首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 295 毫秒
1.
To clarify the role of cell adhesion in the specification of pigment cell lineage in sea urchin embryos, cell contacts were inhibited by Ca2+-free artificial seawater (ASW) treatment, and the number of differentiated pigment cells was examined by the method devised for the present study. Obtained results showed that inhibition of cell contacts during mid-to-late blastula stage greatly affects the number of pigment cells. Treatment with Ca2+-free ASW during 7.5–10.5h of development drastically decreased the number of pigment cells, indicating that cell adhesion during this period is indispensable for the specification of pigment cell lineage. On the other hand, the number of pigment cells were increased by the treatment during 9.5–12.5 h of development. It was suggested that this increase was caused by excess divisions of the precursor cells, that is, the division schedule of the precursor cells was altered by inhibition of cell contacts at this period. Interestingly, the number of pigment cells was a multiple of four in a majority of embryos in which pigment cells were drastically decreased in number. These findings suggest that the founder blastomeres of the pigment cell lineage are specified during 7–10 h of development, and that these blastomeres divide twice before they differentiate into pigment cells.  相似文献   

2.
The process of pigment cell specification in the sand dollar Scaphechinus mirabilis was examined by manipulative methods. In half embryos, which were formed by dissociating embryos at the 2-cell stage, the number of pigment cells was significantly greater than half the number of pigment cells observed in control embryos. This relative increase might have been brought about by the change in the arrangement of blastomeres surrounding the micromere progeny. To examine whether such an increase could be induced at a later stage, embryos were bisected with a glass needle. When embryos were bisected before 7 h postfertilization, the sum of pigment cells observed in a pair of embryo fragments was greater than that in control embryos. This relative increase was not seen when embryos were bisected after 7 h postfertilization. From the size of blastomeres, it became clear that the 9th cleavage was completed by 7 h postfertilization. Aphidicolin treatment revealed that 10-15 pigment founder cells were formed. The results obtained suggest that the pigment founder cells were specified through direct cell contact with micromere progeny after the 9th cleavage, and that most of the founder cells had divided three times before they differentiated into pigment cells.  相似文献   

3.
In an attempt to estimate the number of pigment precursor cells in sea urchin embryos, DNA synthesis and cell divisions were blocked with aphidicolin from various stages of development. Interestingly, pigment cells differentiated on a normal time schedule, even if the embryos were treated from late cleavage stages on. In most of the embryos treated from 10 h on, 10-15 pigment cells differentiated. Thereafter, the number of pigment cells in the aphidicolin-treated embryos further increased, as the initiation of the treatment was delayed. On the other hand, total cell volumes in the pigment lineage, calculated from the averaged number and diameter of differentiated pigment cells, were almost the same irrespective of the time of the initiation of aphidicolin treatment. This indicated that the increase in the number was caused by divisions of the pre-existing cells in the pigment lineage. Thus, the founder cells that exclusively produce pigment cells could be identified. They are nine times-cleaved blastomeres and specified by 10 h post-fertilization. The obtained results also clarified the division schedule in the pigment lineage; the founder cells divide once (10th) until hatching, and divide once more (11th) by the end of gastrulation.  相似文献   

4.
The mechanisms of adhesion of the retinal and pigment epithelium cells, as well of cell interaction within each of these tissues were studied during development. It was shown by means of separation of retina from pigment epithelium in different dissociation media that the adhesion of these tissues in 5-6 day old chick embryos is realized via a Ca2+-independent mechanism. The adhesion of these tissues decreases between days 7 and 16. Starting from day 16, both Ca2+-independent and Ca2+-dependent mechanisms are involved in the interaction of the retinal and pigment epithelium cells. By measuring the output of single cells into the suspension after the treatment of retina and pigment epithelium with different dissociating agents, it was shown that from the 5th day of incubation on the adhesion of pigment epithelium cells is mediated by Ca2+-dependent mechanism. In the retina three types of cells were found: interacting via Ca2+-dependent mechanism only, Ca2+-independent mechanism only, and both the mechanisms. In the course of differentiation, the numbers of the population of cells interacting only via Ca2+-dependent mechanism increase, while those of cells interacting via Ca2+-independent mechanism decrease. It is suggested that at each developmental stage those retinal cell possess Ca2+-dependent mechanism of adhesion which are closest to the definitive state.  相似文献   

5.
When cells of the superficial layer explanted from the presumptive ectoderm of a Rana japonica early gastrula embryo at stage 10 were cultured in standard salt solution for 4–7 days, they differentiated into cement gland cells (CGCs), cilia cells (CCs) and common epidermal cells (CECs). When, however, these explants were treated with LiCl and transferred to Barth's solution, hatching gland cells (HGCs) and pigment cells were induced.
The optimum condition for inducing differentiation of HGC was treatment with 70 mM LiCl for 6–8 hr at 18°C. The best ability to react to the HGC-inducing stimuli resided in the superficial layer of the dorsal presumptive epidermis of the embryo at stage 10. Upon repeated stimulation, explants from stage 8 embryos underwent differentiation into nerve and pigment cells, whereas those from stage 11 embryos differentiated into CCs and CECs. Under optimum conditions, the total volume of HGCs induced amounted to about 70% of the explanted tissue. The culture media from LiCl-induced HGCs showed an apparent jelly-digesting activity, strongly indicating that the cells were functionally identical with those differentiated in situ .  相似文献   

6.
Changes in phosphatidylinositol metabolism are suggested to be involved in the mechanism of action of many membrane active hormones. We studied the effect of vasopressin on polyphosphoinositide metabolism in rabbit papillary collecting tubule cells to assess if the hydrolysis of these phospholipids is involved in transmembrane signaling. Rabbit papillary collecting tubule cells grown in monolayers for 5 days were labeled to constant specific activity with [3H]inositol. The temporal changes in [3H]inositol-labeled phospholipids were assessed in response to vasopressin. Similarly, water-soluble inositides were monitored after separation by ion exchange chromatography. Intracellular Ca2+ was monitored by use of the fluorescent indicator dye, quin2. Vasopressin (10(-7) M) did not increase the hydrolysis of phosphoinositides over a 5 min period when compared with controls. Similarly, there was no increase in water-soluble phosphoinositols during the same interval. Pretreating the cells with LiCl (10 mM) did not produce any increase in inositol 1-phosphate when stimulated with vasopressin but did in response to bradykinin. Finally, vasopressin did not increase cytosolic Ca2+ and did not increase the release of prostaglandin E2 into the media under our experimental conditions. We conclude that vasopressin does not stimulate prostaglandin E2 in rabbit papillary collecting tubule cells, does not initiate hydrolysis of polyphosphoinositides and does not increase cytosolic Ca2+. Thus these cells lack V1 receptor coupling mechanisms.  相似文献   

7.
Treatment of stage 5 Xenopus embryos with the ionophore A23187 for only 10 min, in the absence of extracellular Mg2+ and Ca2+, causes cortical contractions and a high incidence of abnormal embryos during subsequent development. Cation analysis shows that divalent ions are not lost from the embryos, but that Ca2+ is redistributed within the subcellular fractions. Ca2+ is probably released from yolk platelets and/or pigment granules by the action of A23187, [Ca2+] rises in the cytosol, and the mitochondria attempt to take up this free Ca2+. The mitochondria concomitantly undergo characteristic ultrastructural transformations, changing towards energized-twisted and energized-zigzag conformations. A23187 allows these changes to be demonstrated in situ. Extracellular divalent cations (10(-4) M) interfere with this intracellular action of A23187. Intracellular accumulation of Na+ (by treatment with ouabain) or Li+ also causes abnormal development, probably by promoting a release of Ca2+ from the mitochondria. It is suggested (a) that all these treatments cause a rise in [Ca2+]i which interferes with normal, integrated cell division, so causing, in turn, abnormal embryogenesis, (b) that levels of [Ca2+]i are of importance in regulating cleavage, (c) that the mitochondria could well have a function in regulating [Ca2+]i during embryogenesis in Xenopus, and (d) that vegetalizing agents may well act by promoting a rise in [Ca2+]i in specific cells in the amphibian embryo.  相似文献   

8.
General models of cell activation implicate Ca2+ conductance as pivotal in conveying transmembrane signals. During embryonic development, both cell migration and differentiation are influenced by changes in Ca2+; and, as a consequence, the modulation of Ca2+ is important in the control of many morphogenetic processes. Because Ca2+ conductance may be regulated at voltage-dependent Ca2+ channels (VD-CCs), we investigated whether neural crest cells develop VDCCs and, if so, whether they function in regulating migration and establishing cytomorphology. Autoradiography indicates that neural crest cells in vitro develop -L-type Ca2+ channels during migration and differentiation. Blockage of these channels by verapamil, both in vivo and in vitro, leads to a dramatic and reversible inhibition of neural crest migration. Alterations are manifest in vitro in cell-to-cell and cell-to-substratum contact and in the organization of the actin cytoskeleton. In whole embryos, verapamil or nifedipine inhibits pigment pattern formation. Moreover, blockage of the -L-type Ca2+ channels in whole embryos or cultures, after cells have already migrated and differentiated, results in a significant change in individual cell shape and in the overall pigment cell pattern, suggesting further that maintenance of the differentiated state also requires regulation at the -L-type Ca2+ channel. Since certain aspects of neural crest adhesion and cytoskeletal function are dependent on Ca2+, it is suggested that interactions that regulate the availability of Ca2+ through the VDCC may provide coordinate control of motile and adhesive interactions at the cell-substratum interface.  相似文献   

9.
Calcium regulation of pigment transport in vitro   总被引:8,自引:6,他引:2       下载免费PDF全文
Calcium has been implicated in the regulation of many cellular motility events. In this study we have examined the role of different Ca2+ concentrations on the in vitro transport of pigment within cultured chromatophores. Cells treated with Brij detergent for 1-2 min were stripped of their plasma membranes, leaving their cytoskeleton and associated pigment granules exposed to the external milieu. We found that retrograde pigment transport (aggregation) is induced upon addition of 1 mM MgATP2- with 10(-7) M free Ca2+, while an orthograde transport (redispersal) of pigment results from lowering the concentration of free Ca2+ to 10(-8) M while maintaining 1 mM MgATP2-. These Ca2+-regulated movements are ATP dependent but are apparently independent of cAMP and insensitive to calmodulin inhibitors. The observations reported here provide novel evidence that the concentration of free Ca2+ acts to regulate the direction of intracellular organelle transport.  相似文献   

10.
The putative role of changes in cytosolic Ca2+ concentration ([Ca2+]i) in the dexamethasone (DM) induced thymocyte death was investigated. Incubation of rat thymocytes with 10(-7) M DM for different time intervals from 0.1 to 8 h did not change the basal [Ca2+]i level ca 100 nM as measured with Ca(2+)-fluorescent probe Quin-2. Ca2+ influx measured by the rate of 45Ca2+ uptake was also just the same in DM treated and control cells. At the same time a 6-8 h incubation of cell suspension with 10(-7) M DM results in significant increase in DNA fragmentation and pyknosis, and a 24 h incubation is associated with the decrease in the percentage of cells not staining with Trypan blue. Thus, the results obtained indicate that 10(-7) M DM induces thymocyte death without any significant and constant [Ca2+]i rise during the first 8 h after hormone application.  相似文献   

11.
The regulating potential along the animal-vegetal axis of a direct developing echinoid, Peronella japonica, was investigated using LiCl. Animal caps isolated from 16-cell stage P. japonica embryos developed to permanent blastulae with an amniotic cavity. Treatment of animal caps with LiCl induced them to vegetalize with differentiation of the endoderm and subsequently develop into pluteus-like larvae. The larvae derived from the LiCl-treated animal caps were able to metamorphose and establish an adult body plan. A considerable fraction of whole embryos treated with LiCl exogastrulated and/or evaginated an amniotic cavity. The timing of the sensitivity to LiCl-mediated induction of evagination of the amniotic cavity was earlier than that for exogastrulation. Peronella japonica embryos became sensitive to LiCl induction of exogastrulation later than embryos of indirect developers. Some larvae with evaginated archenteron and/or evaginated amniotic cavity had metamorphic potential. These results suggest that LiCl can induce both vegetalization and evagination of invaginating structures. The present study is the first to show the potential of the presumptive ectoderm region to regulate the establishment of the adult body plan without any influence from other blastomeres, revealing that the regulating potential of sea urchin embryos is much larger than previously thought.  相似文献   

12.
To learn how the dorso-ventral (DV) axis of sea urchin embryos affects the specification processes of secondary mesenchyme cells (SMC), a fluorescent dye was injected into one of the macromeres of 16-cell stage embryos, and the number of each type of labeled SMC was examined at the prism stage. A large number of labeled pigment cells was observed in embryos in which the progeny of the labeled macromere were distributed in the dorsal part of the embryo. In contrast, labeled pigment cells were scarcely noticed when the descendants of the labeled macromere occupied the ventral part. In such embryos, free mesenchyme cells (probably blastocoelar cells) were predominantly labeled. CH3COONa treatment, which is known to increase the number of pigment cells, canceled such patterned specification of pigment cells and blastocoelar cells along the DV axis. Pigment cells were also derived from the ventral blastomere in the treated embryo. In contrast, a similar number of coelomic pouch cells was derived from the labeled macromere, irrespective of the position of its descendants along the DV axis. After examination of the arrangement of blastomeres in late cleavage stage embryos, it was determined that 17-20 veg2-derived cells encircled the cluster of micromere descendants after the 9th cleavage. From this number and the numbers of SMC-derived cells in later stage embryos, it was suggested that the most vegetally positioned veg2 descendants at approximately the 9th cleavage were preferentially specified to pigment and blastocoelar cell lineages. The obtained results also suggested the existence of undescribed types of SMC scattered in the blastocoele.  相似文献   

13.
G-proteins, calcium, and phospholipase A2 (PLA2) have all been implicated in the cascade of signaling events leading to the acrosome reaction in human spermatozoa. In order to study the role of Ca+2 and PLA2 during the acrosome reaction triggered by G-proteins, we treated human spermatozoa incubated for 3 hr under capacitating conditions with several reagents (GTPgammaS, A23187, ONO-RS-082, arachidonic acid, BAPTA-AM, and TPEN), alone or in different combinations. Our results suggest that GTP-binding proteins require Ca+2 and PLA2 to accomplish their stimulatory effect, and that Ca+2 is also required when the acrosome reaction--bypassing the action of PLA2--is stimulated by AA. Accordingly, when treated with GTPgammaS or AA, the cells loaded with Fura 2-AM showed a steady increase of [Ca+2]i. On the other hand, a massive influx of Ca+2 was completely unable to induce the acrosome reaction if PLA2 was inhibited, suggesting that both an increase of [Ca+2]i and PLA2 activation are required for the acrosome reaction to occur.  相似文献   

14.
The allantoic sac of the chick embryo functions as a primitive urinary bladder, storing and modifying the excretory fluid produced by the embryo. We have used chick embryos grown in shell-less culture to study the in situ handling of Ca2+ by the allantoic epithelium. Between Days 8 and 13 of incubation (38 degrees C, 5% CO2), the [Ca2+] of the allantoic sac fluid declines from about 1.5 mM to less than 0.3 mM, with most of this Ca2+ reabsorption occurring between Days 10 and 11. In 13-day-old embryos, the allantoic epithelium reabsorbs within 24 hr 85-92% of 45Ca2+ injected into the allantoic sac, while in 9-day-old embryos 45Ca2+ reabsorption is less than 40% by 24 hr. This is evidence for the developmental onset of a Ca2+ reabsorption process in the allantoic epithelium. The allantoic fluid Ca2+ is reabsorbed into the embryo's blood in which the serum [Ca2+] is about 1.5 mM. Also, electrical potential profiles reveal that the serosal (mesenchymal) side of the allantoic epithelium is 15-30 mV positive compared to the mucosal (luminal) side. Thus, by electrochemical criteria this reabsorption process appears to be active.  相似文献   

15.
Through the injection of f-aequorin and the use of a photon imaging microscope, we have previously reported that a rhythmic series of intercellular Ca2+ waves circumnavigate zebrafish embryos over a 10 h period during gastrulation and axial segmentation. These waves first appear at about 65% epiboly and continue to arise every 5-10 min up to at least the 16-somite stage. In response to our publication, it was suggested that the waves may be an artefact caused by dechorionation of the embryos and would not be observed during the development of intact embryos (i.e. those with chorions). Here we demonstrate (again initially by aequorin imaging) that the rhythmic intercellular Ca2+ waves that traverse the blastoderm margin can also be observed in embryos that have an intact chorion. In addition, the appearance time, propagation pathway, velocity, duration and Ca2+ rise of the waves, as well as the interwave interval and the timing of wave onset, are approximately the same in both dechorionated embryos and those with an intact chorion. Furthermore, by loading intact embryos with Ca(2+)-green dextran at the single-cell stage and then using scanning confocal microscopy to obtain high-resolution images, we confirm the presence of circumferential Ca2+ waves and show that they pass through a population of deep cells located at the blastoderm margin. The confirmation of these pan-embryonic Ca2+ waves in zebrafish further corroborates our earlier suggestion that such waves might play a fundamental role in normal embryonic patterning during the gastrula period.  相似文献   

16.
Secreted protein, acidic, rich in cysteine (SPARC) is a Ca2+-binding, counter-adhesive, extracellular glycoprotein associated with major morphogenic events and tissue remodeling in vertebrates. In Xenopus laevis embryos, SPARC is expressed first by dorsal mesoderm cells at the end of gastrulation and undergoes complex, rapid changes in its pattern of expression during early organogenesis. Another study has reported that precocious expression of SPARC by injection of native protein into the blastocoele cavity of pregastrula embryos leads to a concentration-dependent reduction in anterior development. Thus, normal development requires that the timing, spatial distribution, and/or levels of SPARC be regulated precisely. In a previous study, we demonstrated that injection of a synthetic peptide corresponding to the C-terminal, Ca2+-binding, EF-hand domain of SPARC (peptide 4.2) mimicked the effects of native SPARC. In the present investigation, peptide 4.2 was used to examine the cellular and molecular bases of the phenotypes generated by the aberrant presence of SPARC. Exposure of late blastula embryos to LiCl also generated a concentration-dependent reduction in anterior development; therefore, injections of LiCl were carried out in parallel to highlight the unique effects of peptide 4.2 on early development. At concentrations that caused a similar loss in anterior development (60-100 ng peptide 4.2 or 0.25-0.4 microg LiCl), LiCl had a greater inhibitory effect on the initial rate of chordomesoderm cell involution, in comparison with peptide 4.2. However, as gastrulation progressed, peptide 4.2 had a greater inhibitory effect on prospective head mesoderm migration than that seen in the presence of LiCl. Moreover, peptide 4.2 and LiCl had distinct influences on the expression pattern of dorso-anterior markers at the neural and tail-bud stages of development. Scanning electron microscopy showed that peptide 4.2 inhibited spreading of migrating cells at the leading edge of the involuting chordomesoderm. While still in close proximity to the blastocoele roof, many of the cells appeared rounded and lacked lamellipodia and filopodia extended in the direction of migration. In contrast, LiCl had no effect on the spreading or shape of involuting cells. These data are the first evidence of a counter-adhesive activity for peptide 4.2 in vivo, an activity demonstrated for both native SPARC and peptide 4.2 in vitro.  相似文献   

17.
The growth of Staphylococcus aureus 209P becomes unusually sensitive to a high-NaCl concentration by decreasing the Ca2+ concentration in growth media, and cells either autolyze or transform into protoplast-like forms when grown standing in high-NaCl and low-Ca2+ concentration media below 37 C (Ochiai, T., Microbiol. Immunol. 43 (7): 705-709, 1999). To assess the role of Ca2+ in the salt tolerance of this organism, cells grown in the presence of different concentrations of Ca2+ were treated with boiling SDS, and their susceptibilities to crude autolysin (3 M LiCl extract of S. aureus 209P cells) were evaluated by turbidimetric assay and zymographic analysis. Susceptibilities of SDS-treated cells (SDS-cells) to crude autolysin were significantly influenced by Ca2+ concentration in the culture, and SDS-cells prepared from cultures grown in high-NaCl and high-Ca2+ concentration media exhibited marked resistance to crude autolysin when the assay system contained a high concentration of NaCl. On the contrary, SDS-cells prepared from cultures grown in high-NaCl and low-Ca2+ concentration media were rather susceptible to crude autolysin under the same assay conditions. A zymographic analysis revealed that the constitution of cell-associated autolysins was not influenced by the concentration of exogenous Ca2+. These results suggested that at least part of the mechanism of salt-induced autolysis in S. aureus 209P might be related to the synthesis of an autolysin susceptible cell wall.  相似文献   

18.
Paramecia respond to environmental stimuli by altering swimming behavior to disperse from or accumulate in the vicinity of the stimulus. We have found, using the T-maze assay, that treatment of paramecia with LiCl in a time- and concentration-dependent manner modifies the normal response to folate, acetate, and lactate from attraction to no response or even repulsion. Responses to NH4Cl were unaffected and to cAMP were variably affected by LiCl. Cells incubated in the presence of K+, or both Na+ and K+, but not Na+ alone reliably recovered attraction to folate. Treatment of cells with 4 mM LiCl for 1 h dramatically slowed swimming speed from about 1 mm/s in NaCl or KCl (control) to 0.18 mm/s in LiCl. Li-treated cells subsequently incubated in 4 mM NaCl, KCl or sequentially in KCl and NaCl for a total of 20 min increased their swimming speed to 0.35, 0.45 and 0.67 mm/s, respectively. Paramecia readily took up Li+ in Na(+)- and K(+)-free media reaching intracellular concentrations of 5-10 mM in 10 mM extracellular Li+. Efflux of intracellular Li+ was stimulated 35% by extracellular 10 mM NaCl and 185% by 10 mM KCl over 10 mM choline chloride. Incubation of cells in 10 mM LiCl for 1 h inhibited the rate of Ca2+ efflux by 44% compared to cells in 10 mM NaCl. This may relate to the mechanism by which Li+ perturbs chemoresponse. A mutant with defects in Ca homeostasis responds normally to NH4Cl, but not to any of the stimuli that are affected by LiCl.  相似文献   

19.
Auxin addition to protoplasts isolated from leaves of 6-day-old wheat seedlings (Triticum aestivum L. cv. Kadett) induced a rapid increase in the cytosolic calcium concentration [Ca2+]cyt. The shifts in [Ca2+]cyt were detected by use of fluorescence microscopy in single protoplasts loaded with the calcium binding tetra[acetoxymethyl]ester of the fluorescent dye, Fura 2. Addition of the synthetic auxin naphthyl acetic acid, 1-NAA, induced an increase in [Ca2+]cyt within 5-10s, while the physiologically non-active analogue, 2-NAA, did not. The amplitude of calcium increase depended on the concentration of 1-NAA. Since the process was affected by different concentrations of Ca2+ in the external medium, and since the calcium channel blockers (nifedipine and verapamil) postponed and inhibited the reaction, it is suggested that auxin primarily activates Ca2+-permeable channels in the plasma membrane. In the presence of low external calcium concentration (0.1 mM), 5 mM LiCl almost totally blocked the increase in [Ca2+]cyt, indicating a possible involvement of tonoplast Ca2+-channels in the auxin-induced [Ca2+]cyt shift. Thus, calcium signalling induced by auxin involves both external and internal Ca2+ pools.  相似文献   

20.
1. Fusogenic and non-fusogenic chemicals were tesetd for their ability to allow 45Ca2+ and 3H2O to enter hen and human erythrocytes. 2. The ratio of 45Ca2+/3H2O in treated cells to that in untreated cells is referred to as the entry ratio. 3. Within 1 min at 37 degrees C both water-soluble and lipid-soluble fusogens increased the value of the entry ratio, which reached maximum values in 5--10 min. 4. Values of the entry ratio in the range of 4--12 were found under conditions that led to cell fusion. 5. Closely related but non-fusogenic chemicals did not significantly alter the entry ratio. 6. The entry ratios for 86Rb+, 22Na+ and 35SO42- were also significantly increased by both lipid-soluble and water-soluble fusogens, though the increases were not as large as those for 45Ca2+. 7. It is suggested that fusogenic compounds increase the permeability of biological membranes to ions, and that an increase in the concentration of intracellular Ca2+ initiates or facilitates events that lead to the chemically induced fusion of erythrocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号