = 0.01) and potentiation were impaired on the OGTT. The incretin effect was not significantly different from NGT in terms of plasma glucagon-like peptide 1 and glucose-dependent insulinotropic polypeptide responses, total insulin secretion, and enhancement of beta-cell glucose sensitivity (OGTT/IV ratio = 1.73 +/- 0.24, P = NS vs. NGT). However, the time courses of incretin-mediated insulin secretion and potentiation were altered, with a predominance of glucose-induced vs. incretin-mediated stimulation. We conclude that, under physiological circumstances, incretin-mediated stimulation of insulin secretion results from an enhancement of all dynamic aspects of beta-cell function, particularly beta-cell glucose sensitivity. In IGT, beta-cell function is inherently impaired, whereas the incretin effect is only partially affected.  相似文献   

5.
The incretin mimetic exenatide improved glycemic control and reduced body weight in patients with type 2 diabetes inadequately controlled with metformin+/-a sulfonylurea. We assessed postprandial beta-cell function by mathematical modeling, independent of confounding effects from differing ambient glucose levels among treatments. Subjects were 63% males, 55+/-10 years, BMI 33+/-6 kg/m2, HbA1C 8.1+/-1.1% (+/- SD) randomized to 5 microg exenatide or placebo twice daily for 4 weeks. Subsequently, one arm remained at 5 microg twice daily, one arm escalated to 10 microg twice daily, and one treatment arm remained on placebo for 26 weeks. Subjects continued metformin+/-a sulfonylurea. A subset with meal tests at baseline and week 30 were analyzed (n=73). Outcome measures were the model-based beta-cell function parameters dose-response relating insulin secretion to glucose concentration, rate sensitivity, and potentiation. Exenatide reduced postprandial glucose excursions. Modeling predicted an upward shift of the beta-cell dose-response. Model-predicted insulin secretion rate at a reference glucose concentration increased 72% (10 microg), increased 40% (5 microg), or decreased 21% (placebo) at week 30 [ p=0.015 (10 microg); p=0.045 (5 microg); vs. placebo]. At week 30, the 2-hour post-meal to basal potentiation factor ratio was increased to 1.53+/-0.10 (10 microg; p=0.0142 vs. placebo) or 1.40+/-0.08 (5 microg; p=0.0402 vs. placebo) compared with 1.15+/-0.06 (placebo). Exenatide caused an upward shift of the beta-cell dose-response and enhanced potentiation of insulin secretion. This model suggests exenatide improved beta-cell function in patients with type 2 diabetes treated with metformin+/-a sulfonylurea.  相似文献   

6.
The Clinical Significance of PPAR Gamma Agonism   总被引:7,自引:0,他引:7  
Insulin resistance is a principal underlying defect in type 2 DM along with beta-cell dysfunction, and this insulin resistance underpins many of the abnormalities associated with the metabolic syndrome. Peroxisome-proliferator-activated receptor gamma agonists (PPARgamma agonists), also known as glitazones or thiazolidinediones (TZDs) are powerful insulin sensitisers with recent evidence suggesting that they also have a potential to improve pancreatic beta-cell function. TZDs cause a major redistribution of body fat with a decrease in visceral and hepatic fat content with a resultant increase in insulin sensitivity. The glucose lowering effects of TZDs are similar to those seen with the well-established sulphonylureas and metformin. TZDs have a small reducing effect on blood pressure and have been shown to reduce microalbuminuria independent of their blood glucose lowering effect. Both TZDs in clinical practice, pioglitazone and rosiglitazone, reduce small dense LDL-cholesterol and increase HDL-cholesterol levels but pioglitazone would appear to have a more pronounced benefit on these two parameters with a greater reduction in plasma triglycerides. TZDs improved the pro-coagulant state and show benefits in improving endothelial dysfunction and reducing 'non-traditional' inflammatory cytokines and increasing adiponectin levels. The greatest benefit for the TZDs is to directly influence atherogenesis itself and the potential that these so-called pleiotrophic effects of TZDs to reduce cardiovascular events in type 2 DM will be tested when the results of outcome trials are published in the next few years. If the results are positive for the reduction in vascular end-points, then TZDs will represent a major advance in improving the prognosis of type 2 DM subjects with the metabolic syndrome.  相似文献   

7.

Background

Thiazolidinediones (TZDs) activate peroxisome proliferator-activated receptor gamma (PPARγ) and are used clinically to help restore peripheral insulin sensitivity in Type 2 diabetes (T2DM). Interestingly, long-term treatment of mouse models of Alzheimer''s disease (AD) with TZDs also has been shown to reduce several well-established brain biomarkers of AD including inflammation, oxidative stress and Aβ accumulation. While TZD''s actions in AD models help to elucidate the mechanisms underlying their potentially beneficial effects in AD patients, little is known about the functional consequences of TZDs in animal models of normal aging. Because aging is a common risk factor for both AD and T2DM, we investigated whether the TZD, pioglitazone could alter brain aging under non-pathological conditions.

Methods and Findings

We used the F344 rat model of aging, and monitored behavioral, electrophysiological, and molecular variables to assess the effects of pioglitazone (PIO-Actos® a TZD) on several peripheral (blood and liver) and central (hippocampal) biomarkers of aging. Starting at 3 months or 17 months of age, male rats were treated for 4–5 months with either a control or a PIO-containing diet (final dose approximately 2.3 mg/kg body weight/day). A significant reduction in the Ca2+-dependent afterhyperpolarization was seen in the aged animals, with no significant change in long-term potentiation maintenance or learning and memory performance. Blood insulin levels were unchanged with age, but significantly reduced by PIO. Finally, a combination of microarray analyses on hippocampal tissue and serum-based multiplex cytokine assays revealed that age-dependent inflammatory increases were not reversed by PIO.

Conclusions

While current research efforts continue to identify the underlying processes responsible for the progressive decline in cognitive function seen during normal aging, available medical treatments are still very limited. Because TZDs have been shown to have benefits in age-related conditions such as T2DM and AD, our study was aimed at elucidating PIO''s potentially beneficial actions in normal aging. Using a clinically-relevant dose and delivery method, long-term PIO treatment was able to blunt several indices of aging but apparently affected neither age-related cognitive decline nor peripheral/central age-related increases in inflammatory signaling.  相似文献   

8.
Muscle insulin resistance develops when plasma free fatty acids (FFAs) are acutely increased to supraphysiological levels (approximately 1,500-4,000 micromol/l). However, plasma FFA levels >1,000 micromol/l are rarely observed in humans under usual living conditions, and it is unknown whether insulin action may be impaired during a sustained but physiological FFA increase to levels seen in obesity and type 2 diabetes mellitus (T2DM) (approximately 600-800 micromol/l). It is also unclear whether normal glucose-tolerant subjects with a strong family history of T2DM (FH+) would respond to a low-dose lipid infusion as individuals without any family history of T2DM (CON). To examine these questions, we studied 7 FH+ and 10 CON subjects in whom we infused saline (SAL) or low-dose Liposyn (LIP) for 4 days. On day 4, a euglycemic insulin clamp with [3-3H]glucose and indirect calorimetry was performed to assess glucose turnover, combined with vastus lateralis muscle biopsies to examine insulin signaling. LIP increased plasma FFA approximately 1.5-fold, to levels seen in T2DM. Compared with CON, FH+ were markedly insulin resistant and had severely impaired insulin signaling in response to insulin stimulation. LIP in CON reduced insulin-stimulated glucose disposal (Rd) by 25%, insulin-stimulated insulin receptor tyrosine phosphorylation by 17%, phosphatidylinositol 3-kinase activity associated with insulin receptor substrate-1 by 20%, and insulin-stimulated glycogen synthase fractional velocity over baseline (44 vs. 15%; all P < 0.05). In contrast to CON, a physiological elevation in plasma FFA in FH+ led to no further deterioration in Rd or to any additional impairment of insulin signaling. In conclusion, a 4-day physiological increase in plasma FFA to levels seen in obesity and T2DM impairs insulin action/insulin signaling in CON but does not worsen insulin resistance in FH+. Whether this lack of additional deterioration in insulin signaling in FH+ is due to already well-established lipotoxicity, or to other molecular mechanisms related to insulin resistance that are nearly maximally expressed early in life, remains to be determined.  相似文献   

9.
Combining pharmacological treatments and life style interventions is necessary for effective therapy of major diseases associated with obesity, which are clustered in the metabolic syndrome. Acting via multiple mechanisms, combination treatments may reduce dose requirements and, therefore, lower the risk of adverse side effects, which are usually associated with long-term pharmacological interventions. Our previous study in mice fed high-fat diet indicated additivity in preservation of insulin sensitivity and in amelioration of major metabolic syndrome phenotypes by the combination treatment using n-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFA) and rosiglitazone, i.e. an anti-diabetic drug of the thiazolidinedione (TZD) family. We investigated here whether pioglitazone, a TZD-drug in clinical use, could elicit the additive beneficial effects when combined with n-3 LC-PUFA. Adult male mice (C57BL/6N) were fed an obesogenic corn oil-based high-fat diet (cHF) for 8 weeks, or randomly assigned to various dietary treatments (i) cHF+F, cHF with n-3 LC-PUFA concentrate replacing 15% of dietary lipids; (ii) cHF+ROSI, cHF with 10 mg rosiglitazone/kg diet; (iii) cHF+F+ROSI; (iv) cHF+PIO, cHF with 50 mg pioglitazone/kg diet; and (v) cHF+F+PIO, or chow-fed. Plasma concentrations of 163 metabolites were evaluated using a targeted metabolomics approach. Both TZDs preserved glucose homeostasis and normal plasma lipid levels while inducing adiponectin, with pioglitazone showing better effectiveness. The beneficial effects of TZDs were further augmented by the combination treatments. cHF+F+ROSI but not cHF+F+PIO counteracted development of obesity, in correlation with inducibility of fatty acid β-oxidation, as revealed by the metabolomic analysis. By contrast, only cHF+F+PIO eliminated hepatic steatosis and this treatment also reversed insulin resistance in dietary obese mice. Our results reveal differential effects of rosiglitazone and pioglitazone, unmasked in the combination treatment with n-3 LC-PUFA, and support the notion that n-3 LC-PUFA could be used as add-on treatment to TZDs in order to improve diabetic patient's therapy.  相似文献   

10.
Circulating adiponectin levels are increased by the thiazolidinedione (TZD) class of PPARgamma agonists in concert with their insulin-sensitizing effects. Two receptors for adiponectin (AdipoR1 and AdipoR2) are widely expressed in many tissues, but their physiological significance to human insulin resistance remains to be fully elucidated. We examined the expression patterns of AdipoR1 and AdipoR2 in fat and skeletal muscle of human subjects, their relationship to insulin action, and whether they are regulated by TZDs. Expression patterns of both AdipoRs were similar in subcutaneous and omental fat depots, with higher expression in adipocytes than in stromal cells and macrophages. To determine the effects of TZDs on AdipoR expression, subcutaneous fat and quadriceps muscle were biopsied in 14 insulin-resistant subjects with type 2 diabetes mellitus after 45 mg pioglitazone or placebo for 21 days. This duration of pioglitazone improved insulin's suppression of glucose production by 41% and enhanced stimulation of glucose uptake by 27% in concert with increased gene expression and plasma levels of adiponectin. Pioglitazone did not affect AdipoR expression in muscle, whole fat, or cellular adipose fractions, and receptor expression did not correlate with baseline or TZD-enhanced insulin action. In summary, both adiponectin receptors are expressed in cellular fractions of human fat, particularly adipocytes. TZD administration for sufficient duration to improve insulin action and increase adiponectin levels did not affect expression of AdipoR1 or AdipoR2. Although TZDs probably exert many of their effects via adiponectin, changes in these receptors do not appear to be necessary for their insulin-sensitizing effects.  相似文献   

11.
We investigated beta-cell function and its relationship to insulin sensitivity in 17 normal volunteers. For insulin secretion (derived by C-peptide deconvolution), a mathematical model was applied to 24-h triple-meal tests (MT) as well as oral glucose tolerance tests (OGTT); insulin sensitivity was assessed by the euglycemic insulin clamp technique. The beta-cell model featured a glucose concentration-insulin secretion dose response (characterized by secretion at 5 mM glucose and slope), a secretion component proportional to the glucose concentration derivative, and a time-dependent potentiation factor (modulating the dose response and accounting for effects of sustained hyperglycemia and incretins). The beta-cell dose-response functions estimated from the whole 24-h MT, the first 2 h of the MT, and the OGTT differed systematically, because a different potentiation factor was involved. In fact, potentiation was higher than average during meals (1.6 +/- 0.1-fold during the first meal) and had a different time course in the MT and OGTT. However, if potentiation was accounted for, the 24- and 2-h MT and the OGTT yielded similar dose responses, and most beta-cell function parameters were intercorrelated (r = 0.50-0.86, P < or = 0.05). The potentiation factor was found to be related to plasma glucose-dependent insulin-releasing polypeptide concentrations (r = 0.49, P < 0.0001). Among beta-cell function parameters, only insulin secretion at 5 mM glucose from MT correlated inversely with insulin sensitivity (24-h MT: r = -0.74, P < 0.001; 2-h MT: r = -0.52, P < 0.05), whereas the dose-response slope and the OGTT parameters did not. In nine other subjects, reproducibility of model parameters was evaluated from repeated MTs. Coefficients of variation were generally approximately 20%, but the derivative component was less reproducible. We conclude that our model for the multiple MT yields useful information on beta-cell function, particularly with regard to the role of potentiation. With cautious interpretation, a 2-h MT or a standard OGTT can be used as surrogates of 24-h tests in assessing spontaneous beta-cell function.  相似文献   

12.
《Endocrine practice》2010,16(4):600-608
ObjectiveTo study the effect of improvement in vitamin D status on glucose tolerance in Asian Indian patients with moderately controlled type 2 diabetes mellitus (T2DM).MethodsThis randomized, double-blind, placebocontrolled pilot study was conducted in 28 Asian Indian patients with T2DM. Study participants were randomly assigned to a vitamin D-treated group (group D) or a placebo group (group P). Serum 25-hydroxyvitamin D, hemoglobin A1c, and serum fructosamine levels were measured, and an oral glucose tolerance test (OGTT) was performed in all patients at baseline and 4 weeks after intervention. During the OGTT, plasma glucose and serum insulin levels were measured at 0, 30, 60, 90, and 120 minutes. The unpaired t test was used to compare the groups at baseline and to compare the differences in changes from baseline to 4 weeks between the 2 study groups.ResultsGroup D and group P were similar with respect to their fasting plasma glucose and serum insulin concentrations, post-OGTT plasma glucose and serum insulin levels, and hemoglobin A1c and fructosamine values at baseline. Serum 25-hydroxyvitamin D levels increased significantly in group D at 4 weeks. No significant differences were found between the groups at baseline and 4 weeks with respect to serum fructosamine, fasting plasma glucose and serum insulin, post-OGTT plasma glucose and serum insulin levels, and homeostasis model assessment of insulin resistance.ConclusionIn this study, short-term improvement in vitamin D status was not associated with improvement in glucose tolerance, insulin secretion, or insulin sensitivity in Asian Indian patients with moderately controlled T2DM.(Endocr Pract. 2010;16:600-608)  相似文献   

13.
Thiazolidinediones (TZDs) are synthetic hypoglycemic agents used to treat type 2 diabetes. TZDs target the peroxisome proliferator activated receptor-gamma (PPAR-γ) and improve systemic insulin sensitivity. The contributions of specific tissues to TZD action, or the downstream effects of PPAR-γ activation, are not very clear. We have used a rat skeletal muscle cell line (L6 cells) to demonstrate that TZDs directly target PPAR-γ in muscle cells. TZD treatment resulted in a significant repression of lipoprotein lipase (LPL) expression in L6 cells. This repression correlated with an increase in glucose uptake. Down-regulation of LPL message and protein levels using siRNA resulted in a similar increase in insulin-dependent glucose uptake. Thus, LPL down-regulation improved insulin sensitivity independent of TZDs. This finding provides a novel method for the management of insulin resistance.  相似文献   

14.
Thiazolidinediones (TZDs) and metformin decreased the incidence of diabetes in subjects at risk for developing diabetes and improved peripheral or hepatic insulin sensitivity, respectively. Whether they also directly improved beta-cell function is not clear. In vitro studies showed improved beta-cell function in response to TZDs and metformin; however, the effects of TZDs or metformin on beta-cell function in humans are still uncertain. We hypothesized that both TZDs and metformin directly affect beta-cell function. We evaluated beta-cell function and insulin sensitivity (S(I)) in subjects with impaired glucose tolerance or a history of gestational diabetes using oral and intravenous glucose tolerance tests in addition to the glucose-potentiated arginine stimulation test. In contrast to metformin, pioglitazone improved S(I), glucose tolerance, and insulin-independent glucose disposal [glucose effectiveness (S(G))]. Neither pioglitazone nor metformin significantly improved beta-cell compensation for insulin resistance [disposition index (DI)], but the change in DI significantly correlated with baseline S(I). Insulin secretion in response to arginine at maximally potentiating glucose levels (AIR(max)) tended to increase after metformin and to decrease after pioglitazone; however, when adjusted for S(I), the changes were not significant. Our results demonstrate that, in nondiabetic subjects at risk for diabetes, pioglitazone, but not metformin, significantly improved glucose tolerance by improving S(I) and S(G). We did not find any evidence that either pioglitazone or metformin improved beta-cell function. Improved beta-cell compensation was observed primarily in the subgroup of subjects that had the lowest S(I) at baseline.  相似文献   

15.
Exercise-induced hypoglycemia can occur within hours after exercise in type 1 diabetes mellitus (T1DM) patients. This study tested the hypothesis that an acute exercise bout causes (within hours) blunted autonomic and metabolic responses to subsequent hypoglycemia in patients with T1DM. Twelve T1DM patients (3 W/9 M) were studied during a single-step, 2-h hyperinsulinemic (572 +/- 4 pmol/l) hypoglycemic (2.8 +/- 0.1 mmol/l) clamp 2 h after either a hyperinsulinemic euglycemic (AM EUG) or hypoglycemic clamp (AM HYPO) or after sitting in a chair with basal insulin infusion (AM CON) or 90 min of moderate-intensity exercise (50% Vo(2 max), AM EX). Both AM HYPO and AM EX significantly blunted epinephrine responses and muscle sympathetic nerve activity responses to subsequent hypoglycemia compared with both control groups. Endogenous glucose production was significantly lower and the exogenous glucose infusion rate needed to maintain the hypoglycemic level was significantly greater during subsequent hypoglycemia in AM EX vs. CON. Rate of glucose disposal (Rd) was significantly reduced following AM HYPO. In summary, within 2.5 h, both moderate-intensity AM EX and AM HYPO blunted key autonomic counterregulatory responses. Despite this, glucose Rd was reduced during afternoon hypoglycemia following morning hypoglycemia, indicating posthypoglycemic insulin resistance. After morning exercise, endogenous glucose production was blunted, but glucose Rd was maintained during afternoon hypoglycemia, thereby indicating reduced metabolic defenses against hypoglycemia. These data suggest that exercise-induced counterregulatory failure can occur very rapidly, increasing the risk for hypoglycemia in T1DM within hours.  相似文献   

16.
Inhibition of dipeptidyl peptidase-4 enhances the activity of incretin hormones, improving glycemic control in subjects with type 2 diabetes. This twelve-week randomized, double-masked, placebo-controlled study assessed the efficacy and tolerability of the specific and potent oral dipeptidyl peptidase-4 inhibitor, vildagliptin (25 mg, bid, n=70) VS. placebo (bid, n=28) in previously diet-treated subjects with type 2 diabetes. Standardized meal tests were performed at baseline and endpoint. The between-group difference in adjusted mean change in HbA1c from baseline to endpoint was - 0.6 +/- 0.2 % (p=0.0012) for the whole cohort (baseline 8.0 %) and -1.2 % for subjects with baseline HbA1c 8.0 - 9.5 %. Fasting glucose and mean prandial glucose were reduced by 1.1 +/- 0.4 (p=0.0043) and 1.9 +/- 0.5 mmol/l (p <0.0001), respectively. The between-group differences in corrected insulin response at peak glucose and mean prandial C-peptide were + 0.06 +/- 0.02 (p=0.0258) and + 0.10 +/- 0.03 nmol/l (p=0.0031), respectively. Vildagliptin had no effect on fasting lipid levels or body weight. The incidence of adverse events was similar in subjects receiving placebo (71.4 %) and vildagliptin (55.7 %). CONCLUSION: monotherapy with vildagliptin is well tolerated and improves glycemic control in diet-treated subjects with type 2 diabetes. Concomitant improvements in beta-cell function were also observed. Subjects with higher baseline HbA1c levels showed greater response.  相似文献   

17.
Thiazolidinediones may slow the progression of type 2 diabetes by preserving pancreatic beta-cells. The effects of pioglitazone (PIO) on structure and function of beta-cells in KKA(y), C57BL/6J ob/ob, and C57BL/KsJ db/db mice (genetic models of type 2 diabetes) were examined. ob/ob (n = 7) and db/db (n = 9) mice were randomly assigned to 50-125 mg.kg body wt-1.day-1 of PIO in chow beginning at 6-10 wk of age. Control ob/ob (n = 7) and db/db mice (n = 9) were fed chow without PIO. KKA(y) mice (n = 15) were fed PIO daily at doses of 62-144 mg.kg body wt-1.day-1. Control KKA(y) mice (n = 10) received chow without PIO. Treatment continued until euthanasia at 14-26 wk of age. Blood was collected at baseline (before treatment) and just before euthanasia and was analyzed for glucose, glycosylated hemoglobin, and plasma insulin. Some of the splenic pancreas of each animal was resected and partially sectioned for light or electron microscopy. The remainder of the pancreas was assayed for insulin content. Compared with baseline and control groups, PIO treatment significantly reduced blood glucose and glycosylated hemoglobin levels. Plasma insulin levels decreased significantly in ob/ob mice treated with PIO. All groups treated with PIO exhibited significantly greater beta-cell granulation, evidence of reduced beta-cell stress, and 1.5- to 15-fold higher levels of pancreatic insulin. The data from these studies suggest that comparable effects would be expected to slow the progression of type 2 diabetes, either delaying or possibly preventing progression to an insulin-dependent state.  相似文献   

18.
The detrimental effect of elevated free fatty acids (FFAs) on insulin sensitivity can be improved by thiazolidinediones (TZDs) in patients with type 2 diabetes mellitus. It is unknown whether this salutary action of TZD is associated with altered release of the insulin-mimetic adipocytokine visfatin. In this study, we investigated whether visfatin concentrations are altered by FFA and TZD treatment. In a randomized, double-blind, placebo-controlled, parallel-group study 16 healthy volunteers received an infusion of triglycerides/heparin to increase plasma FFA after 3 wk of treatment with rosiglitazone (8 mg/day, n = 8) or placebo (n = 8), and circulating plasma visfatin was measured. As a corollary, human adipocytes were incubated with synthetic fatty acids and rosiglitazone to assess visfatin release in vitro. The results were that rosiglitazone treatment increased systemic plasma visfatin concentrations from 0.6 +/- 0.1 to 1.7 +/- 0.2 ng/ml (P < 0.01). Lipid infusion caused a marked elevation of plasma FFA but had no effect on circulating visfatin in controls. In contrast, elevated visfatin concentrations in subjects receiving rosiglitazone were normalized by lipid infusion. In isolated adipocytes, visfatin was released into supernatant medium by acute addition and long-term treatment of rosiglitazone. This secretion was blocked by synthetic fatty acids and by inhibition of phosphatidylinositol 3-kinase or Akt. In conclusion, release of the insulin-mimetic visfatin may represent a major mechanism of metabolic TZD action. The presence of FFA antagonizes this action, which may have implications for visfatin bioactivity.  相似文献   

19.
Zhang L  Li L  Yang M  Liu H  Yang G 《Cytokine》2011,56(2):399-402
Vaspin has been regarded as a novel adipokine with potential insulin sensitizing properties. The aim of the present study is to investigate the effects of rosiglitazone therapy on plasma vaspin in type 2 diabetes patients (T2DM) inadequately controlled on metformin alone. A total of 105 subjects, including 37 subjects with normal glucose tolerance (NGT), 37 subjects with impaired glucose regulating (IGR), and 31 T2DM patients with poor glycemic control on metformin alone were enrolled in this study. Fasting plasma vaspin levels were higher in T2DM patients with poor glycemic control than that in IGR and NGT groups (1.19 ± 0.74 vs. 0.46 ± 0.26 and 0.54 ± 0.28 μg/L, P < 0.05). There was no difference between IGR and NGT groups. In T2DM patients, fasting plasma vaspin concentrations were significantly decreased after rosiglizatone therapy for 12 weeks (1.19 ± 0.74 vs. 0.91 ± 0.54 μg/L, P < 0.05), accompanied with significant amelioration of insulin sensitivity and glucose control. Plasma vaspin levels were positively associated with the fasting insulin and the homeostasis model assessment of IR (HOMA-IR). In conclusion, plasma vaspin level is higher in T2DM patients with poor glycemic control. And rosiglitazone therapy decreased plasma vaspin levels through glucose and insulin sensitivity regulation.  相似文献   

20.
OBJECTIVE: The aim of the study was to analyze the effect of pioglitazone (PIO) and simvastatin (SIMVA) on adiponectin and visfatin concentrations in nondiabetic patients with metabolic syndrome and increased risk for cardiovascular complications in a prospective randomized clinical trial. RESEARCH DESIGN AND METHODS: One-hundred twenty-five nondiabetic patients with increased cardiovascular risk [78 females, 47 males, age (mean+/-STD:58.6+/-7.8years, BMI:30.8+/-4.2(kg/m2] were included after randomization to PIO+lacebo, SIMVA+placebo, or PIO+SIMVA treatment for 3 months. At baseline and endpoint, measurements of HbA1c, glucose, insulin, LDL cholesterol, adiponectin and visfatin were performed. Insulin resistance was assessed by means of the HOMAIR-score. RESULTS: Improvement in the HOMAIR-score was observed with PIO and the combination, but not with SIMVA alone, which was accompanied by an increase in adiponectin with PIO treatment groups, but a decrease with SIMVA alone (baseline/endpoint: PIO: 14.0+/-8.2 mg/l/ 27.6+/- 14.5 mg/l, p<0.05; PIO+SIMVA: 11.7+/-10.0 mg/l/26.7+/-15.7 mg/l, p<0.05; SIMVA: 15.5+/-12.7 mg/l/ 11.6+/-7.0 mg/l, p<0.05). No change could be observed in the visfatin concentrations (PIO: 47.6+/-14.5 ng/ml/48.0+/-11.6 ng/ml, PIO+SIMVA: 45.1+/-10.9 ng/ml/47.9+/-10.1 ng/ml, SIMVA: 49.2+/- 13.4 ng/ml/52.1+/-16.7 ng/ml, n. s. in all cases). CONCLUSIONS: Insulin resistance and/or cardiovascular risk indicators were not associated with visfatin levels. Regulation of visfatin secretion occurs through biochemical pathways independent from those influenced by pioglitazone or simvastatin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号