首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
2.
3.
Background aimsAdvances in bone tissue engineering with mesenchymal stromal cells (MSC) as an alternative to conventional orthopedic procedures has opened new horizons for the treatment of large bone defects. Bone marrow (BM) and trabecular bone are both sources of MSC. Regarding clinical use, we tested the potency of MSC from different sources.MethodsWe obtained MSC from 17 donors (mean age 64.6 years) by extensive washing of trabecular bone from the femoral head and trochanter, as well as BM aspirates of the iliac crest and trochanter. The starting material was evaluated by histologic analysis and assessment of colony-forming unit–fibroblasts (CFU-F). The MSC populations were compared for proliferation and differentiation potential, at RNA and morphologic levels.ResultsMSC proliferation potential and immunophenotype (expression of CD49a, CD73, CD90, CD105, CD146 and Stro-1) were similar whatever the starting material. However, the differentiation potential of MSC obtained by bone washing was impaired compared with aspiration; culture-amplified cells showed few Oil Red O-positive adipocytes and few mineralized areas and formed inconsistent Alcian blue-positive high-density micropellets after growth under adipogenic, osteogenic and chondrogenic conditions, respectively. MSC cultured with 1 ng/mL fibroblast growth factor 2 (FGF-2) showed better differentiation potential.ConclusionsTrabecular bone MSC from elderly patients is not good starting material for use in cell therapy for bone repair and regeneration, unless cultured in the presence of FGF-2.  相似文献   

4.
Background aimsMesenchymal stromal cells (MSC) may be useful in a range of clinical applications. The placenta has been suggested as an abundant, ethically acceptable, less immunogenic and easily accessible source of MSC. The aim of this study was to evaluate the capacity of induced placental MSC to differentiate into neurotrophic factor-producing cells (NTF) and their protective effect on neuronal cells.MethodsMSC were isolated from placentas and characterized by fluorescence-activated cell sorting (FACS). The cells underwent an induction protocol to differentiate them into NTF. Analysis of the cellular differentiation was done using polymerase chain reactions (PCR), immunocytochemical staining and enzyme-linked immunosorbent assays (ELISA). Conditioned media from placental MSC (PL-MSC) and differentiated MSC (PL-DIFF) were collected and examined for their ability to protect neural cells.ResultsThe immunocytochemical studies showed that the cells displayed typical MSC membrane markers. The cells differentiated into osteoblasts and adipocytes. PCR and immunohistology staining demonstrated that the induced cells expressed typical astrocytes markers and neurotrophic factors. Vascular endothelial growth factor (VEGF) levels were higher in the conditioned media from PL-DIFF compared with PL-MSC, as indicated by ELISA. Both PL-DIFF and PL-MSC conditioned media markedly protected neural cells from oxidative stress induced by H2O2 and 6-hydroxydopamine. PL-DIFF conditioned medium had a superior effect on neuronal cell survival. Anti-VEGF antibodies (Bevacizumab) reduced the protective effect of the conditioned media from differentiated and undifferentiated MSC.ConclusionsThis study has demonstrated a neuroprotective effect of MSC of placental origin subjected to an induction differentiation protocol. These data offer the prospect of using placenta as a source for stem cell-based therapies.  相似文献   

5.
Background aimsMesenchymal stromal cells (MSC) exhibit non-specific hematopoietic cell and/or stromal cell markers (e.g. CD73, CD105 and CD166) that have been used to identify MSC by flow cytometry. Because a neural glial antigen, NG2 (a progenitor cell marker in the central nervous system), is expressed by several tissue cells originating in the mesenchyme but not hematopoietic cells, it might be useful for isolating and identifying MSC. We investigated NG2 expression on culture-expanded MSC by flow cytometry.MethodsHuman bone marrow (BM) samples taken from 12 donors were cultured for MSC to be used in up to nine serial passages. Using flow cytometry, the neural glial antigen NG2 and commonly used MSC markers CD73, CD105 and CD166, were analyzed on the surface of culture-expanded MSC. The multipotential differentiation of the MSC was examined by adipogenic and osteogenic induction.ResultsThe percentage of cells positive for NG2 was similar to the percentages of cells positive for CD73, CD105 and CD166 in all passages of BM samples. The mean fluorescent intensities of NG2 did not change with culture passage. The MSC was successfully differentiated into adipogenic and osteogenic lines. The cells showed no karyotypic abnormalities.ConclusionsNG2 seems to be a promising marker for investigating the biology of MSC.  相似文献   

6.
Mesenchymal stromal cells (MSC) can be expanded from different sources. We compared the influence of inflammation and TLR ligation on the phenotype and function of MSC derived from bone marrow (BM), adipose tissue (AT), and Wharton’s jelly (WJ). WJ-MSC were featured by a lack of TLR4 expression. While inflammation upregulated TLR3 in all three MSC types, TLR4 upregulation was observed only on BM-MSC. TLR ligation increased the production of inflammatory cytokines in BM- and AT-MSC but not in WJ-MSC and augmented anti-inflammatory cytokines in AT-MSC. Although inflammation increased in all MSC types the secretion of inflammatory cytokines, additional TLR triggering did not have further effect on WJ-MSC. The immunosuppressive potential of WJ-MSC on MLR was affected neither by inflammation nor by TLR triggering. This resistance was related to an overproduction of HGF. These data indicate that MSC source could be of importance while designing immunomodulating cell therapy in transplantation.  相似文献   

7.
8.
《Cytotherapy》2020,22(12):762-771
Background aimsMesenchymal stromal cells (MSCs) isolated from various tissues are under investigation as cellular therapeutics in a wide range of diseases. It is appreciated that the basic biological functions of MSCs vary depending on tissue source. However, in-depth comparative analyses between MSCs isolated from different tissue sources under Good Manufacturing Practice (GMP) conditions are lacking. Human clinical-grade low-purity islet (LPI) fractions are generated as a byproduct of islet isolation for transplantation. MSC isolates were derived from LPI fractions with the aim of performing a systematic, standardized comparative analysis of these cells with clinically relevant bone marrow-derived MSCs (BM MSCs).MethodsMSC isolates were derived from LPI fractions and expanded in platelet lysate-supplemented medium or in commercially available xenogeneic-free medium. Doubling rate, phenotype, differentiation potential, gene expression, protein production and immunomodulatory capacity of LPIs were compared with those of BM MSCs.ResultsMSCs can be readily derived in vitro from non-transplanted fractions resulting from islet cell processing (i.e., LPI MSCs). LPI MSCs grow stably in serum-free or platelet lysate-supplemented media and demonstrate in vitro self-renewal, as measured by colony-forming unit assay. LPI MSCs express patterns of chemokines and pro-regenerative factors similar to those of BM MSCs and, importantly, are equally able to attract immune cells in vitro and in vivo and suppress T-cell proliferation in vitro. Additionally, LPI MSCs can be expanded to therapeutically relevant doses at low passage under GMP conditions.ConclusionsLPI MSCs represent an alternative source of GMP MSCs with functions comparable to BM MSCs.  相似文献   

9.
Background aimsMesenchymal stromal/stem cells (MSCs) can be isolated from human bone marrow (BM), expanded ex vivo and identified via numerous surface antigens. Despite the importance of these cells in regenerative therapy programs, it is unclear whether the cell membrane signature defining MSC preparations ex vivo is determined during culture or may reflect an in vivo counterpart. BM-MSC phenotype in vivo requires further investigation.MethodsTo characterize cells in their natural BM environment, we performed multi-parametric immunohistochemistry on trabecular bone biopsy specimens from multiple donors and described cells by different morphology and micro-anatomic localization in relationship to a precise pattern of MSC antigen expression.ResultsMicroscopically examined high-power field marrow sections revealed an overlapping in vivo expression of antigens characterizing ex vivo expanded BM-MSCs, including CD10, CD73, CD140b, CD146, GD2 and CD271. Expanding this panel to proteins associated with pluripotency, such as Oct4, Nanog and SSEA-4, we were able to identify different cellular populations in the human trabecular bone and BM expressing different progenitor cell markers.ConclusionsTargeting several multipotency and pluripotency markers, we found that the BM contains identifiable and distinct progenitor cells further justifying their introduction for a wide range of applications in regenerative medicine.  相似文献   

10.
A number of recent studies have examined the ability of stem cells derived from different sources to differentiate into dopamine‐producing cells and ameliorate behavioural deficits in Parkinsonian models. Recently, using the approach of cell reprogramming by small cell‐permeable biological active compounds that involved in the regulation of chromatin structure and function, and interfere with specific cell signalling pathways that promote neural differentiation we have been able to generate neural‐like cells from human bone marrow (BM)‐derived MSCs (hMSCs). Neurally induced hMSCs (NI‐hMSCs) exhibited several neural properties and exerted beneficial therapeutic effect on tissue preservation and locomotor recovery in spinal cord injured rats. In this study, we aimed to determine whether hMSCs neuralized by this approach can generate dopaminergic (DA) neurons. Immunocytochemisty studies showed that approximately 50–60% of NI‐hMSCs expressed early and late dopaminergic marker such as Nurr‐1 and TH that was confirmed by Western blot. ELISA studies showed that NI‐hMSCs also secreted neurotrophins and dopamine. Hypoxia preconditioning prior to neural induction increased hMSCs proliferation, viability, expression TH and the secretion level of dopamine induced by ATP. Taken together, these studies demonstrated that hMSCs neurally modified by this original approach can be differentiated towards DA‐like neurons.  相似文献   

11.
Background aimsThe ability to expand and maintain bone marrow (BM)-derived mesenchymal stem cells (MSC) in vitro is an important aspect of their therapeutic potential. Despite this, the exact composition of stromal cell types within these cultures and the potential effects of non-stem cells on the maintenance of MSC are poorly understood.MethodsC57BL/6J BM stroma was investigated as a model to determine the relationship between MSC and non-multipotent cells in vitro. Whole BM and single-cell derived cultures were characterized using flow cytometry and cell sorting combined with multipotent differentiation. Proliferation of individual stromal populations was evaluated using BrdU.ResultsAt a single-cell level, MSC were distinguished from committed progenitors, and cells lacking differentiation ability, by the expression of CD105 (CD105+). A 3-fold reduction in the percentage of CD105+ cells was detected after prolonged culture and correlated with loss of MSC. Depletion of CD105+ cells coincided with a 10–20% increase in the frequency of proliferating CD105? cells. Removal of CD105? stroma caused increased proliferation in CD105+ cells, which could be diminished by conditioned media from parent cultures. Comparison of the multipotent differentiation potential in purified and non-purified CD105+ cells determined that MSC were detectable for at least 3 weeks longer when cultured in the absence of CD105? cells.ConclusionsThis work identifies a simple model for characterizing the different cellular components present in BM stromal cultures and demonstrates that stromal cells lacking multipotent differentiating capacity greatly reduce the longevity of MSC.  相似文献   

12.
Background aimsMesenchymal stromal cells (MSC) have recently been identified as a therapeutic option in several clinical conditions. Whereas bone marrow (BM) is considered the main source of MSC (BM-MSC), the invasive technique required for collection and the decline in allogeneic donations call for alternative sources. Human umbilical cord (UC) represents an easily available source of MSC (UC-MSC).MethodsSections of full-term UC were transferred to cell culture flasks and cultured in 5% human platelet lysate (PL)-enriched medium. Neither enzymatic digestion nor blood vessel removal was performed. After 2 weeks, the adherent cells were harvested (P1), replated at low density and expanded for two consecutive rounds (P2 and P3).ResultsWe isolated and expanded MSC from 9/9 UC. UC-MSC expanded with a mean fold increase (FI) of 42 735 ± 16 195 from P1 to P3 in a mean of 29 ± 2 days. By processing the entire cord unit, we theoretically could have reached a median of 9.5 × 1010 cells (ranging from 1.0 × 1010 to 29.0 × 1010). UC-MSC expressed standard surface markers; they contained more colony-forming unit (CFU)-fibroblast (F) and seemed less committed towards osteogenic, chondrogenic and adipogenic lineages than BM-MSC. They showed immunosuppressive properties both in vitro and in an in vivo chronic Graft versus Host disease (cGvHD) mouse model. Both array-Comparative Genomic Hybridization (CGH) analysis and karyotyping revealed no chromosome alterations at the end of the expansion. Animal studies revealed no tumorigenicity in vivo.ConclusionsUC constitute a convenient and very rich source of MSC for the production of third-party ‘clinical doses’ of cells under good manufacturing practice (GMP) conditions.  相似文献   

13.
14.
The characteristics and multilineage differentiation potential of bone marrow mesenchymal stem cells (BM MSC) remain controversial. This study aimed to characterize human BM MSC isolated by plastic adherent or antibody selection and their neuronal differentiation potential using growth factors or chemical inducing agents. MSC were found to express low levels of neuronal markers: neurofilament-M, beta tubulin III, and neuron specific enolase. Under a serum- and feeder cell-free condition, basic fibroblast growth factor, epidermal growth factor, and platelet-derived growth factor induced neuronal morphology in MSC. In addition to the above markers, these cells expressed neurotransmitters or associated proteins: gamma-aminobutyric acid, tyrosine hydroxylase and serotonin. These changes were maintained for up to 3 months in all bone marrow specimens (N = 6). In contrast, butylated hydroxyanisole and dimethylsulfoxide were unable to induce sustained neuronal differentiation. Our results show that MSC isolated by two different procedures produced identical lineage differentiation with defined growth factors in a serum- and feeder cell-free condition.  相似文献   

15.
Background aimsGene-modified mesenchymal stromal cells (MSC) provide a promising tool for cell and gene therapy-based applications by potentially acting as a cellular vehicle for protein-replacement therapy. However, to avoid the risk of insertional mutagenesis, targeted integration of a transgene into a ‘safe harbor’ locus is of great interest.MethodsWe sought to determine whether zinc finger nuclease (ZFN)-mediated targeted addition of the erythropoietin (Epo) gene into the chemokine [C-C motif] receptor 5 (CCR5) gene locus, a putative safe harbor locus, in MSC would result in stable transgene expression in vivo.ResultsWhether derived from bone marrow (BM), umbilical cord blood (UCB) or adipose tissue (AT), 30–40% of human MSC underwent ZFN-driven targeted gene addition, as determined by a combination of fluorescence-activated cell sorting (FACS)- and polymerase chain reaction (PCR)-based analyzes. An enzyme-linked immunosorbent assay (ELISA)-based analysis of gene-targeted MSC expressing Epo from the CCR5 locus showed that these modified MSC were found to secrete a significant level of Epo (c. 2 IU/106cells/24 h). NOD/SCID/γC mice injected with ZFN-modified MSC expressing Epo exhibited significantly higher hematocrit and Epo plasma levels for several weeks post-injection, compared with mice receiving control MSC.ConclusionsThese data demonstrate that MSC modified by ZFN-driven targeted gene addition may represent a cellular vehicle for delivery of plasma-soluble therapeutic factors.  相似文献   

16.
17.
Background aims. Mesenchymal stromal cells (MSC) have now been shown to reside in numerous tissues throughout the body, including the pancreas. Ex vivo culture-expanded MSC derived from many tissues display important interactions with different types of immune cells in vitro and potentially play a significant role in tissue homeostasis in vivo. In this study, we investigated the biologic and immunomodulatory properties of human pancreatic islet-derived MSC. Methods. We culture-expanded MSC from cadaveric human pancreatic islets and characterized them using flow cytometry, differentiation assays and nuclear magnetic resonance-based metabolomics. We also investigated the immunologic properties of pancreatic islet-derived MSC compared with bone marrow (BM) MSC. Results. Pancreatic islet and BM-derived MSC expressed the same cell-surface markers by flow cytometry, and both could differentiate into bone, fat and cartilage. Metabolomics analysis of MSC from BM and pancreatic islets also showed a similar set of metabolic markers but quantitative polymerase chain reactions showed that pancreatic islet MSC expressed more interleukin(IL)-1b, IL-6, STAT3 and FGF9 compared with BM MSC, and less IL-10. However, similar to BM MSC, pancreatic islet MSC were able to suppress proliferation of allogeneic T lymphocytes stimulated with anti-CD3 and anti-CD28 antibodies. Conclusions. Our in vitro analysis shows pancreatic islet-derived MSC have phenotypic, biologic and immunomodulatory characteristics similar, but not identical, to BM-derived MSC. We propose that pancreatic islet-derived MSC could potentially play an important role in improving the outcome of pancreatic islet transplantation by promoting engraftment and creating a favorable immune environment for long-term survival of islet allografts.  相似文献   

18.
Jung EJ  Kim SC  Wee YM  Kim YH  Choi MY  Jeong SH  Lee J  Lim DG  Han DJ 《Cytotherapy》2011,13(1):19-29
Background aimsRecent evidence has suggested that transplanted bone marrow (BM)-derived mesenchymal stromal cells (MSC) are able to engraft and repair non-hematopoietic tissues successfully, including central nervous system, renal, pulmonary and skin tissue, and may possibly contribute to tissue regeneration. We examined the cytoprotective effect of BM MSC on co-cultured, isolated pancreatic isletsMethodsPancreatic islets and MSC isolated from Lewis rats were divided into four experimental groups: (a) islets cultured alone (islet control); (b) islets cultured in direct contact with MSC (IM-C); (c) islets co-cultured with MSC in a Transwell system, which allows indirect cell contact through diffusible media components (IM-I); and (d) MSC cultured alone (MSC control). The survival and function of islets were measured morphologically and by analyzing insulin secretion in response to glucose challenge. Cytokine profiles were determined using a cytokine array and enzyme-linked immunosorbent assaysResultsIslets contact-cultured with MSC (IM-C) showed sustained survival and retention of glucose-induced insulin secretory function. In addition, the levels of monocyte chemoattractant protein-1 (MCP-1) and tumor necrosis factor-α (TNF-α) were decreased, and tissue inhibitor of metalloproteinases-1 (TIMP-1) and vascular endothelial growth factor (VEGF) levels were increased at 4 weeks in both the IM-C and IM-I groupsConclusionsThese results indicate that contact co-culture is a major factor that contributes to islet survival, maintenance of cell morphology and insulin function. There might also be a synergic effect resulting from the regulation of inflammatory cytokine production. We propose that BM MSC are suitable for generating a microenvironment favorable for the repair and longevity of pancreatic islets.  相似文献   

19.
20.
《Cytotherapy》2022,24(2):137-148
Background aimsMesenchymal stromal cells (MSCs) have shown great promise in the field of regenerative medicine, as many studies have shown that MSCs possess immunomodulatory function. Despite this promise, no MSC therapies have been licensed by the Food and Drug Administration. This lack of successful clinical translation is due in part to MSC heterogeneity and a lack of critical quality attributes. Although MSC indoleamine 2,3-dioxygnease (IDO) activity has been shown to correlate with MSC function, multiple predictive markers may be needed to better predict MSC function.MethodsThree MSC lines (two bone marrow-derived, one induced pluripotent stem cell-derived) were expanded to three passages. At the time of harvest for each passage, cell pellets were collected for nuclear magnetic resonance (NMR) and ultra-performance liquid chromatography mass spectrometry (MS), and media were collected for cytokine profiling. Harvested cells were also cryopreserved for assessing function using T-cell proliferation and IDO activity assays. Linear regression was performed on functional data against NMR, MS and cytokines to reduce the number of important features, and partial least squares regression (PLSR) was used to obtain predictive markers of T-cell suppression based on variable importance in projection scores.ResultsSignificant functional heterogeneity (in terms of T-cell suppression and IDO activity) was observed between the three MSC lines, as were donor-dependent differences based on passage. Omics characterization revealed distinct differences between cell lines using principal component analysis. Cell lines separated along principal component one based on tissue source (bone marrow-derived versus induced pluripotent stem cell-derived) for NMR, MS and cytokine profiles. PLSR modeling of important features predicted MSC functional capacity with NMR (R2 = 0.86), MS (R2 = 0.83), cytokines (R2 = 0.70) and a combination of all features (R2 = 0.88).ConclusionsThe work described here provides a platform for identifying markers for predicting MSC functional capacity using PLSR modeling that could be used as release criteria and guide future manufacturing strategies for MSCs and other cell therapies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号