首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.

In this paper, the idea of square fractal geometry has been utilized to introduce a tunable wideband graphene-based perfect plasmonic absorber in the near-infrared region. It consists of a MgF2 layer and an array of gold squares fractal loaded on a graphene layer. In the designed absorber a single layer of graphene has been used instead of multilayered graphene structures. The structure is polarization-insensitive under normal incidence due to the geometric symmetry. The absorption and bandwidth of the structure are almost insensitive to the incident angle up to 15° and 45° for TE and TM polarizations, respectively. Moreover, by choosing appropriate structural parameters, the resonance wavelength of the desired plasmonic absorber can be controlled. The absorption of the introduced structure can be tuned by changing the chemical potential of the graphene. Therefore, the proposed fractal absorber can act as switch and inverter at λ = 1995 nm. Furthermore, the equivalent circuit model of the absorber has been derived to confirm the validity of the simulation results. The superiorities of our fractal absorber are wide full-width at half-maximum of 406 nm, multi-applicant, perfect absorption, and fabrication feasibility due to the simple structure with the maximum absorption tolerance error of 5.12%.

  相似文献   

2.
A new metamaterial absorber is designed and characterized numerically for the harvesting of solar energy. The design is composed of three layers in which the interaction among them gives rise to the plasmonic resonances. The main operation frequency range of the proposed structure is chosen to be the visible regime. However, the design is also analyzed for the infrared and ultraviolet regimes. In order to characterize the absorber, some parametric studies with respect to the dimensions of the structure are carried out. According to the results, it is found that the proposed metamaterial absorber has 98.2 % absorption capability at 445.85 THz and 99.4 % absorption capability between 624 and 658.3 THz. Moreover, the polarization dependency of the structure is examined and it is found that the design operates well as a perfect absorber with polarization independency for the studied frequency range. As a result, the proposed metamaterial absorber can be used for solar energy harvesting as it provides multiple perfect absorption bands in the visible regime.  相似文献   

3.
In this paper, we present a peculiar metal-dielectric-metal (MDM) nanosandwich grating structure that can achieve extraordinary optical transmission performances at normal incidence in the ultraviolet-visible-near infrared (UV-VIS-NIR) regions. The proposed structure shows three obvious spectrum characteristics: it can obtain high transmittance up to 80 % in NUV region and efficiently blocking visible wavelengths for transverse-magnetic (TM) polarized incidence; a broadband NIR polarizer can be inspired in the wavelength range from 950 to 1400 nm; more surprisingly, these performances do not deteriorated until 30° tilting angle. Compared to other grating structures with single metal overlayer, it shows wider band-stop characteristics and higher broadband transmission transmittance and extinction ratio (ER) in the investigated wavebands. We analyze the underlying physical mechanism by using numerical simulation, which is primarily attributed to metal ultraviolet transparency, surface plasmon polariton (SPP) at metal/dielectric interface, Fabry–Perot (FP)-like cavity mode within this dielectric grating, and optical magnetic resonance especially in the dielectric interlayer of the MDM sandwiched structure. This structure is very important for developing high-performance subwavelength multifunctional integrated optical devices.  相似文献   

4.
Ali  Wajid  Iqbal  Shahid  Ullah  Muhib  Wang  Xiaoli 《Plasmonics (Norwell, Mass.)》2022,17(2):709-715
Plasmonics - In this paper, we demonstrate a plasmonic ultrahigh narrowband perfect absorber, which realizes an absorption intensity of up to 99.99% in the near-infrared electromagnetic spectrum...  相似文献   

5.

In this paper, a graphene-based tunable multi-band terahertz absorber is proposed and numerically investigated. The proposed absorber can achieve perfect absorption within both sharp and ultra-broadband absorption spectra. This wide range of absorption is gathered through a unique combination of periodically cross- and square-shaped dielectrics sandwiched between two graphene sheets; the latter enables it to offer more absorption in comparison with the traditional single-layer graphene structures. The aforementioned top layer is mounted on a gold plate separated by a Topas layer with zero volume loss. Furthermore, in our proposed approach, we investigated the possibility of changing the shapes and sizes of the dielectric layers instead of the geometry of the graphene layers to alleviate the edge effects and manufacturing complications. In numerical simulations, parameters, such as graphene Fermi energy and the dimensions of the proposed dielectric layout, have been optimally tuned to reach perfect absorption. We have verified that the performance of our dielectric layout called fishnet, with two widely investigated dielectric layouts in the literature (namely, cross-shaped and frame-and-square). Our results demonstrate two absorption bands with near-unity absorbance at frequencies of 1.6–2.3 and 4.2–4.9 THz, with absorption efficiency of 98% in 1.96 and 4.62 THz, respectively. Moreover, a broadband absorption in the 7.77–9.78 THz is observed with an absorption efficiency of 99.6% that was attained in 8.44–9.11 THz. Finally, the versatility provided by the tunability of three operation bands of the absorber makes it a great candidate for integration into terahertz optoelectronic devices.

  相似文献   

6.
A new design method of a broadband wide-angle metal-dielectric-metal plasmonic absorber is presented based on the cavity mode theory. The broadband absorption is implemented by filling a unit cell with multi-size square metal patches resonant at adjacent wavelengths, with the widths of the patches and thickness of the dielectric layer optimized with the presented method. A broadband plasmonic absorber working in the visible range is designed, the absorption of which is insensitive to the azimuth angle of incident field and keeps over 0.7 at incident angle up to 60° for p polarization and above 0.6 at up to 40° for s polarization.  相似文献   

7.
A novel plasmonic structure based on an anticrossing bandgap prism coupling technique is proposed. The study has been carried out using photonic crystals based on diffraction gratings (bounded by dielectrics with identical dielectric functions) together with a high refractive index prism to couple the long-range surface plasmon polaritons to photons. We analyse the structure and demonstrate the ability for tuning the propagation constants of plasmon modes by changing the thickness of the gold grating. The comparison to non-bandgap techniques is studied, and the influence of the plasmonic configuration on the plasmon propagation constant is discussed as well. Experimental measurements were also carried out to confirm the validity of our model.  相似文献   

8.
The sensitivity of the wavelength position of localized surface plasmon resonance (LSPR) in metal nanostructures to local changes in the refractive index has been widely used for label-free detection strategies. Tuning the optical properties of the nanostructures from the visible to the infrared region is expected to have a drastic effect on the refractive index sensitivity. Here, we theoretically investigate the optical response of a newly designed plasmonic interface to changes in the bulk refractive index by the finite difference time domain method. It consists of a structured interface, where the planar interface is superposed with dielectric pillars 30 nm in height and 125 nm in length with a separation distance of 15 nm. The pillars are covered with U-shaped gold nanostructures of 50 nm in height, 125 nm in length, and 5 nm of gold base thickness. The whole structure is finally covered with a 5-nm thick dielectric layer of n 2?=?2.63. This plasmonic structure shows bulk refractive index sensitivities up to 1750 nm/RIU (RIU : refractive index unit) in the near infrared (λ?=?2621 nm). The enhanced sensitivity is a consequence of the extremely enhanced electrical field between the gold nanopillars of the plasmonic interface.  相似文献   

9.

Graphene can be utilized as a tunable material for a wide range of infrared wavelength regions due to its tunable conductivity property. In this paper, we use Y-shaped silver material resonator placed over the top of multiple graphene silica-layered structures to realize the perfect absorption over the infrared wavelength region. We propose four different designs by placing the graphene sheet over silica. The absorption and reflectance performance of the structures have been explored for 1500- to 1600-nm wavelength range. The proposed design also explores the absorption tunability of the structure for the different values of graphene chemical potential. We have reported the negative impedance for the perfect absorption for proposed metamaterial absorber structures. All the metamaterial absorbers have reported 99% of its absorption peaks in the infrared wavelength region. These designs can be used as a tunable absorber for narrowband and wideband applications. The proposed designs will become the basic building block of large photonics design which will be applicable for polariser, sensor, and solar applications.

  相似文献   

10.
A new strategy for realizing ultra-narrowband plasmonic absorber has been theoretically demonstrated. Dual-band perfect light absorber with the bandwidth down to single digit level and the maximal absorption exceeding 99.2 % is achieved. Moreover, novel absorber-based sensor platform with high-quality factors (S?>?420 nm/RIU, FOM?>?84, and FOM*?>?5600) are obtained. These features hold the proposed absorber to be a feasible candidate for applications in the sensing detection and notch filtering.  相似文献   

11.

This paper reports the excitation of surface plasmon polaritons (SPPs) and associated plasmonic band gap (PBG) while using TM plane wave interacting with 1D metallic grating on higher refractive index GaP substrate. A simple method is introduced to estimate the PBG which is crucial for many plasmonic devices. The PBG is estimated by measuring the transmission spectra obtained through the plasmonic grating structures when slit width is varied while periodicity and the thickness of the gold (Au) film remained fixed. The PBG is observed for the grating devices whose slit width is less than one third of the periodicity which is caused by the presence of a higher plasmonic mode. The PBG is absent for the grating device whose slit width is slightly less than half and greater than one third of the periodicity. Such grating devices support only a fundamental plasmonic mode because the profile/shape of the slit in the grating device is more like a sinusoidal nature. Furthermore, such grating offers intermediate scattering to the incident light and the SPP as well which in turn couple more incident energy to the SPPs. Far-field modelling results also support the results obtained through experiment.

  相似文献   

12.
Cheng  Lin  Cao  Pengfei  Li  Yuee  Kong  Weijie  Zhao  Xining  Zhang  Xiaoping 《Plasmonics (Norwell, Mass.)》2012,7(1):175-184
We design a new nanofocusing lens for far-field practical applications. The constructively interference of cylindrical surface plasmon launched by the subwavelength metallic structure can form a subdiffraction-limited focus, which is modulated by the dielectric grating from the near field to the far field. The principle of designing such a far-field nanofocusing lens is elucidated in details. The numerical simulations demonstrated that nanoscale focal spot (0.12λ 2) can be realized with 3.6λ in depth of focus and 4.5λ in focal length by reasonably designing parameters of the grating. The focusing efficiency can be 7.335, which is much higher than that of plasmonic microzone plate-like lenses. A blocking chip can enhance the focusing efficiency further as the reflected waves at the entrance would be recollected at the focus. By controlling the number of the grooves in the grating, the focal length can be tuned easily. This design method paved the road for utilizing the plasmonic lens in high-density optical storage, nanolithography, superresolution optical microscopic imaging, optical measurement, and sensing.  相似文献   

13.

A multifunction plasmonic metasurface made of metal-dielectric-metal (MDM) layers is designed, and its chiral, absorption, and refractive index sensing properties are studied numerically using finite difference time domain (FDTD) computation. Top layer of the proposed novel metasurface consists of four L-shape gold strips arranged in a specific orientational sequence into a square unit cell whose period (along X direction and Y direction) is varied from 800 to 1400 nm in a step of 200 nm. The proposed super-structure shows highly chiral behaviour with multi bands circular dichroism (CD) between ~ 600 and 1200 nm with highest CD value of about 0.4. The CD spectral response is seen to be tunable with the structural parameters such as periods and appropriate L-strip length. True chiral nature of the proposed structure is cross-checked by computing its enantiomer that shows a mirror reflection of CD response of the original structure. Multi-work functionalities are investigated by studying perfect absorption and refractive index sensing properties of the metasurface. The study shows polarization independent multi-resonance spectral absorption that reaches to ~ 100% in some cases. On the other hand, refractive index sensing study shows high sensitivity (S) of 700–750 nm/RIU (per refractive index unit) with figure of merit (FOM) of 5–10. Owing to its exotic optical properties, the novel metasurface may be considered for chip level integration for multi-purpose work functionalities.

  相似文献   

14.

This paper reports on a systematic study of the plasmonic properties of periodic arrays of gold cylindrical nanoparticles in contact with a gold thin film. Depending on the gold film thickness, it observes several plasmon bands. Using a simple analytical model, it is able to assign all these modes and determine that they are due to the coupling of the grating diffraction orders with the propagating surface plasmons travelling along the film. With finite difference time domain (FDTD) simulations, it demonstrates that large field enhancement occurs at the surface of the nanocylinders due to the resonant excitation of these modes. By tilting the sample, it also observes the evolution of the spectral position of these modes and their tuning through nearly the whole visible range is possible. Such plasmonic substrates combining both advantages of the propagative and localised surface plasmons could have large applications in enhanced spectroscopies.

  相似文献   

15.
Chen  Meijie  He  Yurong  Ye  Qin  Zhu  Jiaqi 《Plasmonics (Norwell, Mass.)》2019,14(6):1357-1364

In this study, we present a high-performance tunable plasmonic absorber based on metal-insulator-metal nanostructures. High absorption is supported over a wide range of wavelengths, which is retained well at a very wide range of incident angles too. The coupling process occurs with high absorption efficiency of ∼ 99% by tuning the thickness of the dielectric layer. In addition, a complex trapezoidal nanostructure based on simple metal-insulator-metal structures by stacking different widths of Cu strip-nanostructures in the vertical direction has been put forward to enhance light absorption based on selective absorption. A trapezoidal sample has been designed with a solar absorption as high as 95% at wavelengths ranging from 300 nm to 2000 nm for different operating temperatures. Furthermore, the optical absorber has a very simple geometric structure and is easy to integrate into complex photonic devices. Perfect absorption and easy fabrication of the metal-insulator-metal structure make it an attractive device in numerous photonic applications.

  相似文献   

16.
Plasmonics - A metamaterial-based absorber with metal–dielectric–metal (MDM) structure design strategy is proposed and verified in terahertz the band. An absorption peak (amplitude is...  相似文献   

17.
We propose a metal-dielectric-metal super absorber based on propagating and localized surface plasmons which exhibits a near perfect absorption in the visible and near-infrared spectrum. The absorber consists of Ag/Al2O3/Al triple layers in which the top Al layer is a periodic nano disk array. The absorption spectrum can be easily controlled by adjusting the structure parameters including the period and radius of the nano disk and the maximal absorption can reach 99.62 %. We completely analyze the PSPs and LSPs modes supported by the MDM structure and their relationship with the ultrahigh absorption. Moreover, we propose a novel idea to further enhance the absorption by exciting the PSPs and high-order LSPs modes simultaneously, which is different from the previous works. This kind of absorber using stable inexpensive Al instead of noble metal Au or Ag is an appropriate candidate for photovoltaics, spectroscopy, photodetectors, sensing, and surface-enhanced Raman spectroscopy (SERS).  相似文献   

18.
Conventionally, plasmonic lenses introduce a phase delay distribution across their surfaces by modulating the dimensions of nanostructures within a metal film. However, there is very limited modulation of the phase delay due to the small dependence of the mode propagation constant on the structure dimensions. In this paper, a novel design of plasmonic zone plate lenses (PZPL) with both slit width and refractive index modulation is proposed to enable integrating more slits in a fixed lens aperture with the extended phase delay range and, therefore, greatly enhance the performance of the devices. More than three-time enhancement of the light intensity at the focus is achieved compared to the structure with only slit width modulation. Like a conventional immersion system, a PZPL embedded in a dielectric is found to have a further improved focusing performance, where light is focused down to a 0.44λ spot using a PZPL with an aperture of 12λ and a focal length of 6λ. Dispersive light-focusing behaviour is also analysed and the modulation of the focal length by colour has a potential application in stacked image sensors and multi-dimensional optical data storage.  相似文献   

19.
Zhou  Yun  Luo  Minghui  Chen  Linsen 《Plasmonics (Norwell, Mass.)》2017,12(6):1889-1895
Plasmonics - We present a polarization-independent near-perfect absorber in the visible regime based on one-dimensional meta-surface. In this absorber, the dielectric grating layer with high...  相似文献   

20.

A tunable multi-band metamaterial perfect absorber is designed in this paper. The absorber made of a composite array of gold elliptical and circular disks on a thick metallic substrate, separated by a thin dielectric spacer. The absorptivity and the field enhancement of proposed structures are numerically investigated by the finite difference time domain method. Three absorption peaks (1.15, 1.55, and 2.05 μm) with the maximal absorption of 99.2, 99.7, and 97.3% have been achieved, respectively. By altering the dimensions of associated geometric parameters in the structure, three resonance wavelengths can be tuned individually. Physical mechanism of the multi-band absorption is construed as the resonance of magnetic polaritons. And the absorber exhibits the characteristics that are insensitive to the polarization angle due to its symmetry. The research results can have access to selective control of thermal radiation and the design of multi-band photodetectors.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号