首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
It has been proposed that two events of duplication of the entire genome occurred early in vertebrate history (2R hypothesis). Several phylogenetic studies with a few gene families (mostly Hox genes and proteins from the MHC) have tried to confirm these polyploidization events. However, data from a single locus cannot explain the evolutionary history of a complete genome. To study this 2R hypothesis, we have taken advantage of the phylogenetic position of the lamprey to study the history of gene duplications in vertebrates. We selected most gene families that contain several paralogous genes in vertebrates and for which lamprey genes and an out-group are known in databases. In addition, we isolated members of the nuclear receptor superfamily in lamprey. Hagfish genes were also analyzed and found to confirm the lamprey gene analysis. Consistent with the 2R hypothesis, the phylogenetic analysis of 33 selected gene families, dispersed through the whole genome, revealed that one period of gene duplication arose before the lamprey-gnathostome split and this was followed by a second period of gene duplication after the lamprey-gnathostome split. Nevertheless, our analysis suggests that numerous gene losses and other gene-genome duplications occurred during the evolution of the vertebrate genomes. Thus, the complexity of all the paralogy groups present in vertebrates should be explained by the contribution of genome duplications (2R hypothesis), extra gene duplications, and gene losses.  相似文献   

2.
3.
4.
Lamin proteins are found in all metazoans. Most non-vertebrate genomes including those of the closest relatives of vertebrates, the cephalochordates and tunicates, encode only a single lamin. In teleosts and tetrapods the number of lamin genes has quadrupled. They can be divided into four sub-types, lmnb1, lmnb2, LIII, and lmna, each characterized by particular features and functional differentiations. Little is known when during vertebrate evolution these features have emerged. Lampreys belong to the Agnatha, the sister group of the Gnathostomata. They split off first within the vertebrate lineage. Analysis of the sea lamprey (Petromyzon marinus) lamin complement presented here, identified three functional lamin genes, one encoding a lamin LIII, indicating that the characteristic gene structure of this subtype had been established prior to the agnathan/gnathostome split. Two other genes encode lamins for which orthology to gnathostome lamins cannot be designated. Search for lamin gene sequences in all vertebrate taxa for which sufficient sequence data are available reveals the evolutionary time frame in which specific features of the vertebrate lamins were established. Structural features characteristic for A-type lamins are not found in the lamprey genome. In contrast, lmna genes are present in all gnathostome lineages suggesting that this gene evolved with the emergence of the gnathostomes. The analysis of lamin gene neighborhoods reveals noticeable similarities between the different vertebrate lamin genes supporting the hypothesis that they emerged due to two rounds of whole genome duplication and makes clear that an orthologous relationship between a particular vertebrate paralog and lamins outside the vertebrate lineage cannot be established.  相似文献   

5.
6.
7.
Kim MS  Seo JS  Ahn SJ  Kim NY  Je JE  Sung JH  Lee HH  Chung JK 《Genomics》2008,92(5):366-371
Fishes possess more genes than other vertebrates, possibly because of a genome duplication event during the evolution of the teleost (ray-finned) fish lineage. To further explore this idea, we cloned five genes encoding phosphoinositide-specific phospholipase C-delta (PLC-delta), designated respectively PoPLC-deltas, from olive flounder (Paralichthys olivaceus), and we performed phylogenetic analysis and sequence comparison to compare our putative gene products (PoPLC-deltas) with the sequences of known human PLC isoforms. The deduced amino acid sequences shared high sequence identity with human PLC-delta1, -delta3, and -delta4 isozymes and exhibited similar primary structures. In phylogenetic analysis of PoPLC-deltas with PLC-deltas of five teleost fishes (zebrafish, stickleback, medaka, Tetraodon, and Takifugu), three tetrapods (human, chicken, and frog), and two tunicates (sea squirt and pacific sea squirt), whose putative sequences of PLC-delta are available in Ensembl genome browser, the result also indicated that the two paralogous genes corresponding to each PLC-delta isoform originated from fish-specific genome duplication prior to the divergence of teleost fish. Our analyses suggest that an ancestral PLC-delta gene underwent three rounds of genome duplication during the evolution of vertebrates, leading to the six genes of three PLC-delta isoforms in teleost fish.  相似文献   

8.
The availability of multiple teleost (bony fish) genomes is providing unprecedented opportunities to understand the diversity and function of gene duplication events using comparative genomics. Here we examine multiple paralogous genes of γ-glutamyl transferase (GGT) in several distantly related teleost species including medaka, stickleback, green spotted pufferfish, fugu, and zebrafish. Through mining genome databases, we have identified multiple GGT orthologs. Duplicate (paralogous) GGT sequences for GGT1 (GGT1 a and b), GGTL1 (GGTL1 a and b), and GGTL3 (GGTL3 a and b) were identified for each species. Phylogenetic analysis suggests that GGTs are ancient proteins conserved across most metazoan phyla and those paralogous GGTs in teleosts likely arose from the serial 3R genome duplication events. A third GGTL1 gene (GGTL1c) was found in green spotted pufferfish; however, this gene is not present in medaka, stickleback, or fugu. Similarly, one or both paralogs of GGTL3 appear to have been lost in green spotted pufferfish, fugu, and zebrafish. Syntenic relationships were highly maintained between duplicated teleost chromosomes, among teleosts and across ray-finned (Actinopterygii) and lobe-finned (Sarcopterygii) species. To assess subfunction partitioning, six medaka GGT genes were cloned and assessed for developmental and tissue-specific expression. On the basis of these data, we propose a modification of the "duplication-degeneration-complementation" model of subfunction partitioning where quantitative differences rather than absolute differences in gene expression are observed between gene paralogs. Our results demonstrate that multiple GGT genes have been retained within teleost genomes. Questions remain, however, regarding the functional roles of multiple GGTs in these species.  相似文献   

9.
Large-scale gene amplifications may have facilitated the evolution of morphological innovations that accompanied the origin of vertebrates. This hypothesis predicts that the genomes of extant jawless fish, scions of deeply branching vertebrate lineages, should bear a record of these events. Previous work suggests that nonvertebrate chordates have a single Hox cluster, but that gnathostome vertebrates have four or more Hox clusters. Did the duplication events that produced multiple vertebrate Hox clusters occur before or after the divergence of agnathan and gnathostome lineages? Can investigation of lamprey Hox clusters illuminate the origins of the four gnathostome Hox clusters? To approach these questions, we cloned and sequenced 13 Hox cluster genes from cDNA and genomic libraries in the lamprey, Petromyzon marinus. The results suggest that the lamprey has at least four Hox clusters and support the model that gnathostome Hox clusters arose by a two-round-no-cluster-loss mechanism, with tree topology [(AB)(CD)]. A three-round model, however, is not rigorously excluded by the data and, for this model, the tree topologies [(D(C(AB))] and [(C(D(AB))] are most parsimonious. Gene phylogenies suggest that at least one Hox cluster duplication occurred in the lamprey lineage after it diverged from the gnathostome lineage. The results argue against two or more rounds of duplication before the divergence of agnathan and gnathostome vertebrates. If Hox clusters were duplicated in whole-genome duplication events, then these data suggest that, at most, one whole genome duplication occurred before the evolution of vertebrate developmental innovations.  相似文献   

10.
Biglycan and decorin are two members of a family of small extracellular matrix proteoglycans characterized by the presence of 10 leucine-rich repeats and one or two attachment sites for glucosaminoglycans. Both have thus far been described only from tetrapod species, mainly mammals. Because the extracellular matrix has played an important part in the evolution of Metazoa, the phylogeny of its components is of considerable interest. In this study, biglycan-like (BGL) cDNA sequences have been obtained from two teleost (Oreochromis cichlid and zebrafish) and two lamprey species. The analysis of the sequences suggests that, like tetrapods, the lampreys possess two types of proteoglycans, both of which are biglycan-like; decorin-like proteoglycans could not be identified in these species. The genes specifying these two types apparently arose by duplication in the lamprey lineage after its divergence from gnathostomes. The two teleost species possess a BGL proteoglycan and a bona fide decorin. The BGL proteoglycan is highly divergent from the tetrapod biglycan and related to the BGL proteoglycans of the lamprey. Hence, although the duplication generating the ancestors of biglycan and decorin genes occurred after the divergence of agnathans but before the emergence of teleosts, only decorin acquired its characteristic properties in the bony fishes. The BGL gene presumably turned into a typical biglycan only in the tetrapod lineages. The presumed acquisitions of new functions appear to have been accompanied by changes in the evolutionary rate. Received: 13 April 2000 / Accepted: 4 July 2000  相似文献   

11.
For many genes, ray-finned fish (Actinopterygii) have two paralogous copies, where only one ortholog is present in tetrapods. The discovery of an additional, almost-complete set of Hox clusters in teleosts (zebrafish, pufferfish, medaka, and cichlid) but not in basal actinopterygian lineages (Polypterus) led to the formulation of the fish-specific genome duplication hypothesis. The phylogenetic timing of this genome duplication during the evolution of ray-finned fish is unknown, since only a few species of basal fish lineages have been investigated so far. In this study, three nuclear genes (fzd8, sox11, tyrosinase) were sequenced from sturgeons (Acipenseriformes), gars (Semionotiformes), bony tongues (Osteoglossomorpha), and a tenpounder (Elopomorpha). For these three genes, two copies have been described previously teleosts (e.g., zebrafish, pufferfish), but only one orthologous copy is found in tetrapods. Individual gene trees for these three genes and a concatenated dataset support the hypothesis that the fish-specific genome duplication event took place after the split of the Acipenseriformes and the Semionotiformes from the lineage leading to teleost fish but before the divergence of Osteoglossiformes. If these three genes were duplicated during the proposed fish-specific genome duplication event, then this event separates the species-poor early-branching lineages from the species-rich teleost lineage. The additional number of genes resulting from this event might have facilitated the evolutionary radiation and the phenotypic diversification of the teleost fish.[Reviewing Editor: Martin Kreitman]  相似文献   

12.
13.
The interphotoreceptor retinoid-binding protein (IRBP) coding gene has been used with success for the large-scale phylogeny of mammals. However, its phylogenetic worth had not been explored in Actinopterygians. We explored the evolution of the structure of the gene and compared the structure predicted from known sequences with that of a basal vertebrate lineage, the sea lamprey Petromyzon marinus. This sequence is described here for the first time. The structure made up of four tandem repeats (or modules) arranged in a single gene, as present in Chondrichthyes (sharks and rays) and tetrapods, is also present in sea lamprey. In teleosts, one to two paralogous copies of IRBP gene have been identified depending on the genomes. When the sequences from all modules for a wide sampling of vertebrates are compared and analyzed, all sequences previously assigned to a particular module appear to be clustered together, suggesting that the divergence among modules is older than the split between lampreys and other vertebrates. Finally, 92 acanthomorph teleosts were sequenced for the partial module 1 of the gene 2 (713 bp) to assess for the first time the use of this marker for the systematic studies of the Teleostei. The partial sequence is slightly more variable than other markers currently used for this group, and the resulting trees from our sequences recover most of the clades described in the recent molecular multi-marker studies of the Acanthomorpha. We recommend the use of partial sequences from the IRBP gene 2 as a marker for phylogenetic inference in teleosts.  相似文献   

14.
The whole genome duplication that occurred in ray-finned fish coincided with the radiation of teleost species; consequently, these two phenomena have often been linked. Using the Tetraodon and zebrafish complete genome sequences, we tested a molecular hypothesis that can relate whole genome duplication to speciation in teleosts. We estimate that thousands of genes that remained duplicated when Tetraodon and zebrafish diverged underwent reciprocal loss subsequently in these two species, probably contributing to reproductive isolation between them.  相似文献   

15.
Phylogenetic analysis of the vertebrate galectin family   总被引:11,自引:0,他引:11  
Galectins form a family of structurally related carbohydrate binding proteins (lectins) that have been identified in a large variety of metazoan phyla. They are involved in many biological processes such as morphogenesis, control of cell death, immunological response, and cancer. To elucidate the evolutionary history of galectins and galectin-like proteins in chordates, we have exploited three independent lines of evidence: (i) location of galectin encoding genes (LGALS) in the human genome; (ii) exon-intron organization of galectin encoding genes; and (iii) sequence comparison of carbohydrate recognition domains (CRDs) of chordate galectins. Our results suggest that a duplication of a mono-CRD galectin gene gave rise to an original bi-CRD galectin gene, before or early in chordate evolution. The N-terminal and C-terminal CRDs of this original galectin subsequently diverged into two different subtypes, defined by exon-intron structure (F4-CRD and F3-CRD). We show that all vertebrate mono-CRD galectins known to date belong to either the F3- or F4- subtype. A sequence of duplication and divergence events of the different galectins in chordates is proposed.  相似文献   

16.
Because of an extra whole-genome duplication, zebrafish and other teleosts have two copies of genes that are present in a single copy in tetrapod genomes. Some zebrafish genes, however, are present in triplicate. For example, the nodal-related genes encode secreted proteins of the transforming growth factor beta superfamily that are required in all vertebrates to induce the mesoderm and endoderm, pattern all three germ layers, and establish the left-right axis. Zebrafish have three nodal-related genes, called ndr1/squint, ndr2/cyclops, and ndr3/southpaw. As part of an analysis of enhancer elements controlling zebrafish nodal-related gene expression, we analyzed the nodal loci in the sequenced genomes of five teleost species and four tetrapod species. Each teleost genome contains three nodal-related genes, indicating that squint, cyclops, and southpaw orthologues were present early in the teleost lineage. The genes flanking the nodal-related genes are also conserved, demonstrating a high degree of conserved synteny. Although we found little homology outside of the coding sequences in this region, pufferfish enhancer sequences work in zebrafish embryos to drive reporter gene expression in the squint expression pattern. This indicates a high degree of functional conservation of enhancer elements within the teleosts. We conclude that the ancestral squint and cyclops genes arose during the teleost-specific whole-genome duplication event and that southpaw emerged from a subsequent duplication event involving ancestral squint.  相似文献   

17.
The sea lamprey is an important model organism for investigating the evolutionary origins of vertebrates. As more vertebrate genome sequences are obtained, evolutionary developmental biologists are becoming increasingly able to identify putative gene regulatory elements across the breadth of the vertebrate taxa. The identification of these regions makes it possible to address how changes at the genomic level have led to changes in developmental gene regulatory networks and ultimately to the evolution of morphological diversity. Comparative genomics approaches using sea lamprey have already predicted a number of such regulatory elements in the lamprey genome. Functional characterisation of these sequences and other similar elements requires efficient reporter assays in lamprey. In this report, we describe the development of a transient transgenesis method for lamprey embryos. Focusing on conserved non-coding elements (CNEs), we use this method to investigate their functional conservation across the vertebrate subphylum. We find instances of both functional conservation and lineage-specific functional evolution of CNEs across vertebrates, emphasising the utility of functionally testing homologous CNEs in their host species.  相似文献   

18.
Chordates comprise three major groups, cephalochordates (amphioxus), tunicates (urochordates), and vertebrates. Since cephalochordates were the early branching group, comparisons between amphioxus and other chordates help us to speculate about ancestral chordates. Here, I summarize accumulating data from functional studies analyzing amphioxus cis-regulatory modules (CRMs) in model systems of other chordate groups, such as mice, chickens, clawed frogs, fish, and ascidians. Conservatism and variability of CRM functions illustrate how gene regulatory networks have evolved in chordates. Amphioxus CRMs, which correspond to CRMs deeply conserved among animal phyla, govern reporter gene expression in conserved expression domains of the putative target gene in host animals. In addition, some CRMs located in similar genomic regions (intron, upstream, or downstream) also possess conserved activity, even though their sequences are divergent. These conservative CRM functions imply ancestral genomic structures and gene regulatory networks in chordates. However, interestingly, if expression patterns of amphioxus genes do not correspond to those of orthologs of experimental models, some amphioxus CRMs recapitulate expression patterns of amphioxus genes, but not those of endogenous genes, suggesting that these amphioxus CRMs are close to the ancestral states of chordate CRMs, while vertebrates/tunicates innovated new CRMs to reconstruct gene regulatory networks subsequent to the divergence of the cephalochordates. Alternatively, amphioxus CRMs may have secondarily lost ancestral CRM activity and evolved independently. These data help to solve fundamental questions of chordate evolution, such as neural crest cells, placodes, a forebrain/midbrain, and genome duplication. Experimental validation is crucial to verify CRM functions and evolution.  相似文献   

19.
20.
Lamprey proglucagon and the origin of glucagon-like peptides.   总被引:3,自引:0,他引:3  
We characterized two proglucagon cDNAs from the intestine of the sea lamprey Petromyzon marinus. As in other vertebrates, sea lamprey proglucagon genes encode three glucagon-like sequences, glucagon, and glucagon-like peptides 1 and 2 (GLP-1 and GLP-2). This observation indicates that all three glucagon-like sequences encoded by the proglucagon gene originated prior to the divergence of jawed and jawless vertebrates. Estimates of the rates of evolution for the glucagon-like sequences suggest that glucagon originated first, about 1 billion years ago, while GLP-1 and GLP-2 diverged from each other about 700 MYA. The two sea lamprey intestinal proglucagon cDNAs have differing coding potential. Proglucagon I cDNA encodes the previously characterized glucagon and the glucagon-like peptide GLP-1, while proglucagon II cDNA encodes a predicted GLP-2 and, possibly, a glucagon. The existence of two proglucagon cDNAs which differ with regard to their potential to encode glucagon-like peptides suggests that the lamprey may use differential gene expression as a third mechanism, in addition to alternative proteolytic processing and mRNA splicing, to regulate the production of proglucagon-derived peptides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号