首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Mathematical models have become vital to the study of many biological processes in humans due to the complexity of the physiological mechanisms underlying these processes and systems. While our current mathematical representation of the human circadian pacemaker has proven useful in many experimental situations, it uses as input only a direct effect of light on the circadian pacemaker. Although light (a photic stimulus) has been shown to be the primary synchronizer of the circadian pacemaker across a number of species, studies in both animals and humans have confirmed the existence of non-photic effects that also contribute to phase shifting and entrainment. We modified our light-based circadian mathematical model to reflect evidence from these studies that the sleep-wake cycle and/or associated behaviors have a non-photic effect on the circadian pacemaker. In our representation, the sleep-wake cycle and its associated behaviors provides a non-photic drive on the circadian pacemaker that acts both independently and concomitantly with light stimuli. Further experiments are required to validate fully our model and to understand the exact effect of the sleep-wake cycle as a non-photic stimulus for the human circadian pacemaker.  相似文献   

2.
Although chronic alcohol intake is associated with widespread disruptions of sleep-wake cycles and other daily biological rhythms in both human alcoholics and experimental animals, the extent to which the chronobiological effects of alcohol are mediated by effects on the underlying circadian pacemaker remains unknown. Nevertheless, recent studies indicate that both adult and perinatal ethanol treatments may alter the free-running period and photic responsiveness of the circadian pacemaker. The present experiment was designed to further characterize the effects of chronic ethanol intake on the response of the rat circadian pacemaker to brief light pulses. Ethanol-treated and control animals were exposed to 15-min light pulses during either early or late subjective night on the first day of constant darkness following entrainment to a 12:12 light-dark cycle. Relative to pulses delivered during early subjective night and to “no-pulse” conditions, light pulses delivered during late subjective night resulted in period-shortening after-effects under constant darkness, but only in control animals, not in ethanol-treated animals. These results indicate that chronic ethanol intake reduces the responsiveness of the circadian pacemaker to acute photic stimulation, and suggest that the chronobiological disruptions seen in human alcoholics are due in part to alterations in circadian pacemaker function.  相似文献   

3.
In 1990, Kronauer proposed a mathematical model of the effects of light on the human circadian pacemaker. This study presents several refinements to Kronauer's original model of the pacemaker that enable it to predict more accurately the experimental results from a number of different studies of the effects of the intensity, timing, and duration of light stimuli on the human circadian pacemaker. These refinements include the following: The van der Pol oscillator from Kronauer's model has been replaced with a higher order limit cycle oscillator so that the system's amplitude recovery is slower near the singularity and faster near the limit cycle; the phase and amplitude of the circadian rhythm in sensitivity to light from Kronauer's model has been refined so that the peak sensitivity to light on the limit cycle now occurs approximately 4 h before the core body temperature minimum (CBTmin) and is three times as great as the minimum sensitivity on the limit cycle; the critical phase (at which type 1 phase response curves [PRCs] can be distinguished from type 0 PRCs) that occurs at CBT,n now corresponds to 0.8 h after the minimum of x (x(min) in this refined model rather than to the exact timing of x(min) as in Kronauer's model; a direct effect of light on circadian period was incorporated into the model such that as light intensity increases, the period decreases, which is in accordance with Aschoff's rule.  相似文献   

4.
We have used intracellular recording to directly measure the effects of three experimental agents, light, elevated potassium seawater, and lowered sodium seawater on the membrane potential of the putative circadian pacemaker neurons of the Bulla eye. These agents were subsequently tested for effects on the free running period of the circadian pacemaker. We report that: 1. When applied to the eye, light and elevated potassium seawater depolarized the putative pacemaker neurons, while lowered sodium seawater hyperpolarized them. The membrane potential changes induced by these agents are sustained for at least one hour, suggesting that they produce persistent changes in the average membrane potential of the putative pacemaker neurons. 2. The amplitude of the membrane potential response to the depolarizing agents varies with the phase of the circadian cycle. Depolarizations induced by light and elevated potassium seawater are twice as large during the subjective night than they are during the subjective day. No significant difference was found in the response to lowered sodium seawater at different phases. 3. Continuous application of each of these agents caused a lengthening of the free running period of the Bulla eye. Constant light increased the period by 0.9 h, while the other depolarizing treatment (elevated potassium seawater) increased the free running period by 0.6 h. Both treatments increased the mean peak impulse frequency of treated eyes. The hyperpolarizing treatment also increased the period of the ocular pacemaker (+0.8 h), but had little effect on peak impulse frequency.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The circadian timing system (CTS) provides internal and external temporal coordination of an animal's physiology and behavior. In mammals, the generation and coordination of these circadian rhythms is controlled by a neural pacemaker, the suprachiasmatic nucleus (SCN), located within the hypothalamus. The pacemaker is synchronized to the 24 hour day by time cues (zeitgebers) such as the light/dark cycle. When an animal is exposed to an environment without time cues, the circadian rhythms maintain internal temporal coordination but exhibit a "free-running" condition in which the period length is determined by the internal pacemaker. Maintenance of internal and external temporal coordination are critical for normal physiological and psychological function in human and non-human primates. Exposure to altered gravitational environments has been shown to affect the amplitude, mean, and timing of circadian rhythms in species ranging from unicellular organisms to man. However, it has not been determined whether altered gravitational fields have a direct effect on the neural pacemaker, or affect peripheral physiological systems that express these circadian parameters. In previous studies, the ability of a stimulus to phase shift circadian rhythms was used to determine whether a stimulus has a direct effect on the neural pacemaker. The present experiment was performed in order to determine whether acute exposure to a hyperdynamic field could phase shift circadian rhythms.  相似文献   

6.
Summary The eye of the marine mollusk Aplysia californica contains a photo-entrainable circadian pacemaker that drives an overt rhythm of spontaneous compound action potentials. The current study evaluated the influence of serotonin on light-induced phase shifts of this ocular rhythm. The application of serotonin in combination with light was found to have profound and interactive effects on the magnitude of the resulting phase shifts. Further, the phase shifts that resulted from the interaction between light and serotonin appeared to be phase dependent, i.e., the application of serotonin inhibited the phase shifting effects of light during one part of the circadian cycle but enhanced them during another. Finally, the results show that the interaction between light and serotonin is dependent upon the sequence in which these two treatments are paired. These data, coupled with previous findings, suggest that serotonin may act to modulate light's phase shifting effects on the ocular pacemaker in Aplysia.Abbreviations CAP compound action potential - ASW artificial sea water - CT circadian time - 5-HT serotonin  相似文献   

7.
Ocular light exposure patterns are the primary stimuli for entraining the human circadian system to the local 24-h day. Many totally blind persons cannot use these stimuli and, therefore, have circadian rhythms that are not entrained. However, a few otherwise totally blind persons retain the ability to suppress plasma melatonin concentrations after ocular light exposure, probably using a neural pathway that includes the site of the human circadian pacemaker, suggesting that light information is reaching this site. To test definitively whether ocular light exposure could affect the circadian pacemaker of some blind persons and whether melatonin suppression in response to bright light correlates with light-induced phase shifts of thecircadian system, the authorsperformed experiments with 5 totally blind volunteers using a protocol known to induce phase shifts of the circadian pacemaker in sighted individuals. In the 2 blind individuals who maintained light-induced melatonin suppression, the circadian system was shifted by appropriately timed bright-light stimuli. These data demonstrate that light can affect the circadian pacemaker of some totally blind individuals--either by altering the phase of the circadian pacemaker or by affecting its amplitude. They are consistent with data from animal studies demonstrating that there are different neural pathways and retinal cells that relay photic information to the brain: one for conscious light perception and the other for non-image-forming functions.  相似文献   

8.
The light-dark cycle is the primary synchronizing factor that keeps the internal circadian pacemaker appropriately aligned with the environmental 24-h day. Although it is known that ocular light exposure can effectively shift the human circadian pacemaker and do so in an intensity-dependent manner, the curve that describes the relationship between light intensity and pacemaker response has not been fully characterized for light exposure in the late biological night. We exposed subjects to 3 consecutive days of 5 h of experimental light, centered 1.5 h after the timing of the fitted minimum of core body temperature, and show that such light can phase advance shift the human circadian pacemaker in an intensity-dependent manner, with a logistic model best describing the relationship between light intensity and phase shift. A similar sigmoidal relationship is also observed between light intensity and the suppression of plasma melatonin concentrations that occurs during the experimental light exposure. As with a simpler, 1-day light exposure during the early biological night, our data indicate that the human circadian pacemaker is highly sensitive even to typical room light intensities during the late biological night, with approximately 100 lux evoking half of the effects observed with light 10 times as bright.  相似文献   

9.
Mathematical models have played an important role in the analysis of circadian systems. The models include simulation of differential equation systems to assess the dynamic properties of a circadian system and the use of statistical models, primarily harmonic regression methods, to assess the static properties of the system. The dynamical behaviors characterized by the simulation studies are the response of the circadian pacemaker to light, its rate of decay to its limit cycle, and its response to the rest-activity cycle. The static properties are phase, amplitude, and period of the intrinsic oscillator. Formal statistical methods are not routinely employed in simulation studies, and therefore the uncertainty in inferences based on the differential equation models and their sensitivity to model specification and parameter estimation error cannot be evaluated. The harmonic regression models allow formal statistical analysis of static but not dynamical features of the circadian pacemaker. The authors present a paradigm for analyzing circadian data based on the Box iterative scheme for statistical model building. The paradigm unifies the differential equation-based simulations (direct problem) and the model fitting approach using harmonic regression techniques (inverse problem) under a single schema. The framework is illustrated with the analysis of a core-temperature data series collected under a forced desynchrony protocol. The Box iterative paradigm provides a framework for systematically constructing and analyzing models of circadian data.  相似文献   

10.
Albrecht U 《Current biology : CB》2001,11(13):R517-R519
The central pacemaker of circadian behavior in mammals is located in the suprachiasmatic nuclei, each neuron of which has its own circadian rhythm. Recent studies shed light on the integration of these individual cellular rhythms and on novel genetic determinants that have been found to influence circadian behavior.  相似文献   

11.
Endogenously generated circadian rhythms are synchronized with the environment through phase-resetting actions of light. Starlight and dim moonlight are of insufficient intensity to reset the phase of the clock directly, but recent studies have indicated that dim nocturnal illumination may otherwise substantially alter entrainment to bright lighting regimes. In this article, the authors demonstrate that, compared to total darkness, dim illumination at night (< 0.010 lux) alters the entrainment of male Syrian hamsters to bright-light T cycles, gradually increasing in cycle length (T) from 24 h to 30 h. Only 1 of 18 hamsters exposed to complete darkness at night entrained to cycles of T > 26 h. In the presence of dim nocturnal illumination, however, a majority of hamsters entrained to Ts of 28 h or longer. The presence or absence of a running wheel had only minor effects on entrainment to lengthening light cycles. The results further establish the potent effects of scotopic illumination on circadian entrainment and suggest that naturalistic ambient lighting at night may enhance the plasticity of the circadian pacemaker.  相似文献   

12.
M Zatz 《Federation proceedings》1979,38(12):2596-2601
Photoentrainment of circadian rhythms in mammals is mediated by the retinohypothalamic projection to the suprachiasmatic nucleus of the hypothalamus. It should therefore be possible to mimic or block the effects of light on the circadian pacemaker with appropriate pharmacological agents. Such agents and their effects should be useful in identifying the neurotransmitters involved in photoentrainment and their mechanisms of action on the circadian pacemaker. The effects of light on the circadian rhythm in rat pineal serotonin N-acetyltransferase activity are described. Carbachol, a cholinergic agonist, was found to mimic the effects of light on this rhythm, including the acute reduction of nocturnal activity and phase-shifting of the free-running rhythm. These results raise the possibility that acetylcholine is involved in the photoentrainment of mammalian circadian rhythms.  相似文献   

13.
Since the initial studies reporting that light can alter the phase position of the human circadian system, there has been increasing interest in the use of bright light as a tool for manipulating the phase position of the circadian pacemaker. Exposure protocols typically require subjects to receive 2–5 h of exposure over several circadian cycles. As a consequence, bright light treatment can involve a considerable time investment. However, recent studies indicate that a single pulse of bright light can produce significant phase shifts in the circadian pacemaker. If a single pulse of bright light can produce significant phase-shifting effects, multiple-pulse designs may be unnecessary. This study examined the phase-shifting effects of a single 4-h pulse of bright light (12,000 lux) in 14 male and one female subject aged between 19–45 years. With use of a “constant routine” to estimate circadian phase, a single 4-h pulse of light produced significant shifts in the phase of the core temperature rhythm. The timing of the exposure, relative to the core temperature rhythm, determined the degree and direction of the phase shift. Exposure immediately prior to habitual bedtime produced a mean phase delay in the core temperature of 2.39 h (SD = 1.37 h). In contrast, exposure immediately following habitual wake-up produced a mean phase advance of 1.49 h (SD = 2.06 h). In addition, the magnitude of the shift increased the closer the light pulse was to the individual's estimated endogenous core temperature minimum. There was, however, considerable interindividual variability in this relationship. Overall, these results confirm that a single pulse of bright light can produce significant phase shifts in the phase of the circadian pacemaker controlling core temperature.  相似文献   

14.
Since the initial studies reporting that light can alter the phase position of the human circadian system, there has been increasing interest in the use of bright light as a tool for manipulating the phase position of the circadian pacemaker. Exposure protocols typically require subjects to receive 2-5 h of exposure over several circadian cycles. As a consequence, bright light treatment can involve a considerable time investment. However, recent studies indicate that a single pulse of bright light can produce significant phase shifts in the circadian pacemaker. If a single pulse of bright light can produce significant phase-shifting effects, multiple-pulse designs may be unnecessary. This study examined the phase-shifting effects of a single 4-h pulse of bright light (12,000 lux) in 14 male and one female subject aged between 19-45 years. With use of a “constant routine” to estimate circadian phase, a single 4-h pulse of light produced significant shifts in the phase of the core temperature rhythm. The timing of the exposure, relative to the core temperature rhythm, determined the degree and direction of the phase shift. Exposure immediately prior to habitual bedtime produced a mean phase delay in the core temperature of 2.39 h (SD = 1.37 h). In contrast, exposure immediately following habitual wake-up produced a mean phase advance of 1.49 h (SD = 2.06 h). In addition, the magnitude of the shift increased the closer the light pulse was to the individual's estimated endogenous core temperature minimum. There was, however, considerable interindividual variability in this relationship. Overall, these results confirm that a single pulse of bright light can produce significant phase shifts in the phase of the circadian pacemaker controlling core temperature. Key Words: Bright light—Circadian rhythm—Core body temperature—Sleep-wake disorders—Chronobiology.  相似文献   

15.
Circadian rhythms are endogenous rhythms with a cycle length of approximately 24 h. Rhythmic production of specific proteins within pacemaker structures is the basis for these physiological and behavioral rhythms. Prior work on mathematical modeling of molecular circadian oscillators has focused on the fruit fly, Drosophila melanogaster. Recently, great advances have been made in our understanding of the molecular basis of circadian rhythms in mammals. Mathematical models of the mammalian circadian oscillator are needed to piece together diverse data, predict experimental results, and help us understand the clock as a whole. Our objectives are to develop mathematical models of the mammalian circadian oscillator, generate and test predictions from these models, gather information on the parameters needed for model development, integrate the molecular model with an existing model of the influence of light and rhythmicity on human performance, and make models available in BioSpice so that they can be easily used by the general community. Two new mammalian models have been developed, and experimental data are summarized. These studies have the potential to lead to new strategies for resetting the circadian clock. Manipulations of the circadian clock can be used to optimize performance by promoting alertness and physiological synchronization.  相似文献   

16.
In mammals, light entrains endogenous circadian pacemakers by inducing daily phase shifts via a photoreceptor mechanism recently discovered in retinal ganglion cells. Light that is comparable in intensity to moonlight is generally ineffective at inducing phase shifts or suppressing melatonin secretion, which has prompted the view that circadian photic sensitivity has been titrated so that the central pacemaker is unaffected by natural nighttime illumination. However, the authors have shown in several different entrainment paradigms that completely dark nights are not functionally equivalent to dimly lit nights, even when nighttime illumination is below putative thresholds for the circadian visual system. The present studies extend these findings. Dim illumination is shown here to be neither a strong zeitgeber, consistent with published fluence response curves, nor a potentiator of other zeitgebers. Nevertheless, dim light markedly alters the behavior of the free-running circadian pacemaker. Syrian hamsters were released from entrained conditions into constant darkness or dim narrowband green illumination (~0.01 lx, 1.3 x 10(-9) W/cm(2), peak lambda = 560 nm). Relative to complete darkness, constant dim light lengthened the period by ~0.3 h and altered the waveform of circadian rhythmicity. Among animals transferred from long day lengths (14 L:10 D) into constant conditions, dim illumination increased the duration of the active phase (alpha) by ~3 h relative to complete darkness. Short day entrainment (8 L:16 D) produced initially long alpha that increased further under constant dim light but decreased under complete darkness. In contrast, dim light pulses 2 h or longer produced effects on circadian phase and melatonin secretion that were small in magnitude. Furthermore, the amplitude of phase resetting to bright light and nonphotic stimuli was similar against dimly lit and dark backgrounds, indicating that the former does not directly amplify circadian inputs. Dim illumination markedly alters circadian waveform through effects on alpha, suggesting that dim light influences the coupling between oscillators theorized to program the beginning and end of subjective night. Physiological mechanisms responsible for conveying dim light stimuli to the pacemaker and implications for chronotherapeutics warrant further study.  相似文献   

17.
The mammalian SCN contains a biological clock that drives remarkably precise circadian rhythms in vivo and in vitro. Recent advances have revealed molecular and cellular mechanisms required for the generation of these daily rhythms and their synchronization between SCN neurons and to the environmental light cycle. This review of the evidence for a cell-autonomous circadian pacemaker within specialized neurons of the SCN focuses on 6 genes implicated within the pace making mechanism, an additional 4 genes implicated in pathways from the pacemaker, and the intercellular and intracellular mechanisms that synchronize SCN neurons to each other and to solar time.  相似文献   

18.
Both light and temperature can influence the pineal's synthesis of the indoleamine melatonin. An investigation of the effects of light and temperature cycles on the pineal melatonin rhythm (PMR) showed the following: (1) Both daily light cycles and daily temperature cycles could entrain the PMR; melatonin levels peaked during the dark phase of a light-dark cycle or the cool phase of a temperature cycle. (2) The PMR could be entrained by a temperature cycle as low as 2 degrees C in amplitude in lizards held in constant light or constant darkness. (3) The length of the photoperiod or thermoperiod affected the phase, amplitude, or duration of the PMR. (4) When presented together, the effects of light and temperature cycles on the PMR depended on the phase relationship between the light and temperature cycles, as well as on the strength of the entraining stimuli, such as the amplitude of the temperature cycle. (5) Exposure to a constant cold temperature (10 degrees C) eliminated the PMR, yet a rhythm could still be expressed under a 24-hr temperature cycle (32 degrees C/10 degrees C), and the rhythm peaked during the 10 degrees C phase of the cycle. (6) A 6-hr dark pulse presented during the day did not elicit a premature rise in melatonin levels. These studies show how environmental stimuli can control the pineal rhythm of melatonin synthesis and secretion. Previous studies have supported a model in which the lizard's pineal acts as a circadian pacemaker within a multioscillator circadian system, and have implicated melatonin as a hormone by which the pineal may communicate with the rest of the system. The lizard pineal, therefore, may act as a photo- and thermoendocrine transducer translating light and temperature information into an internal cue in the form of the PMR. The PMR, in turn, may control the phase and period of circadian clocks located elsewhere, insuring that the right internal events occur at the right time of day.  相似文献   

19.
ABSTRACT. In both virgin and inseminated female Culex pipiens quinquefasciatus Say, circadian flight-activity has two major components: evening (E) and morning (M) in virgins, and evening (E) and night (N) in inseminated females. These components probably represent the activity of constituent oscillators of the underlying pacemaker system. In DD (constant dark) the E and M peaks are approximately 12 h apart in virgins, the E and N peaks 6–7 h apart in inseminated females. Entrainment to regimes between LD 6:18 and 18:6 appears to have only small effects on the relative position of these components, and after a change to DD they quickly relax towards a common phase-relation. Entrainment to LD 12:12 followed by release into DD or constant dim light (intensities 0.005-5 be) showed that light has a differential effect on the components, initially increasing the period of the E component more than that of the apparently more stable M and N components. Thus with increasing light intensity a bimodal cycle fuses into a unimodal cycle. Light also affected the level of activity, causing big increases in the activity of both virgin and inseminated females at 0.05 lx, but depressing activity, at least initially, at 5 lx. These results indicate that, under natural conditions, moonlight may have big effects, both on the level of activity and on the underlying circadian pacemaker.  相似文献   

20.
The human sleep-wake cycle is generated by a circadian process, originating from the suprachiasmatic nuclei, in interaction with a separate oscillatory process: the sleep homeostat. The sleep-wake cycle is normally timed to occur at a specific phase relative to the external cycle of light-dark exposure. It is also timed at a specific phase relative to internal circadian rhythms, such as the pineal melatonin rhythm, the circadian sleep-wake propensity rhythm, and the rhythm of responsiveness of the circadian pacemaker to light. Variations in these internal and external phase relationships, such as those that occur in blindness, aging, morning and evening, and advanced and delayed sleep-phase syndrome, lead to sleep disruptions and complaints. Changes in ocular circadian photoreception, interindividual variation in the near-24-h intrinsic period of the circadian pacemaker, and sleep homeostasis can contribute to variations in external and internal phase. Recent findings on the physiological and molecular-genetic correlates of circadian sleep disorders suggest that the timing of the sleep-wake cycle and circadian rhythms is closely integrated but is, in part, regulated differentially.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号