首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A late (SR 52) and an early (N × K) variety were grown, with irrigation, on well fertilized soil at three sites, Chiredzi (altitude 420 m), Henderson (1260 m) and Grasslands (1620 m). Mean incoming radiation was similar at all sites, while mean temperature decreased as altitude increased. Final total and grain dry weights were greatest at Henderson, and those of SR 52 exceeded those of N × K, although not greatly at Chiredzi. Initially, leaf area index (L) decreased with increase in altitude, but plants flowered later as altitude increased, and L at the time of flowering was greatest at Henderson. L at flowering was greater in SR 52 than in N × K, though only slightly so at Chiredzi. Leaves withered sooner after flowering at Chiredzi and Grasslands than at Henderson, but leaves of the two varieties withered at about the same time after flowering at each site. During most of the vegetative phase the efficiency of the leaves and crop growth rate (C) increased with decrease in altitude, and were greater in N × K than in SR 52. More dry matter was accumulated after flowering at Henderson than at the other sites, and more by SR 52 than by N × K at Henderson and Grasslands, but not at Chiredzi. Leaf area duration (D) after flowering was greater at Henderson than elsewhere, and greater in SR 52 than in N × K, except at Chiredzi. After flowering leaf efficiency (dry weight increase ÷D) was least at Henderson and greatest at Grasslands, but differed little between varieties at each site. The fraction in the grain of the dry matter accumulated after flowering decreased with increase in altitude and was greater in SR 52 than in N × K.  相似文献   

2.
Maize was grown in two densities, 2–47 or 4–94 plants m-2, and the following treatments imposed: untreated, plants partly defoliated 51 days after sowing, and alternate plants in a row partly defoliated 44 days after sowing. Plants flowered about 82 days after sowing. Leaf area was decreased by 60–64% by defoliation on day 51. Defoliation resulted in decreases in grain yield and grain number of 6–17%, though when alternate plants were defoliated in the higher density there was a substantial decrease in yield and number of grains in defoliated plants, which was largely offset by an increase in adjacent intact plants. When plants were defoliated on day 51 subsequent growth in leaf area was similar to, and that in leaf weight nearly as large as that in untreated plants, while increase in stem weight was substantially less than in untreated plants. By the time of flowering untreated and defoliated plots differed by c. 30% in leaf area. Increments of dry matter after flowering differed by c. 15% between untreated and defoliated plots. The fraction of these increments which entered the grain was c. 90% in both untreated and defoliated plots. When alternate plants in the row were partly defoliated on day 44 their subsequent increase in leaf area was probably 5–16% less than that of the adjacent intact plants. Increments of dry matter after flowering of plots with alternate plants defoliated were 93–95 % of those of untreated plots; leaf efficiency after flowering was slightly greater than in untreated plots. The fraction of the dry matter increment after flowering which entered the grain was c. 88 % in both intact and defoliated plants of the small density, but was 94% in intact plants and 86% in defoliated plants of the large density.  相似文献   

3.
Sugar-beet has a larger storage root and greater net assimilationrate (E) than spinach beet. To determine whether the greaterroot was a result or cause of the greater E, grafts were madebetween tops and roots of sugar-beet and spinach-beet in allfour possible combinations. Grafted plants with sugar-beet roots had greater E and rootdry weight, less leaf area and top dry weight and lower concentrationof sugar in the leaf lamina, than those with spinach-beet roots,irrespective of the type of top. Grafted plants with sugar-beettops had greater E, total and root dry weight, but less leafarea, than those with spinach-beet tops, irrespective of thetype of root. The difference in E between grafted plants withsugar-beet tops and spinach-beet tops was similar to that betweengrafted plants with sugar-beet roots and spinach-beet roots.It increased with time to 60 per cent. Increases in E probably represent increases in rate of photosynthesis.Sugar-beet roots probably increased photosynthesis by providinga better sink for assimilates than spinach-beet roots.  相似文献   

4.
Aspects of nitrogen uptake and distribution in maize   总被引:1,自引:0,他引:1  
The amount of nitrogen (N) taken up after treatment decreased by nearly 50% when either the top five or middle four leaf laminae of maize (Zea mays) plants were removed shortly after flowering, and by 70% when both the middle four and bottom six laminae were removed, but the amount of N moving from the remaining parts of the shoot to the grain did not change much. When all the laminae were removed little N was taken up and only 35% as much N as in untreated plants moved from the shoot to the grain. Removal of all the laminae increased the N content per cent of dry weight of both grain and shoot at final harvest, but the other treatments did not have much effect on the N concentration of any of the parts of the shoot. Plants bearing grain, whether intact or with alternate laminae removed (half-defoliated) at the time of flowering, took up N approximately in proportion to their increase in dry weight during the 4 wk after flowering. The N taken up went to the ear (husks, core and grain) and so did N from the stem and leaves. Intact and half-defoliated plants with no developing grains, because pollination had been prevented, took up no N during this period, though they accumulated about as much dry matter as did plants with grain; the N increment of the husks and core was supplied by the stem and leaves. At final harvest total and grain N content of plants per unit area of land increased by 20 and nearly 30%, respectively, with increase in population between 2·3 and 6·1 plants/m2, but apparently fell slightly with further increase of population to 7·4 plants/m2. Until shortly after flowering N uptake was rapid enough to maintain similar N contents per cent of dry weight of the parts of the shoot in all populations. Uptake continued at a steady rate, though a slower one than before flowering, until near the time of final harvest in the most widely spaced population. In the denser populations uptake slowed down progressively after flowering, and in the densest population it apparently ceased a few weeks before final harvest. The N concentration of the grain of maturing plants fell with increase of population, but not that of the other parts of the shoot. At final harvest N content of the grain decreased from 1·6% in the most widely spaced to 1·2% in the densest population. That of the rest of the shoot varied between 0·70 and 0·79%. Between 6 and 18 wk after sowing, N content per unit area of green parts of the leaf laminae decreased only slightly, changing from about 20 to 18 mg/dm2 with 2·3 plants/m2, 18 to 16 mg/dm2 with 3·5 plants/m2, and 16 to 13 mg/dm2 in populations between 4·8-7·4 plants/m2.  相似文献   

5.
Summary Twelve alfalfa cultivars inoculated with an indigenous strain (RM9) ofRhizobium meliloti, were compared for their seedling morphological characters, and growth characters, including net assimilation rate (NAR), relative growth rate (RGR), leaf area ratio (LAR) and relative nitrogen assimilation rate (RN). Highly significant differences were obtained between cultivars for most characters.Simple correlation showed that NAR influenced RGR (r=0.91) more than leaf area ratio (LAR) (r=–0.44), and that most characters measured were highly correlated with seedling dry weight. Factor analysis showed that NAR, RGR and RN contributed 25% of the total variation in the dependence structure. The grouping indicated that the higher the NAR and RN the greater was the RGR. Path-coefficient analysis showed that NAR had more important direct and indirect effects than RN in dry matter accumulation. The relationship implied that selection for plants with high NAR, or high efficiency in converting light energy to dry matter production could contribute greater N2 fixation in alfalfa.  相似文献   

6.
Highland bananas are an important staple food in East Africa, but there is little information on their physiology and growth patterns. This makes it difficult to identify opportunities for yield improvement. We studied allometric relationships by evaluating different phenological stages of highland banana growth for use in growth assessment, understanding banana crop physiology and yield prediction. Pared corms of uniform size (cv. Kisansa) were planted in a pest‐free field in Kawanda (central Uganda), supplied with fertilizers and irrigated during dry periods. In addition, tissue‐cultured plants (cv. Kisansa) were planted in an adjacent field and in Ntungamo (southwest Uganda), with various nutrient addition treatments (of N, P, K, Mg, S, Zn, B and Mo). Plant height, girth at base, number of functional leaves and phenological stages were monitored monthly. Destructive sampling allowed derivation of allometric relationships to describe leaf area and biomass distribution in plants throughout the growth cycle. Individual leaf area was estimated as LA (m2) = length (m) × maximum lamina width (m) × 0.68. Total plant leaf area (TLA) was estimated as the product of the measured middle leaf area (MLA) and the number of functional leaves. MLA was estimated as MLA (m2) = ?0.404 + 0.381 height (m) + 0.411 girth (m). A light extinction coefficient (k = 0.7) was estimated from photosynthetically active radiation measurements in a 1.0 m grid over the entire day. The dominant dry matter (DM) sinks changed from leaves at 1118 °C days (47% of DM) and 1518 °C days (46% of DM), to the stem at 2125 °C days (43% of DM) and 3383 °C days (58% of DM), and finally to the bunch at harvest (4326 °C days) with 53% of DM. The allometric relationship between above‐ground biomass (AGB in kg DM) and girth (cm) during the vegetative phase followed a power function, AGB = 0.0001 (girth)2.35 (R2 = 0.99), but followed exponential functions at flowering, AGB = 0.325 e0.036(girth) (R2 = 0.79) and at harvest, AGB = 0.069 e0.068(girth) (R2 = 0.96). Girth at flowering was a good parameter for predicting yields with R2 = 0.7 (cv. Mbwazirume) and R2 = 0.57 (cv. Kisansa) obtained between actual and predicted bunch weights. This article shows that allometric relationship can be derived and used to assess biomass production and for developing banana growth models, which can help breeders and agronomists to further exploit the crop's potential.  相似文献   

7.
The effect of the cassava green mite Mononychellus tanajoa on the growth and yield of cassava Manihot esculenta was studied over a 10-month period in two field trials near Lake Victoria in Kenya. One plot was maintained free of mites by means of acaricide, while the other was artificially infested.The highest population density of M. tanajoa occurred during the dry season. A maximum leaf area index (LAI) of about 2 was reached at the onset of the dry season. The total leaf area of mite infested plants was reduced compared with uninfested plants during the dry spell. During the following rainy season infested plants recovered and attained the same leaf area as uninfested plants. A multiple regression model predicting the leaf area showed that 58% of the seasonal variation could be explained by plant age, soil water, and leaf injury.The net growth rate of infested plants was lower than that of uninfested plants. Maximum values of 21 (infested plants) and 49 (uninfested plants) g m-2 week-1 were attained at the onset of the second rainy season. No difference was found between uninfested and infested plants with respect to net assimilation rates per unit leaf area during the dry season. The net assimilation rates reached a maximum almost at the same time as the growth rates, but the infested plants peaked slightly earlier and at a lower level than the uninfested plants. M. tanajoa did not affect the relative allocation of dry matter into stems and storage roots, but the absolute allocation of dry matter declined with increasing mite injury. Thus, after 10 months the dry matter of infested plants was reduced by 29% and 21% for storage roots and stems, respectively, compared with the uninfested plants.  相似文献   

8.
Maize plants were grown singly in pots in a population of 3.7 plants m-2, and 98 days after sowing (shortly after flowering) were arranged into three populations, 1.27 (W), 3.70 (M), and 6.15 (C) plants m-2, respectively. The plants were harvested 131 days after sowing, about 4 wk before the normal time of maturity, because some plants at the closest spacing began dying. Increment of dry weight between days 98 and 131 was 373, 243, and 108 g/plant and grain dry weight at harvest was 218, 220 and 195 g/plant in populations W, M and C, respectively. Thus, dry weight of parts of the plant other than grain increased in population W, remained about the same in population M, and decreased in population C between days 98 and 131. Number of kernels per plant was c. 540 in all three populations. On day 98, immediately after rearrangement, leaf area index (L) was 2.0, 5.8 and 9.7 in populations W, M and C, respectively. By day 131 L had decreased to 6.7 in population C, but had hardly changed in the other two populations. Crop growth rate between days 98 and 131 was 101, 191 and 141 g m-2 wk-1, and grain dry wt per unit of land on day 131 was 277, 816 and 1196 g m-2, in populations W, M and C, respectively.  相似文献   

9.
Greater availability of leaf dark respiration (Rdark) data could facilitate breeding efforts to raise crop yield and improve global carbon cycle modelling. However, the availability of Rdark data is limited because it is cumbersome, time consuming, or destructive to measure. We report a non‐destructive and high‐throughput method of estimating Rdark from leaf hyperspectral reflectance data that was derived from leaf Rdark measured by a destructive high‐throughput oxygen consumption technique. We generated a large dataset of leaf Rdark for wheat (1380 samples) from 90 genotypes, multiple growth stages, and growth conditions to generate models for Rdark. Leaf Rdark (per unit leaf area, fresh mass, dry mass or nitrogen, N) varied 7‐ to 15‐fold among individual plants, whereas traits known to scale with Rdark, leaf N, and leaf mass per area (LMA) only varied twofold to fivefold. Our models predicted leaf Rdark, N, and LMA with r2 values of 0.50–0.63, 0.91, and 0.75, respectively, and relative bias of 17–18% for Rdark and 7–12% for N and LMA. Our results suggest that hyperspectral model prediction of wheat leaf Rdark is largely independent of leaf N and LMA. Potential drivers of hyperspectral signatures of Rdark are discussed.  相似文献   

10.
Bean plants (Phaseolus vulgaris L. cv. Black Valentine) treated with 2,4-dichlorophenoxyacetic acid (2,4-D) and 4-chlorophenoxyacetic acid (PCPA) absorb and accumulate considerably more N-1-naphthylphthalamic acid (naptalam) than untreated plants. All concentrations of 2,4-D from 5 x 10-8 to 5 x 10-4M were effective, peak stimulation occurring at 3 x 10-5M. Plants treated with this concentration took up 186% more naptalam than control plants. It was shown that the leaf area (on a per g dry weight basis) was influenced most by growth regulator treatment. The leaf area of plants treated with 5 x 10-5M 2,4-D contained 575% more naptalam than the leaf area of untreated plants. The influence of PCPA on naptalam uptake by bean plants was similar to that of 2,4-D but less effective.  相似文献   

11.
Saint Pierre  C.  Busso  C.A.  Montenegro  O.A.  Rodríguez  G.D.  Giorgetti  H.D.  Montani  T.  Bravo  O.A. 《Plant Ecology》2003,165(2):161-167
Root proliferation of desirable (Stipa clarazii andS. tenuis) and undesirable (S.ambigua)perennial grasses was studied in semiarid rangelands of Central Argentina(40°39S, 62°54W) in 1998. On 17 September, soil coreswereremoved from the edge of the plant, metal structures lined with screen mesh(hereafter called bags) were buried in the holes, and root-free soil was placedinto these structures. Numbers of green tillers and circumference per plant hadpreviously been determined. Since plants were of unequal size among species,root length and root dry weight data are reported on a per green tiller basis.Half of the plants was defoliated to 5 cm stubble height on 17September and/or 12 October, while the other half remained undefoliated(controls). Bags were destructively harvested either 20 days after the firstdefoliation (first sampling) or 56 days after the second defoliation (secondsampling) by digging out soil very carefully around each bag. Roots were washedfrom soil, root length estimated by the line intercept method, root dry weightdetermined after oven-drying, and root length per unit root dry weightcalculated from the two measured variables. Root length and dry weight weremorethan 96% greater on defoliated and undefoliated plants ofS. clarazii than on those of S.tenuisor S. ambigua for both sampling dates. Root length perunitroot dry weight, however, was more than 43% greater (p < 0.05) inS. tenuis than in S. clarazii andS. ambigua during the second sampling. Defoliated plantshada similar root length and root dry weight than undefoliated plants in all threespecies, although plants of S. tenuis defoliated twiceshowed a greater (p < 0.05) root length than undefoliated controls. Rootlength and root dry weight were similar between sampling periods, except onundefoliated plants of S. tenuis which had a greater (p<0.05) root length and root dry weight at the first than at the second sampling.Although root length per unit root dry weight may be greater inS. tenuis than in S. clarazii andS. ambigua, greater root length and dry weight increasesinS. clarazii after defoliation appear determinant incontributing to explain its greater competitive ability and defoliationtolerance when compared with the other two species.Nomenclature of taxa followed.  相似文献   

12.
The effects of a high-growth genetic background on the growth of mice hemizygous for one of two growth hormone transgenes were examined. Male mice hemizygous for wild-type (W) and dwarf mutant (M) bovine growth hormone (bGH) transgenes were crossed with females of a high-growth selected (S) and control (C) line as follows: W x S, W x C, M x S and M x C. Body weights of progeny were recorded weekly from 2 to 10 weeks of age. F1 progeny were classified as carriers (P) or non-carriers (N) of the transgene by assaying tail DNA for bGH using the polymerase chain reaction and agarose gel electrophoresis. A deficiency in the number of f1 progeny carrying the W (P<0.05) and M (P<0.01) bGH transgene was most likely due to differential prenatal and early postnatal mortality. Bodyweight means of wild-type transgenic mice were larger (P < 0.05) than those of non-transgenic littermates by 3 weeks of age in a C background in contrast to 5 weeks in S. The wild-type bGH transgene increased adult body weights more in the C (155%) than in the S (136%) background, indicating transgene expression by selection background interaction (P < 0.05). However, the growth response to the wild-type transgene in the S background was still large. The dwarf mutant transgene had a greater effect on growth reduction in the S (70%) than in the C (84%) background, thus causing transgene expression by selection background interaction (P < 0.05). Gender by wild-type transgene effect interactions (P < 0.001) for adult body weight were caused by the transgene reducing the gender difference for body weight in C and eliminating it in S. The dwarf mutant caused a larger negative effect on growth in males than in females, resulting in a gender by dwarf mutant transgene interaction (P < 0.001) for adult body weights. Results indicate that the effect of a GH transgene on growth can be affected both by a high-growth genetic background and the gender of progeny.  相似文献   

13.
Endophytic bacteria have been shown to provide several advantages to their host, including enhanced growth. Inoculating biofuel species with endophytic bacteria is therefore an attractive option to increase the productivity of biofuel feedstocks. Here, we investigated the effect of inoculating hard wood cuttings of Populus deltoides Bartr. × Populus. nigra L. clone OP367 with Enterobacter sp. 638. After 17 weeks, plants inoculated with Enterobacter sp. 638 had 55% greater total biomass than un‐inoculated control plants. Study of gas exchange and fluorescence in developing and mature leaves over a diurnal cycle and over a 5 week measurement campaign revealed no effects of inoculation on photosynthesis, stomatal conductance, photosynthetic water use efficiency or the maximum and operating efficiency of photosystem II. However, plants inoculated with Enterobacter sp. 638 had a canopy that was 39% larger than control plants indicating that the enhanced growth was fueled by increased leaf area, not by improved physiology. Leaf nitrogen content was determined at two stages over the 5 week measurement period. No effect of Enterobacter sp. 638 on leaf nitrogen content was found indicating that the larger plants were acquiring sufficient nitrogen. Enterobacter sp. 638 lacks the genes for N2 fixation, therefore the increased availability of nitrogen likely resulted from enhanced nitrogen acquisition by the 84% larger root system. These data show that Enterobacter sp. 638 has the potential to dramatically increase productivity in poplar. If fully realized in the production environment, these results indicate that an increase in the environmental and economic viability of poplar as a biofuel feedstock is possible when inoculated with endophytic bacteria like Enterobacter sp. 638.  相似文献   

14.
遮阴对夏玉米干物质积累及养分吸收的影响   总被引:2,自引:0,他引:2  
以振杰2号(ZJ2)、登海605(DH605)和郑单958(ZD958)为试验材料,在大田条件下设置花粒期遮阴(S1)、穗期遮阴(S2)、全生育期遮阴(S3)3个遮阴处理,以自然光照条件为对照(CK),研究了遮阴对夏玉米干物质积累和氮、磷、钾吸收的影响.结果表明: 遮阴后夏玉米籽粒产量和单株干物质积累量显著降低,降低程度与遮阴时期有关,表现为S3>S1>S2,其中S1、S2和S3籽粒产量平均降低61.6%、25.3%和92.8%,说明花粒期遮阴较花前遮阴对夏玉米干物质积累和籽粒产量影响更大,不同品种的变化趋势相同.夏玉米植株花前养分吸收量表现为钾>氮>磷,植株吸收总量表现为氮>钾>磷.遮阴后植株氮和磷积累量显著减少,由于遮阴后干物质较对照降低程度大于对氮、磷吸收的降低程度,各处理氮、磷相对含量有所升高;遮阴后各处理植株钾吸收量较对照显著降低,但S2处理的钾吸收降低程度大于干物质积累降低程度,钾相对含量降低,即花前遮阴对玉米钾吸收的影响大于氮和磷.  相似文献   

15.
The Production and Distribution of Dry Matter in Maize after Flowering   总被引:3,自引:0,他引:3  
An experiment in which different groups of leaf laminae wereremoved, or ears shaded, shortly after silking showed that mostof the dry-matter increase after flowering was produced by upperleaves. The top five, the middle four, and the bottom six laminaeaccounted, respectively, for 26 per cent, 42 per cent, and 32per cent of the leaf area duration (D) of the laminae afterflowering; the estimated contributions of the three groups todry-matter production by the laminae after flowering were about40 per cent, 35–50 per cent, and 5–25 per cent,respectively. The sheaths provided about one-fifth of the totalleaf area and probably contributed about one-fifth, and laminaefour-fifths, of the total dry matter produced after flowering.The contribution from photosynthesis by the ear was negligible,presumably because its surface area was only 2 per cent of thatof the leaves. Leaf efficiency (dry matter produced per unitarea) decreased greatly from the top to the base of the shoot.When laminae were removed, the grain received a larger fractionof the dry matter accumulated after flowering, less dry matterremained in the stem, and the photosynthetic efficiency of theremaining leaves was apparently increased. When alternate laminae were removed at the time of silking (half-defoliation)D was decreased by 40 per cent, and the subsequent productionof dry matter decreased nearly proportionately, so that netassimilation rate (E) was not affected but grain dry weightwas decreased by only 32 per cent. At the final harvest, thegrain of half-defoliated plants constituted 80 per cent of thedry matter accumulated after flowering, compared with 65 percent for intact plants. Stem weight decreased from two weeksafter flowering in half-defoliated plants, but remained nearlyconstant in intact plants. When pollination was prevented andno grains formed, E during the first month after flowering wasunaffected; the dry matter that would have passed into the grainaccumulated in the stem and husks, not in the leaves. The decrease in stem weight caused by defoliation suggests thatpreviously stored dry matter was moved to the grain. That suchmovement is possible was shown by keeping prematurely harvestedshoots in the dark for two weeks with their cut ends in water;the dry weight of the grain increased and that of the stem,laminae, husks, and core decreased. Nevertheless, dry-matterproduction after flowering was more than sufficient for graingrowth, and previous photosynthesis probably contributed littleto the grain.  相似文献   

16.
The effects of nitrogen (N) nutrition on growth, N uptake and leaf osmotic potential of rice plants (Oryza sativa L. ev. IR 36) during simulated water stress were determined. Twenty-one-day-old seedlings in high (28.6 × 10 ?4M) and low (7.14 × 10 4M) N levels were exposed to decreased nutrient solution water potentials by addition of polyethylene glycol 6000. The roots were separated from the solution by a semi-permeable membrane. Nutrient solution water potential was ?0.6 × 105 Pa and was lowered stepwise to ?1 × 105, ?2 × 105, ?4 × 105 and ?6 × 105 Pa at 2-day intervals. Plant height, leaf area and shoot dry weight of high and low nitrogen plants were reduced by lower osmotic potentials of the root medium. Osmotic stress caused greater shoot growth reduction in high N than in low N plants. Stressed and unstressed plants in 7.14 × 104M N had more root dry matter than the corresponding plants in 28.6 × 104M N. Dawn leaf water potential of stressed plants was 1 × 105 to 5.5 × 105 Pa lower than nutrient solution water potential. Nitrogen-deficient water-stressed plants, however, maintained higher dawn leaf water potential than high nitrogen water-stressed plants. It is suggested that this was due to higher root-to-shoot ratios of N deficient plants. The osmotic potentials of leaves at full turgor for control plants were about 1.3 × 105 Pa higher in 7.14 × 10?4M than in 28.6 × 10?4M N and osmotic adjustment of 2.6 × 105 and 4.3 × 105 Pa was obtained in low and high N plants, respectively. The nitrogen status of plants, therefore, affected the ability of the rice plant to adjust osmotically during water stress. Plant water stress decreased transpiration and total N content in shoots of both N treatments. Reduced shoot growth as a result of water stress caused the decrease in amount of water transpired. Transpiration and N uptake were significantly correlated. Our results show that nitrogen content is reduced in water-stressed plants by the integrated effects of plant water stress per se on accumulation of dry matter and transpiring leaf area as well as the often cited changes in soil physical properties of a drying root medium.  相似文献   

17.
Our objectives were to (1) verify that nonhydraulic signalling of soil drying can reduce leaf growth of maize, (2) determine if a mycorrhizal influence on such signalling can occur independently of a mycorrhizal effect on leaf phosphorus concentration, plant size or soil drying rate, and (3) determine if leaf phosphorus concentration can affect response to the signalling process. Maize (Zea mays L. Pioneer 3147) seedlings were grown in a glasshouse with root systems split between two pots. The 2 x 3 x 2 experimental design included two levels of mycorrhizal colonization (presence or absence of Glomus intraradices Schenck & Smith), three levels of phosphorus fertilization within each mycorrhizal treatment and two levels of water (both pots watered or one pot watered, one pot allowed to dry). Fully watered mycorrhizal and nonmycorrhizal control plants had similar total leaf lengths throughout the experiment, and similar final shoot dry weights, root dry weights and leaf length/root dry weight ratios. Leaf growth of mycorrhizal plants was not affected by partial soil drying, but final plant leaf length and shoot dry weight were reduced in half-dried nonmycorrhizal plants. At low P fertilization, effects of nonhydraulic signalling were not evident. At medium and high P fertilization, final total plant leaf length of nonmycorrhizal plants was reduced by 9% and 10%, respectively. These growth reductions preceded restriction of stomatal conductance by 7 d. This and the fact that leaf water potentials were unaffected by partial soil drying suggested that leaf growth reductions were nonhydraulically induced. Stomatal conductance of plants given low phosphorus was less influenced by nonhydraulic signalling of soil drying than plants given higher phosphorus. Soil drying was not affected by mycorrhizal colonization, and reductions in leaf growth were not related to soil drying rate (characterized by time required for soil matric potential to drop below control levels and by time roots were exposed to soil matric potential below typical leaf water potential). We conclude that mycorrhizal symbiosis acted independently of phosphorus nutrition, plant size or soil drying rate in eliminating leaf growth response to nonhydraulic root-to-shoot communication of soil drying.Abbreviations and Symbols ANOVA analysis of variance - Cs stomatal conductance(s) - med medium - P probability - matric potential(s) - water potential(s) This work was supported by the U.S. Department of Agriculture grant No. 91-37100-6723 and a University of Tennessee Professional Development Research Award to R.M.A. We thank Angela Berry for the graphics.  相似文献   

18.
Alterations in light quality affect plant morphogenesis and photosynthetic responses but the effects vary significantly between species. Roses exhibit an irradiance‐dependent flowering control but knowledge on light quality responses is scarce. In this study we analyzed, the responses in morphology, photosynthesis and flowering of Rosa × hybrida to different blue (B) light proportions provided by light‐emitting diodes (LED, high B 20%) and high pressure sodium (HPS, low B 5%) lamps. There was a strong morphological and growth effect of the light sources but no significant difference in total dry matter production and flowering. HPS‐grown plants had significantly higher leaf area and plant height, yet a higher dry weight proportion was allocated to leaves than stems under LED. LED plants showed 20% higher photosynthetic capacity (Amax) and higher levels of soluble carbohydrates. The increase in Amax correlated with an increase in leaf mass per unit leaf area, higher stomata conductance and CO2 exchange, total chlorophyll (Chl) content per area and Chl a/b ratio. LED‐grown leaves also displayed a more sun‐type leaf anatomy with more and longer palisade cells and a higher stomata frequency. Although floral initiation occurred at a higher leaf number in LED, the time to open flowers was the same under both light conditions. Thereby the study shows that a higher portion of B light is efficient in increasing photosynthesis performance per unit leaf area, enhancing growth and morphological changes in roses but does not affect the total Dry Matter (DM) production or time to open flower.  相似文献   

19.
Application of the tertiary amine bioregulator, 2-(3,4-dichlorophenoxy)triethylamine [DCPTA] to seedling Phalaenopsis plants increased seeding survival, long-term vegetative plant growth, and greatly accelerated flowering when compared to controls. Application of 30 µM (10 ppm) DCPTA during the transfer of orchid seedlings from sterile agar culture to greenhouse community pot culture caused a 2 to 3-fold increase in root and leaf growth of seedling plants over the growth of controls. After 2 years greenhouse culture, the total dry weight of 30 µM DCPTA-treated plants was doubled when compared with controls. Flowering of 30 µM DCPTA-treated plants was increased significantly (p < 0.05) over that of controls after 11 and 18 months plant growth. During a 2 year growth period, the total number of racemes produced by 30 µM DCPTA-treated plants was doubled when compared with the floral performance of controls. The effects of DCPTA on plant flowering appeared to function independently of DCPTA-mediated effects on plant growth.Reference to a company or product name does not imply approval or recommendation of the product by the U.S. Department of Agriculture to the exclusion of others that may be suitable.  相似文献   

20.
Long photoperiods provided in growth cabinets and consisting of a conventional extended photoperiod or of a ‘light-break’ in the middle of a long, dark period, generally increased leaf length and sometimes leaf width and consequently the rate of expansion of leaf surface, but decreased rate of leaf production and tillering in vegetative plants of S.37 cocksfoot (Dactylis glomerata L.), S.215 meadow fescue (Festuca pratensis Huds.) and S.24 perennial rye-grass (Lolium perenne L.) compared with short photoperiods. All plants received the same total amount of light each day. These effects were observed both in single plants and in plants grown close together to simulate sward conditions. The total dry weight of plant material was greater in long than in short photoperiods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号