首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Binding sites for insecticidal toxins of Bacillus thuringiensis are located in the brush border membranes of insect midguts. Two approaches were used to investigate the interactions of B. thuringiensis subsp. kurstaki HD-73 CryIA(c) toxin with brush border membrane vesicles from sensitive and naturally resistant insects: 125I-toxin-vesicle binding assays and protein blots probed with 125I-CryIA(c) toxin. In bioassays, Manduca sexta and Heliothis virescens larvae were highly sensitive, Helicoverpa zea larvae were moderately sensitive, and Spodoptera frugiperda larvae were resistant to CryIA(c) toxin. Studies of binding of 125I-CryIA(c) toxin to brush border membrane vesicles from the larval midguts revealed that all insects tested had high-affinity, saturable binding sites. Significantly, S. frugiperda larvae bind but are not killed by CryIA(c) toxin. Labeled CryIA(c) toxin incubated with protein blots identifies a major binding molecule of 120 kDa for M. sexta and 148 kDa for S. frugiperda. H. virescens and H. zea are more complex, containing 155-, 120-, 103-, 90-, and 63-kDa proteins as putative toxin-binding molecules. H. virescens also contains a minor toxin-binding protein of 81 kDa. These experiments provide information that can be applied toward a more detailed characterization of B. thuringiensis toxin-binding proteins.  相似文献   

2.
Binding sites for insecticidal toxins of Bacillus thuringiensis are located in the brush border membranes of insect midguts. Two approaches were used to investigate the interactions of B. thuringiensis subsp. kurstaki HD-73 CryIA(c) toxin with brush border membrane vesicles from sensitive and naturally resistant insects: 125I-toxin-vesicle binding assays and protein blots probed with 125I-CryIA(c) toxin. In bioassays, Manduca sexta and Heliothis virescens larvae were highly sensitive, Helicoverpa zea larvae were moderately sensitive, and Spodoptera frugiperda larvae were resistant to CryIA(c) toxin. Studies of binding of 125I-CryIA(c) toxin to brush border membrane vesicles from the larval midguts revealed that all insects tested had high-affinity, saturable binding sites. Significantly, S. frugiperda larvae bind but are not killed by CryIA(c) toxin. Labeled CryIA(c) toxin incubated with protein blots identifies a major binding molecule of 120 kDa for M. sexta and 148 kDa for S. frugiperda. H. virescens and H. zea are more complex, containing 155-, 120-, 103-, 90-, and 63-kDa proteins as putative toxin-binding molecules. H. virescens also contains a minor toxin-binding protein of 81 kDa. These experiments provide information that can be applied toward a more detailed characterization of B. thuringiensis toxin-binding proteins.  相似文献   

3.
One-hundred fifty isolates of Bacillus thuringiensis were tested for their ability to produce chitinase using colloidal chitin agar as the primary plating medium. Of 14 strains that produced chitinase, B. thuringiensis ssp. kurstaki HD-1(G) was identified as the highest chitinase producer and selected for further study. This bacterium produced the highest amount of chitinase (19.3 mU/ml) when it was cultivated in nutrient broth supplemented with 0.3% colloidal chitin on a rotary shaker (200 rpm) at 30 degrees C for 2 days. The toxicities of B. thuringiensis ssp. kurstaki HD-1(G) and B. thuringiensis ssp. kurstaki wa-p-2, a chitinase nonproducer, were assayed toward Plutella xylostella (diamondback moth) larvae, resulting in LC(50)'s of 4.93 x 10(4) and 1.32 x 10(5) spores/ml, respectively. If the culture broth from B. thuringiensis ssp. kurstaki HD-1(G) was used as the suspending liquid instead of phosphate buffer, their LC(50)'s were reduced to 6.23 x 10(3) and 7.60 x 10(4) spores/ml, respectively. The histopathological changes of the midgut epithelial cells of diamondback moth larvae were compared after feeding on B. thuringiensis ssp. kurstaki HD-1(G) with and without the presence of supernatant containing chitinase under light microscopy and transmission electron microscopy. The midgut epithelial cells of larvae fed for 30 min in the presence of chitinase, with or without spores and endotoxin crystals, appeared more elongated and swollen than those of the control larvae. A number of different cellular changes such as extensive cellular disintegration and appearance of numerous vacuoles were observed from the larvae fed on B. thuringiensis ssp. kurstaki HD-1(G) supplemented with supernatant containing chitinase. Thus increased toxicity and changes in epithelial cells were correlated with the presence of chitinase but this was not distinguished from the possible presence of vegetative-stage insecticidal proteins.  相似文献   

4.
Genes encoding insecticidal crystal proteins were cloned from three strains of Bacillus thuringiensis subsp. kenyae and two strains of B. thuringiensis subsp. kurstaki. Characterization of the B. thuringiensis subsp. kenyae toxin genes showed that they are most closely related to cryIA(c) from B. thuringiensis subsp. kurstaki. The cloned genes were introduced into Bacillus host strains, and the spectra of insecticidal activities of each Cry protein were determined for six pest lepidopteran insects. CryIA(c) proteins from B. thuringiensis subsp. kenyae are as active as CryIA(c) proteins from B. thuringiensis subsp. kurstaki against Trichoplusia ni, Lymantria dispar, Heliothis zea, and H. virescens but are significantly less active against Plutella xylostella and, in some cases, Ostrinia nubilalis. The sequence of a cryIA(c) gene from B. thuringiensis subsp. kenyae was determined (GenBank M35524) and compared with that of cryIA(c) from B. thuringiensis subsp. kurstaki. The two genes are more than 99% identical and show seven amino acid differences among the predicted sequences of 1,177 amino acids.  相似文献   

5.
To investigate the specificity of Bacillus thuringiensis var. kurstaki strain HD1 insecticidal crystal proteins (ICP), we used membrane preparations obtained from the midgut of Heliothis virescens larvae to perform separate ligand-blot experiments with the three activated CryIA toxins. The CryIA(a) and the CryIA(b) toxins bind the same 170-kDa protein, but most likely at two different binding sites. The CryIA(c) toxin binds two proteins of molecular masses 140 kDa and 120 kDa. We also demonstrate that the binding proteins for each of the B. thuringiensis toxins are not part of a covalent complex. Although the 170-kDa protein is a glycoprotein, endoglycosidase treatment does not prevent the binding of the CryIA(a) or CryIA(b) toxin. This indicates that the sugars are not important for the binding of these toxins. A model for a protein complex binding the B. thuringiensis HD1 ICPs is presented. Our results support the idea that binding proteins on membranes of the gut epithelial cells of H. virescens larvea are important for the specificity of the bacterial toxins.  相似文献   

6.
delta-Endotoxin gene of Bacillus thuringiensis HD-1 var kurstaki codes for the insecticidal crystal protein (ICP) specific for lepidopteran insects. Since the N-terminal half of the toxin is sufficient both for insect specificity and toxicity, the coding sequence of this part of the gene CryIA(b) was amplified by PCR and cloned in pUC19. As there was no expression of immunologically detectable delta-endotoxin in this clone in E. coli, the amplified ICP gene was transferred to an expression vector pGEx2T. Restriction mapping and immunoblotting confirmed the presence and expression of the CryIA(b) gene. This insert should be suitable for expression in plant system if it is mobilized into a plant binary vector.  相似文献   

7.
The binding proteins, or receptors, for insecticidal Bacillus thuringiensis subsp. kurstaki delta-endotoxins are located in the brush border membranes of susceptible insect midguts. The interaction of one of these toxins, CryIA(c), with proteins isolated from Heliothis virescens larval midguts was investigated. To facilitate the identification of solubilized putative toxin-binding proteins, a solid-phase binding assay was developed and compared with toxin overlay assays. The overlay assays demonstrated that a number of proteins of 170, 140, 120, 90, 75, 60, and 50 kDa bound the radiolabeled CryIA(c) toxin. Anion-exchange fractionation allowed the separation of these proteins into three toxin binding fractions, or pools. Toxin overlay assays demonstrated that although the three pools had distinct protein profiles, similar-size proteins could be detected in these three pools. However, determination of toxin affinity by using the solid-phase binding assay showed that only one of the three pools contained high-affinity binding proteins. The Kd obtained, 0.65 nM, is similar to that of the unsolubilized brush border membrane vesicles. Thus, the solid-phase binding assay in combination with the toxin overlay assay facilitates the identification and purification of high-affinity B. thuringiensis toxin-binding proteins from the insect midgut.  相似文献   

8.
Chang  Roh  Je  Park  Jin  Woo  & Kang 《Letters in applied microbiology》1998,26(5):387-390
A strain of Bacillus thuringiensis, STB-1, toxic against Spodoptera exigua , was isolated. Bacillus thuringiensis STB-1 produced bipyramidal inclusions and reacted with the H antiserum of B. thuringiensis ssp. kurstaki . The plasmid and protein profiles of B. thuringiensis STB-1 were compared with those of its reference strains, ssp. kurstaki and ssp. kenyae . To verifiy the gene type of B. thuringiensis STB-1, PCR analysis was performedwith Spodoptera -specific cry gene primers. The result showed that B. thuringiensis STB-1, unlike its reference strains, had cry1Aa , cry1Ab , cry1Ac and cry1E , suggesting that B. thuringiensis STB-1 was a unique strain with respect to gene type. In addition, B. thuringiensis STB-1 showed a high level of toxicity against both S. exigua and Bombyx mori , whereas B. thuringiensis ssp. kurstaki HD-1 or ssp. kenyae showed a high level of toxicity against only Bombyx mori or S. exigua , respectively.  相似文献   

9.
10.
A cell assay system was developed that allows Bacillus thuringiensis delta-endotoxins activated at high pH (10.5) to be tested in vitro without causing alkaline injury to target cells. The assay is carried out on a lawn of gel-suspended cells, requires only 1 microliter of sample per dose, and is quantitative, rapid, and sensitive. The threshold dose for toxicity of B. thuringiensis subsp. kurstaki HD-73 with IPRI-CF-1 cells was 24 pg protein. The assay is also very useful for identifying antibodies which inhibit toxicity and for detecting beta-exotoxin.  相似文献   

11.
Bacillus thuringiensis screening programs based on the official potency bioassay using third-instar larvae and on a neonate bioassay were developed for Heliothis armigera, Earias insulana, and Spondoptera littoralis. In these bioassays, the diets were standardized to be suitable, with minor modifications, for feeding of the three lepidopterans. The bioassay protocol was based on determination of the LC50 of the microbial standard HD-1-S-80 in the insects susceptible to B. thuringiensis var. kurstaki strains. This was followed by preliminary screening of B. thuringiensis strains at the LC50 of the B. thuringiensis standard. The B. thuringiensis strains causing 100% mortality at this LC50 in the larvae were selected for potency determinations. The neonate bioassay was suitable for accurate determinations of potencies also in S. littoralis--a representative of insects weakly susceptible to the HD-1 standard. The role of the official and the neonate bioassays in developing microbial control programs is discussed.  相似文献   

12.
13.
Bacillus thuringiensis subsp. aizawai HD133 is one of several strains particularly effective against Plodia interpunctella selected for resistance to B. thuringiensis subsp. kurstaki HD1 (Dipel). B. thuringiensis subsp. aizawai HD133 produces inclusions containing three protoxins, CryIA(b), CryIC, and CryID, and the CryIC protoxin has been shown to be active on resistant P. interpunctella as well as on Spodoptera larvae. The CryIA(b) protoxin is very similar to the major one in B. thuringiensis subsp. kurstaki HD1, and as expected, this protoxin was inactive on resistant P. interpunctella. A derivative of B. thuringiensis subsp. aizawai HD133 which had been cured of a 68-kb plasmid containing the cryIA(b) gene produced inclusions comprising only the CryIC and CryID protoxins. Surprisingly, these inclusions were much less toxic for resistant P. interpunctella and two other Lepidoptera than those produced by the parental strain, whereas the soluble protoxins from these strains were equally effective. In contrast, inclusions from the two strains were about as active as soluble protoxins for Spodoptera frugiperda larvae, so toxicity differences between inclusions may be due to the solubilizing conditions within particular larval guts. Consistent with this hypothesis, it was found that a higher pH was required to solubilize protoxins from inclusions from the plasmid-cured strain than from B. thuringiensis subsp. aizawai HD133, a difference which is probably attributable to the absence of the CryIA(b) protoxin in the former. The interactions of structurally related protoxins within an inclusion are probably important for solubility and are thus another factor in the effectiveness of B. thuringiensis isolates for particular insect larvae.  相似文献   

14.
Selection of resistance in Spodoptera exigua (Hubner) to an HD-1 spore-crystal mixture, CryIC (HD-133) inclusion bodies, and trypsinized toxin from Bacillus thuringiensis subsp. aizawai and B. thuringiensis subsp. entomocidus was attempted by using laboratory bioassays. No resistance to the HD-1 spore-crystal mixture could be achieved after 20 generations of selection. Significant levels of resistance (11-fold) to CryIC inclusion bodies expressed in Escherichia coli were observed after seven generations. Subsequent selection of the CryIC-resistant population with trypsinized CryIC toxin resulted, after 21 generations of CryIC selection, in a population of S. exigua that exhibited only 8% mortality at the highest toxin concentration tested (320 (mu)g/g), whereas the 50% lethal concentration was 4.30 (mu)g/g for the susceptible colony. Insects resistant to CryIC toxin from HD-133 also were resistant to trypsinized CryIA(b), CryIC from B. thuringiensis subsp. entomocidus, CryIE-CryIC fusion protein (G27), CryIH, and CryIIA. In vitro binding experiments with brush border membrane vesicles showed a twofold decrease in maximum CryIC binding, a fivefold difference in K(infd), and no difference in the concentration of binding sites for the CryIC-resistant insects compared with those for the susceptible insects. Resistance to CryIC was significantly reduced by the addition of HD-1 spores. Resistance to the CryIC toxin was still observed 12 generations after CryIC selection was removed. These results suggest that, in S. exigua, resistance to a single protein is more likely to occur than resistance to spore-crystal mixtures and that once resistance occurs, insects will be resistant to many other Cry proteins. These results have important implications for devising S. exigua resistance management strategies in the field.  相似文献   

15.
Midgut juices were prepared from Adoxophyes sp., smaller tea tortrix (STT); Bombyx mori, silkworm (SW); Spodoptera litura, common cutworm (CCW); Plutella xylostella, diamondback moth (DBM); and Musca domestica, housefly (HF) and immobilized onto Sepharose 4B. delta-Endotoxins (ICPs) from Bacillus thuringiensis subsp. kurstaki HD-1 and HD-73 were digested by these immobilized gut juice proteases. All gut juices tested derived relatively proteolytic resistant cores from ICP. The molecular sizes of these cores, about 55 kDa in SDS-PAGE, were resulted. In the case of CCW, however, digestion was very strong and only 1/20 concentration of core protein remained relative to other digests. The N-terminal amino acid sequencing of the core proteins showed that they were truncated at the very end of the N-terminus of protoxin, CryIA, at different sites. Although housefly larvae were completely insensitive to active toxin, the gut juice produced the core, suggesting that the housefly may lack the binding sites for the core-active toxin.  相似文献   

16.
The effect of crude proteinase inhibitor extracts from seeds of different crop plants (black gram, chickpea, chickling vetch, finger millet, French bean, green gram, horse gram, lentil, pea and soybean) on the insecticidal activity of B. thuringiensis var. kurstaki HD-1 was investigated against neonate larvae of H. armigera by diet incorporation method. The larval mortality due to crude proteinase inhibitors alone (5% seed weight equivalent) ranged from 4.1 to 19.1%; the maximum mortality with finger millet and the minimum with pea var. DDR-23. A mixture of B. thuringiensis var. kurstaki HD-1 (10 ppm) and proteinase inhibitor (5% seed weight equivalent) was synergistic in larval mortality with respect to proteinase inhibitors of pea var. DMR-16, chickling vetch var. RLK-1098 and B101-212, lentil var. ILL-8095 and L-4076, soybean var. PK-1042, PK-416 and Pusa-22, chickpea var. Pusa-413, French bean (Chitra) and black gram; and antagonistic with respect to those of finger millet, horse gram and kidney bean. The larval growth reduction with crude proteinase inhibitors alone ranged from 17.9 to 53.1%; the maximum growth reduction with soybean var. PK-1042 and minimum with lentil var. L-4076. A mixture of B. thuringiensis var. kurstaki and proteinase inhibitor was synergistic in growth reduction with respect to proteinase inhibitors of lentil var. ILL-8095, and L-4626 and antagonistic with respect to that of finger millet. The midgut proteinase inhibition with crude seed extracts (3.3% seed weight equivalent) ranged from 9.3 to 60.9% and was negatively correlated with larval mortality. These results showed that interactive effect of B. thuringiensis var. kurstaki HD-1 and proteinase inhibitors in the larvae of H. armigera depended upon the quality and quantity of proteinase inhibitors, which vary widely in different plants.  相似文献   

17.
The parasporal body of Bacillus thuringiensis subsp. shandongiensis was characterized in terms of its structure, protein composition, and toxicological properties against several types of insects. The crystals of B. thuringiensis shandongiensis appear to consist of a major protein of 144 kDa present in an spherical inclusion, as determined by transmission electron microscopy, titration curve analysis, and SDS-PAGE of the solubilized crystals. A second protein of ca. 60 kDa is present in trace amounts and appears to be associated with a small bar-shaped inclusion. The 144-kDa protein has been characterized by isoelectric point determination, N-terminal amino acid sequence analysis, amino acid analysis, and immunological cross reactivity. Its N-terminal amino acid sequence differed from that of other B. thuringiensis crystal proteins. The 144-kDa protein was not immunologically related to the crystal proteins of two toxic serovars (B. thuringiensis israelensis and B. thuringiensis kurstaki HD-1) and one nontoxic serovar (B. thuringiensis indiana), as shown in immunoblots probed with antiserum raised against the 144-kDa B. thuringiensis shandongiensis protein, the B. thuringiensis israelensis crystal proteins, and the trypsin resistant fragment of B. thuringiensis kurstaki P1 proteins. In contrast to most B. thuringiensis serovars, B. thuringiensis shandongiensis crystals did not dissolve at pH 12. Solubilization was achieved in sodium bicarbonate at pH 8.3 and in the presence of 25 mM dithiothreitol.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Plasmid transfer between Bacillus thuringiensis subsp. kurstaki HD1 and B. thuringiensis subsp. tenebrionis donor strains and a streptomycin-resistant B. thuringiensis subsp. kurstaki recipient was studied under environmentally relevant laboratory conditions in vitro, in soil, and in insects. Plasmid transfer was detected in vitro at temperatures of 5 to 37 degrees C, at pH 5.9 to 9.0, and at water activities of 0.965 to 0.995, and the highest transfer ratios (up to 10(-1) transconjugant/donor) were detected within 4 h. In contrast, no plasmid transfer was detected in nonsterile soil, and rapid formation of spores by the introduced strains probably contributed most to the lack of plasmid transfer observed. When a B. thuringiensis subsp. kurstaki strain was used as the donor strain, plasmid transfer was detected in killed susceptible lepidopteran insect (Lacanobia oleracea) larvae but not in the nonsusceptible coleopteran insect Phaedon chocleriae. When a B. thuringiensis subsp. tenerbrionis strain was used as the donor strain, no plasmid transfer was detected in either of these insects even when they were killed. These results show that in larger susceptible lepidopteran insects there is a greater opportunity for growth of B. thuringiensis strains, and this finding, combined with decreased competition due to a low initial background bacterial population, can provide suitable conditions for efficient plasmid transfer in the environment.  相似文献   

19.
Diamondback moth, Plutella xylostella, larvae were infected with a primary pathogen, Bacillus thuringiensis kurstaki (Btk) in single strain and mixed infections. Mixed infections comprised Btk and a non-pathogenic isolate, either Bacillus thuringiensis tenebrionis (Btt) or Bacillus cereus (Bc). All strains reproduced in larval cadavers, but there was evidence of competition between different isolates within hosts. Non-pathogenic isolates (Btt, Bc) had growth rates that were faster than Btk in vivo, whereas Btk outcompeted Btt in vitro. Passage through insects increased the in vitro competitive ability of Btk against Btt.  相似文献   

20.
The insecticidal activity of the CryIA(a), CryIA(b), and CryIA(c) toxins from Bacillus thuringiensis subsp. kurstaki HD-1 was determined in force-feeding experiments with larvae of Choristoneura fumiferana, C. occidentalis, C. pinus, Lymantria dispar, Orgyia leucostigma, Malacosoma disstria, and Actebia fennica. The toxins were obtained from cloned protoxin genes expressed in Escherichia coli. The protoxins were activated with gut juice from Bombyx mori larvae. Biological activity of the individual gene products as well as the native HD-1 toxin was assessed as the dose which prevented 50% of the insects from producing frass within 3 days (frass failure dose [FFD50]). The three toxins were about equally active against M. disstria. In the Choristoneura species, CryIA(a) and CryIA(b) were up to fivefold more toxic than CryIA(c). In the lymantriid species, CryIA(a) and CryIA(b) were up to 100-fold more toxic than CryIA(c). The toxicity of HD-1 was similar to that of the individual CryIA(a) or CryIA(b) toxins in all of these species. None of the CryIA toxins or HD-1 exhibited and toxicity towards A. fennica. Comparison of the observed FFD50 of HD-1 with the FFD50 expected on the basis of its crystal composition suggested a possible synergistic effect of the toxins in the two lymantriid species. Our results further illustrate the diversity of activity spectra of these highly related proteins and provide a data base for studies with forest insects to elucidate the molecular basis of toxin specificity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号