首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Microbial colonization of seminal roots of seedlings and of nodal roots of tillering plants was studied on spring wheat ‘Kaspar’ cultivated in growth, chambers. Methods were developed to microbially condition the soil before seeding and to regulate soil humidity. Addition of inorganic nutrients (NPK) to the soil increased the number of rhizoplane bacteria and actinomycetes, but did not effect the number of fungi on seminal and nodal roots. Urea leaf treatments stimulated bacteria and actinomycetes 7 and 9 days after treatment. Fourteen days after urea leaf treatment, however, bacterial numbers were mostly reduced, especially on seminal roots, while numbers of actinomycetes generally equalled the control. Root types and soil fertility did not obviously interact with the effect of urea leaf treatment on rhizoplane bacteria and actinomycetes. The only effect of urea on total numbers of fungi, was a reduction of their numbers on seminal roots 9 days after treatment at both NPK-levels.  相似文献   

2.
The numbers of micromycetes and bacteria were investigated with respect to oxygen consumption in the rhizosphere soil of wheat and in non-rhizosphere soil. Plants after foliar application of urea (2 % solution) and non-treated plants were cultivated in degraded chernozem and garden soil in a green-house. Changes in oxygen consumption by the suspensions of rhizosphere and non-rhizosphere soils corresponded to changes in the number of bacteria designated as the rhizosphere effect (R/S). Values of R/S depended on the presence of organic substrates. Changes in oxygen consumption by the soil suspension from the rhizosphere of wheat occurring due to foliar application of urea corresponded to changes in the amount of microflora. The results obtained are discussed with respect to a possible utilization of the data to follow metabolic activity of soils in a natural environment (in situ) determined according to oxygen consumption by a soil suspension, and to assess changes in the microflora of rhizosphere and non-rhizosphere soil.  相似文献   

3.
Fertilizer induced improvement of growth and yield of wheat (Triticum aestivum L. cv. Kalyan Sona), under salinity stress, was associated with an increase in the concentrations of nitrogen, phosphorus and potassium and a decrease in the level of chloride in the tissue. The concentration of chloride in grains was also reduced under high fertility as compared to low fertility condition. Results reveal that under both normal and saline conditions, nutritional improvement leads to higher chlorophyll concentration and increased efficiency of enzymes like nitrate reductase, ATPase, alkaline pyrophosphatase and amylase in the leaves. This imparts importance to fertilizer application under saline conditions.  相似文献   

4.
Summary Treatment of leaves of ‘Kaspar’ wheat seedlings, growing in low inorganic (NPK) fertilized soil, with urea, resulted in reduced growth until 24 days after the first application. Stimulation of growth was observed 31 days after the urea leaf treatment. Addition of NPK to the soil did not obviously change the effect of urea leaf treatment on seedlings, while increase of light intensity from 16.000 lux to 42.000 lux restricted the period of growth reduction. Leaf treatment with urea did not influence growth of one-month-old wheat plants for 14 days after the first application.  相似文献   

5.
Soil salinization is increasing steadily in many parts of the world and causes major problems for plant productivity. Under these stress conditions, root-associated beneficial bacteria can help improve plant growth and nutrition. In this study, salt-tolerant bacteria from the rhizosphere of Uzbek wheat with potentially beneficial traits were isolated and characterized. Eight strains which initially positively affect the growth of wheat plants in vitro were investigated in detail. All eight strains are salt tolerant and have some of the following plant growth-beneficial properties: production of auxin, HCN, lipase or protease and wheat growth promotion. Using sequencing of part of the 16S rDNA, the eight new isolates were identified as Acinetobacter (two strains), Pseudomonas aeruginosa , Staphylococcus saprophyticus , Bacillus cereus , Enterobacter hormaechei , Pantoae agglomerans and Alcaligenes faecalis . All these strains are potential human pathogens. Possible reasons for why these bacteria present in the rhizosphere and establish there are discussed.  相似文献   

6.
放线菌制剂对人参生长及根域土壤微生物区系的影响   总被引:4,自引:0,他引:4  
以小兴安岭地区人参为研究对象,探索放线菌制剂对人参的促生效应及对人参根区、根表土壤微生物区系的影响.结果表明: 经放线菌制剂Streptomyces pactum(Act12)处理后,人参药用部分产量增加,品质改善;叶片诱导酶活性提高,根系活力增强;土壤中细菌、放线菌的数量和比例显著增加,真菌的数量和比例减少.与对照相比,土壤微生物区系结构改变:优势菌荧光假单胞菌、韩国假单胞菌和氧化微杆菌在根区、根表土壤中的数量大幅提高;病原真菌烟色织孢霉在根区土壤中减少,在根表土壤中消失.表明施用放线菌制剂Act12能够改善土壤微生物区系,提高人参植株的抗性和根系活力,增加产量并改善品质.  相似文献   

7.
Yi WP  Sun Z  Wu L  Shi GF  Zhu GL  Li YX  Gu JL  Xu QM 《应用生态学报》2011,22(3):687-693
应用大田试验研究了不同用量的包膜控释尿素(PCU60,释放期为60 d)与普通尿素(U)配合基施(10%PCU60+90%U,PU1;20%PCU60+80%U,PU2;30%PCU60+70%U,PU3;40%PCU60+60%U,PU4)对冬小麦产量、氮肥利用率等生物学性状及土壤硝态氮累积的影响,并对PCU60氮素田间溶出特征及25℃静水溶出特征进行了比较分析.结果表明:在施氮量相等的条件下,与习惯施肥处理相比,PU4处理冬小麦各项指标均显著提高:增产5.6%、氮肥利用率提高14.6%、氮素总累积量提高7.2%、成熟期总茎数提高2.6%、成熟期地上部总生物量提高7.5%、经济效益增加984.3元·hm-2.各处理0~100 cm土层硝态氮总累积量在39.70~49.93 kg·hm-2,其中,PU4处理总累积量最低,为39.70 kg·hm-2.埋袋试验表明,释放期为60 d的包膜控释尿素氮素释放规律与小麦氮素吸收特性基本吻合.  相似文献   

8.
Czarnes  S.  Dexter  A.R.  Bartoli  F. 《Plant and Soil》2000,221(2):253-271
Mechanical properties of the topsoil (sandy Podsol and silty Luvisol, FAO) adhering to maize (Zea mays L.) roots and its bulk soil counterpart were studied as a function of soil texture and final soil water suction at harvest, with three soil water suction values of approximately 30, 50 and 60 kPa. Two scales of observation were also selected: the whole soil:root system and the root-adhering soil aggregates. Three methods were used to characterize the stability of the soil:root system: mechanical shaking in air, and dispersion by low-power ultrasonication, with or without preliminary immersion of the soil:root system in water. Soil disruption kinetics, which were fitted with first-order kinetics equations, were analyzed and discussed. For example, silty soil ultrasonication kinetics, without preliminary water-immersion, could be divided into two parts: the first faster part, which was characterized by a mean rate K value of 6.8–7.2 mJ-1, is attributed to soil slaking, whereas the second slower part, which was characterized by a mean rate K value of 1.5–1.6 mJ-1, was attributed to the rupture of the `firmly root-adhering soil' from the roots. A clear plant effect was observed for both aggregate tensile strength and friability, with higher aggregate strength for the root-adhering silty soil (450–500 kPa) than for its bulk silty soil counterpart (410–420 kPa), and lower friability (coefficient of variation of the aggregate strength) for the root-adhering silty soil (e.g. 67% at a soil water suction value of 30 kPa) than for its bulk silty soil counterpart (e.g. 49% at asoil water suction value of 30 kPa). These effects were attributed to root exudation, which was significantly higher for the driest silty topsoil than for the wetter ones. In conclusion, the mechanical properties of the silty topsoil adhering to the maize roots are attributed to both physical and biological interactions occurring in the maize rhizosphere. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

9.
通过种子萌发和盆栽促生试验研究3株芽孢杆菌Bs10、Ba12和Bl10对番茄的促生作用及其对番茄根域微生物区系的调节作用.结果表明: 3株芽孢杆菌对番茄种子的胚轴、胚根和番茄植株的生长有明显的促进作用,处理后番茄根系的总长度、总表面积和总体积均显著增加;处理后土壤中细菌数量和比例显著增加,真菌数量和比例明显减少.与对照相比,土壤微生物区系优势菌数量发生改变:优势甲基营养型芽孢杆菌在番茄根区、根表土壤中和根内的数量大幅提高;病原真菌腐皮镰刀菌和尖孢镰刀菌在根区和根表土壤中的数量显著减少.推知芽孢杆菌对根系微生物区系的调节作用是其发挥防病促生作用的重要机制之一.  相似文献   

10.
11.
Studies performed on spring wheat (Triticum aestivum L. var.lutescens), cv. Kaspar and Kolibri revealed differences between cultivars in leaf dehydration tolerance. The differences were found to be responsible for the changes in plant growth and productivity observed under drought conditions. Thus, determination of leaf dehydration tolerance may allow the prediction of the plant response to the water stress in terms of plant growth and grain yield. Differentiated drought responses of both cultivars are described. This work was supported by Project No. 9.1.1. coordinated by the Institute of Plant Breeding and Acclimatization.  相似文献   

12.
Summary Finger millet or locally known asragi (Eleusine coracana Gaertn.), sorghum (Sorghum vulgare Pers.), greengram (Phaseolus aureus Roxb.) and soybean (Glycine max L.) plants were raised on sterilized, sterilized and reinoculated with soil microflora and unsterile sandy loam soil in pots for 45 days. Qualitative studies on the edaphosphere microflora indicated the continuation of rhizosphere effect beyond the root surface (rhizosphere) region. Increased microbial population in the sterilized soil was attributed to the effect of sterilization in favour of faster establishment of added microorganisms. In general, steam sterilization had detrimental effects, whereas crop growth had beneficial effects on the soil physical properties. Ragi and greengram were found superior to sorghum and soybean in improving soil structure as evidenced by increased aggregate stability and hydraulic conductivity and decreased dispersion. Soil aggregates of less than 2.00 mm size were found to be increased due to crop growth. The rhizosphere microflora in association with roots of the growing plants is suggested to play a pivotal role in improving soil structure.  相似文献   

13.
14.
Murthy  N. B. K.  Raghu  K. 《Plant and Soil》1976,44(2):491-493
Summary Thiram applied as a seed dresser fungicide had no inhibitory effect on seedling height and rhizosphere microflora of barley plants (Hordeum vulgare) and on nodulation of cowpea plants (Vigna catjang).  相似文献   

15.
Rodríguez  Daniel  Pomar  M.C.  Goudriaan  J. 《Plant and Soil》1998,202(1):149-157
In two simultaneous experiments we examined the effects of phosphorus (P) supply on leaf area development in wheat (Triticum aestivum L.) grown in sand with nutrient solutions. In Experiment 1 we studied leaf emergence, leaf elongation, tiller emergence, shoot growth, and P uptake under four levels of P supply (mM) 0.025 (P1), 0.05 (P2), 0.1 (P3), and 0.5 (P4), and. In Experiment 2 there were two levels of P supply, P1 and P4, and we examined the effects of P on leaf primordia differentiation and leaf emergence. The phyllochron was calculated as the inverse of the rate of leaf emergence calculated from the regression of number of leaf tips (PHY-Ltip), Haun index (PHY-Haun), and as the cumulated thermal time between the emergence of two consecutive leaves (PHYtt). The plastochron was calculated from the inverse of the rate of leaf primordia initiation in the apex. P deficiency delayed the emergence of leaves on the main stem and on the tiller 1. Phosphorus deficiency increased the time from emergence to double ridge and anthesis. The final number of leaves was not affected by P. The effects of P on the value of the phyllochron were attributed to both a reduced rate of leaf primordia initiation, and to a reduced leaf elongation rate. P deficiency delayed or even suppressed the emergence of certain tillers. In this work a phosphorus deficiency that reduced shoot growth by 25% at 44 days after emergence significantly modified the structure of the plants by increasing the value of the phyllochron and delaying tillering. These results suggest that any attempt to simulate leaf area development and growth of wheat plants for P-limited conditions should include the effects of the deficiency on leaf emergence.  相似文献   

16.
The amount of protein produced per m2 by plants cultivated in soil in a greenhouse at three levels of fertilizer application, for c . 10 weeks, was estimated by Kjeldahl analysis of the TCA-insoluble fraction of freeze-dried material. The quantity of protein extractable for production of leaf protein concentrates was determined by Kjeldahl analysis of non-dried but frozen material after disintegration with a meat mincer and an Ultra-Turrax homogenizer, hydraulic pressing and filtration, and protein precipitation by heat (in two steps) or by TCA. The precipitability was also studied by Folin-Ciocalteu determination of protein. The quality of each protein concentrate was studied by determining nitrogen content (Kjeldahl), digestibility by pepsin and by pepsin + pancreatin, nutritive value in Tetrahymena tests, and lysine and methionine content (analysed microbiologically). Twenty-nine species and varieties were investigated. Large differences between species were found in all the properties studied. Protein extractability varied between 5 and 80%, while the extractable protein produced per m2 ranged between 1 and 140 g. The highest digestibility was two to three times greater than the lowest one. In the most digestible species ( Amaranthus caudatus ), 82% of the N of the chloroplastic protein concentrate was digested by pepsin + pancreatin. The Tetrahymena value generally ranged between 40 and 98, whereas casein gave values of about 75. The lysine content always exceeded the FAO minimum. The methionine content of most species varied between 2.0 and 2.2% of the hydrolyzed protein.
Amaranthus caudatus and the Chenopodiaceae investigated were the most suitable species for large-scale production of leaf protein concentrates for human consumption because they gave high yield of extractable protein and high-quality protein concentrates.  相似文献   

17.
A field experiment conducted at Central Rice Research Institute, Cuttack, during three successive seasons showed that with the 120-day-duration variety Ratna two dual crops ofAzolla pinnata R. Brown (Bangkok isolate) could be achieved 25 and 50 days after transplanting (DAT) by inoculating 2.0 t ha−1 of fresh Azolla 10 and 30 DAT respectively. One basal crop of Azolla could also be grown using the same inoculum 20 days before transplanting (DBT) in fallow rice fields. The three crops of Azolla grown—once before transplanting and twice after transplanting—gave an average total biomass of 38–63 and 43–64 t ha−1 fresh Azolla containing 64–90 and 76–94 kg N ha−1 respectively in the square and rectangular spacings. Two crops of Azolla grown only as a dual crop, on the other hand, gave 26–39 and 29–41 t ha−1 fresh Azolla which contained 44–61 and 43–59 kg N ha−1 respectively. Growth and yield of rice were significantly higher in Azolla basal plus Azolla dual twice incorporated treatments than in the Azolla dual twice incorporation, Azolla basal plus 30 kg N ha−1 urea and 60 kg N ha−1 urea treatments. Azolla basal plus 30 kg N ha−1 urea and 60 kg N ha−1 urea showed similar yields but Azolla dual twice incorporation was significantly lower than those. The different spacing with same plant populations did not affect growth and yield significantly, whereas Azolla growth during dual cropping was 8.3 and 64% more in the rectangular spacing than in the square spacing in Azolla basal plus Azolla dual twice incorporation and Azolla dual twice incorporation treatments.  相似文献   

18.
19.
Numerous species of soil bacteria which flourish in the rhizosphere of plants or around plant tissues stimulate plant growth and reduce nematode population by antagonistic behavior. These bacteria are collectively known as PGPR (plant growth promoting rhizobacteria). The effects of six isolates of PGPR Pseudomonas putida, Pseudomonas fluorescens, Serratia marcescens, Bacillus amyloliquefaciens, Bacillus subtilis and Bacillus cereus, were studied on tomato plant growth and root knot nematode reproduction after 45 days from nematode infection. The highest number of shoot dry weight/g (43.00 g) was detected in the plant treated with S. marcescens; then P. putida (34.33 g), B. amyloliquefaciens (31.66 g), P. fluorescens (30.0 g), B. subtilis (29.0 g), B. cereus (27.0 g) and nematode alone (untreated) 20 g/plant. While the highest number of plant height was observed when plant was treated with S. marcescens, P. fluorescens, P. putida, B. amyloliquefaciens and P. putida 52.66, 50.66, 48 and 48 cm respectively. No significant differences were seen between previous treatments but only had significant differences compared with untreated plant. The highest number of fruit/plant was observed when plants were treated with S. marcescens (10.66), then B. amyloliquefaciens (8.66), P. putida (8), P. fluorescens (8) and B. cereus (7.66). No significant differences between the last 4 treatments, but all had significant differences compared with untreated plants. The highest weight of plant yield (g) was observed with S. marcescens (319.6 g/plant) and the lowest weight of plant yield was observed in plants treated with nematode alone (untreated). On the other hand, the lowest numbers of J2/10 g of soil (78), galls/root, (24.33) galls/root, egg masses/root (12.66) and egg/egg masses were observed in the plants treated with S. marcescens.  相似文献   

20.
Drought stress substantially impedes crop productivity throughout the world. Microbial based approaches have been considered a potential possibility and are under study. Based on our prior screening examination, two distinct and novel biofilm-forming PGPR strains namely Bacillus subtilis-FAB1 and Pseudomonas azotoformans-FAP3 are encompassed in this research. Bacterial biofilm development on glass surface, microtiter plate and seedling roots were assessed and characterized quantitatively and qualitatively by light and scanning electron microscopy. Above two isolates were further evaluated for their consistent performance by inoculating on wheat plants in a pot-soil system under water stresses. Bacterial moderate tolerance to ten-day drought was recorded on the application of individual strains with wheat plants; however, the FAB1 + FAP3 consortium expressively improved wheat survival during drought. The strains FAB1 and FAP3 displayed distinct and multifunctional plant growth stimulating attributes as well as effective roots and rhizosphere colonization in combination which could provide sustained wheat growth during drought. FAB1 and FAP3-induced alterations cooperatively conferred improved plant drought tolerance by controlling physiological traits (gs, Ci, E, iWUE and PN), stress indicators (SOD, CAT, GR, proline and MDA content) and also maintained physico-chemical attributes and hydrolytic enzymes including DHA, urease, ALP, protease, ACP and β glucosidase in the soil. Our findings could support future efforts to enhance plant drought tolerance by engineering the rhizobacterial biofilms and associated attributes which requires in-depth exploration and exploiting potential native strains for local agricultural application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号