共查询到20条相似文献,搜索用时 0 毫秒
1.
In vitro degradation of human hair by Hendersonula toruloidea. 总被引:2,自引:0,他引:2
The in vitro ability of 5 Hendersonula toruloidea and 1 control Microsporum gypseum strain to degrade human hair has been studied by analysis of culture medium and microscopy. H. toruloidea was able to utilize human hair as a source of nutrients but the extent varied according to the isolate and in all cases degradation was less marked than with M. gypseum. 相似文献
2.
Farina AR Cappabianca L Di Ianni N Ruggeri P Ragone M Merolle S Gulino A Mackay AR 《FEBS letters》2012,586(16):2366-2374
Irreversible MMP-9 inhibition is considered a significant therapeutic goal in inflammatory, vascular and tumour pathology. We report that divalent cation chelators Alendronate and EDTA not only directly inhibited MMP-9 but also promoted irreversible plasmin-mediated MMP-9 inactivation by exposing cryptic plasmin-degradation sites within the MMP-9 catalytic-domain and producing an inhibitory hemopexin-domain fragment. This effect was also observed using MDA-MB-231 breast cancer cells, which activated exogenous plasminogen to degrade endogenous proMMP-9 in the presence of Alendronate or EDTA. Degradation-mediated inactivation of proMMP-9 occurred in the absence of transient activation, attesting to the incapacity of plasmin to directly activate proMMP-9 and direct MMP-9 inhibition by Alendronate and EDTA. Our study provides a novel rational for therapeutic Alendronate use in MMP-9-dependent pathology characterised by plasminogen activation. 相似文献
3.
Kumar S Upadhayay SK Kumari B Tiwari S Singh SN Singh PK 《Bioresource technology》2011,102(4):3709-3715
An investigation was carried out for in vitro degradation of fluoranthene by four bacterial strains (PSM6, PSM7, PSM10 and PSM11) isolated from the petroleum sludge. Although all the strains registered their growth in MSM with 100 ppm fluoranthene, PSM11 growth was better than other strains. Growth of bacterial strains invariably corresponded to their degradation potential of fluoranthene. After 168 h of incubation, 61% fluoranthene was degraded by PSM11, followed by PSM10 (48%) and PSM6 (42%) and the least was recorded in PSM7 (41%). Besides, 11% loss in fluoranthene was attributed to abiotic factors. Thirty-eight times more activity of catechol 2,3-dioxygenase than catechol 1,2-dioxygenase showed that it played a significant role in fluoranthene degradation. Molecular weight of catechol 2,3-dioxygenase isolated from PSM11 was determined as ∼136 kDa by size exclusion chromatography and 34 kDa on denaturing SDS-PAGE, indicating tetrameric nature of the enzyme. 相似文献
4.
Antonietta Pepe Roberta Flamia Deanna Guerra Daniela Quaglino Brigida Bochicchio Ivonne Pasquali Ronchetti Antonio M. Tamburro 《Matrix biology》2008,27(5):441-450
Hydrophobic domains of human tropoelastin are able to aggregate in a variegated manner. Some aggregates have typical features of the whole protein while others show peculiar self-assembling profiles. Among these hydrophobic domains, an important role in the self-assembling properties of tropoelastin in vitro could be assigned to the peptide encoded by exon 26 of the human tropoelastin gene, that, although unstructured in solution, has great tendency to self-assemble in an ordered manner. The present report describes the aggregation properties of this hydrophobic domain of human tropoelastin analysed by different ultra-structural approaches. Transmission electron microscopy shows that the peptide is able to form different aggregation entities from short rods to very long and flexible fibers, depending on the temperature and on the incubation time. At a microm scale, very long fibers as well as fractal aggregation patterns were observed. Data show that the isolated domain encoded by exon 26 of the tropoelastin gene is able to aggregate in a manner very similar to the whole tropoelastin protein. The aggregation properties are due to the peculiar sequence of EX26, and not to its amino acid composition, as evidenced by the supramolecular analysis of a scrambled sequence of exon 26-coded domain of human tropoelastin, showing a quite different aggregation patterns. These findings confirm that specific sequences can play a driving role in the aggregation process of tropoelastin molecule, at least in vitro, and indicate exon 26-encoded domain among these sequences. 相似文献
5.
Elastin is the protein responsible for the elastic properties of vertebrate tissue. Very little is currently known about the structure of elastin or of its soluble precursor tropoelastin. We have used high-resolution solution NMR methods to probe the conformational preferences of a conserved hydrophobic region in tropoelastin, domain 26 (D26). Using a combination of homonuclear, 15N-separated and triple resonance experiments, we have obtained essentially full chemical shift assignments for D26 at 278K. An analysis of secondary chemical shift changes, as well as NOE and 15N relaxation data, leads us to conclude that this domain is essentially unstructured in solution and does not interact with intact tropoelastin. D26 does not display exposed hydrophobic clusters, as expected for a fully unfolded protein and commensurate with an absence of flexible structural motifs, as identified by lack of binding of the fluorescent probe 4,4'-dianilino-1,1'-binaphthyl-5,5'-disulfonic acid. Sedimentation equilibrium data establish that this domain is strictly monomeric in solution. NMR spectra recorded at 278 and 308K indicate that no significant structural changes occur for this domain over the temperature range 278-308K, in contrast to the characteristic coacervation behavior that is observed for the full-length protein. 相似文献
6.
In vitro inhibition of human liver drug metabolizing enzymes by second generation antihistamines 总被引:3,自引:0,他引:3
Cetirizine, terfenadine, loratadine, astemizole and mizolastine were compared for their ability to inhibit marker activities for CYP1A2, CYP2C9, CYP2C19, CYP2D6, CYP3A4 and for some glucuronidation isoenzymes in human liver microsomes. The most pronounced effects were observed with terfenadine, astemizole and loratadine which inhibited CYP3A4-mediated testosterone 6beta-hydroxylation (IC50 of 23, 21 and 32 microM, respectively) and CYP2D6-mediated dextromethorphan O-demethylation (IC50 of 18, 36 and 15 microM, respectively). In addition, loratadine markedly inhibited the CYP2C19 marker activity, (S)-mephenytoin 4-hydroxylation (Ki of 0.17 microM). Furthermore, loratadine activated the CYP2C9-catalyzed tolbutamide hydroxylation (ca. 3-fold increase at 30 microM) and inhibited some glucuronidation enzymes. Mizolastine appeared to be a relatively weak and unspecific inhibitor of CYP2E1, CYP2C9, CYP2D6 and CYP3A4 (IC50Ss in the 100 micromolar range). Cetirizine demonstrated no effect on the investigated activities. A comparison of the inhibitory potencies of cetirizine, terfenadine, loratidine, astemizole and mizolastine with their corresponding plasma concentrations in humans suggests that these antihistamines are not likely to interfere with the metabolic clearance of coadministered drugs, with the exception of loratidine, which appears to inhibit CYP2C19 with sufficient potency to warrant additional investigation. 相似文献
7.
Thareja A Puniya AK Goel G Nagpal R Sehgal JP Singh PK Singh K 《Archives of animal nutrition》2006,60(5):412-417
Anaerobic ruminal fungi may play an active role in fibre degradation as evidenced by the production of different fibrolytic enzymes in culture filtrate. In the present study, 16 anaerobic fungal strains were isolated from ruminal and faecal samples of sheep and goats. Based on their morphological characteristics they were identified as species of Anaeromyces, Orpinomyces, Piromyces and Neocallimastix. Isolated Neocallimastix sp. from goat rumen showed a maximum activity of CMCase (47.9 mIU ml(-1)) and filter paper cellulase (48.3 mIU ml(-1)), while Anaeromyces sp. from sheep rumen showed a maximum xylanolytic activity (48.3 mIU ml(-1)). The cellobiase activity for all the isolates ranged from 178.0-182.7 mIU ml(-1). Based on the enzymatic activities, isolated Anaeromyces sp. from sheep rumen and Neocallimastix sp. from goat rumen were selected for their potential of in vitro fibre degradation. The highest in vitro digestibility of NDF (23.2%) and DM (34.4%) was shown for Neocallimastix sp. from goat rumen, as compared to the digestibility of NDF and DM in the control group of 17.5 and 25.0%, respectively. 相似文献
8.
《Archives of animal nutrition》2013,67(5):412-417
Abstract Anaerobic ruminal fungi may play an active role in fibre degradation as evidenced by the production of different fibrolytic enzymes in culture filtrate. In the present study, 16 anaerobic fungal strains were isolated from ruminal and faecal samples of sheep and goats. Based on their morphological characteristics they were identified as species of Anaeromyces, Orpinomyces, Piromyces and Neocallimastix. Isolated Neocallimastix sp. from goat rumen showed a maximum activity of CMCase (47.9 mIU ml?1) and filter paper cellulase (48.3 mIU ml?1), while Anaeromyces sp. from sheep rumen showed a maximum xylanolytic activity (48.3 mIU ml?1). The cellobiase activity for all the isolates ranged from 178.0 – 182.7 mIU ml?1. Based on the enzymatic activities, isolated Anaeromyces sp. from sheep rumen and Neocallimastix sp. from goat rumen were selected for their potential of in vitro fibre degradation. The highest in vitro digestibility of NDF (23.2%) and DM (34.4%) was shown for Neocallimastix sp. from goat rumen, as compared to the digestibility of NDF and DM in the control group of 17.5 and 25.0%, respectively. 相似文献
9.
Vandooren J Geurts N Martens E Van den Steen PE Jonghe SD Herdewijn P Opdenakker G 《World journal of biological chemistry》2011,2(1):14-24
AIM: To establish a novel, sensitive and high-throughput gelatinolytic assay to define new inhibitors and compare domain deletion mutants of gelatinase B/matrix metalloproteinase (MMP)-9. METHODS: Fluorogenic Dye-quenched (DQ)TM-gelatin was used as a substrate and biochemical parameters (substrate and enzyme concentrations, DMSO solvent concentrations) were optimized to establish a highthroughput assay system. Various small-sized libraries (ChemDiv, InterBioScreen and ChemBridge) of hetero-cyclic, drug-like substances were tested and compared with prototypic inhibitors. RESULTS: First, we designed a test system with gelatin as a natural substrate. Second, the assay was validated by selecting a novel pyrimidine-2,4,6-trione (barbitu- rate) inhibitor. Third, and in line with present structural data on collagenolysis, it was found that deletion of the O-glycosylated region significantly decreased gelatinolytic activity (kcat/kM ± 40% less than full-length MMP-9). CONCLUSION: The DQTM-gelatin assay is useful in high-throughput drug screening and exosite targeting. We demonstrate that flexibility between the catalytic and hemopexin domain is functionally critical for gelatinolysis. 相似文献
10.
Cancer stem cells (CSCs) have been implicated in the maintenance and progression of several types of cancer. The origin and cellular properties of human CSCs are poorly characterized. Here we show that CSC-like cells can be generated in vitro by oncogenic reprogramming of human somatic cells during neoplastic transformation. We find that in vitro transformation confers stem-cell properties to primary differentiated fibroblasts, including the ability to self-renew and to differentiate along multiple lineages. Tumours induced by transformed fibroblasts are hierarchically organized, and the cells that act as CSCs to initiate and maintain tumour growth are marked by the stage-specific embryonic antigen SSEA-1. Heterogeneous lineages of cancer cells in the bulk of the tumour arise through differentiation of SSEA-1(+) fibroblasts, and differentiation is associated with loss of tumorigenic potential. These findings establish an experimental system to characterize cellular and molecular properties of human CSCs and demonstrate that somatic cells have the potential to de-differentiate and acquire properties of CSCs. 相似文献
11.
Group A streptococcal pyrogenic exotoxin (SPE) is a potent modulator of the immune system when used experimentally in mice. Typically, a late burst of plaque-forming cells (PFC) follows an early suppression of the antibody response in appropriately immunized and SPE-treated mice or their spleen cells in vitro. This altered response to antigen caused by SPE is termed a deregulated antibody response. The site of action of SPE was studied by use of cellular reconstruction and complementation experiments using the separated subpopulations of immunocytes which are required for full expression of mouse spleen PFC responses to sheep erythrocytes or to trinitrophenylated (TNP) rabbit erythrocytes in vitro. The SPE site was thus localized to the T-cell subpopulation. Recently SPE has been purified to a very high degree, making it possible to ascertain that SPE alone generates the deregulation of the immune system as described before and to limit the role of nondefined components of cruder preparations of SPE. A purified horse anti-scarlet fever antitoxin which recognizes highly purified SPE as being homogeneous also recognized a single component of crude SPE by agar-gel analysis. A rabbit anti-SPE immunoglobulin raised against crude SPE and absorbed with killed, strain NY5, Group A streptococci recognized the pure SPE and a major component of the homologous crude SPE similarly. Both of these antisera neutralized the capacity of SPE to deregulate the in vitro PFC response to TNP almost completely. A third antiserum raised in rabbits against a NY5 Group A streptococcal whole cell vaccine recognized a different component of crude SPE and totally failed to recognize pure SPE. This antiserum also recognized a purified Group A streptococcal peptidoglycan as being related to components contained in the crude SPE preparation. This antiserum, however, totally failed to neutralize the capacity of SPE to deregulate the PFC response to TNP. These results show that SPE-A is the active component of cruder preparations of SPE which deregulates PFC responses. 相似文献
12.
13.
K A Sheppard S M Greenberg C D Funk M Romano C N Serhan 《Biochimica et biophysica acta》1992,1133(2):223-234
Eicosanoid biosynthesis was examined with a human megakaryocytic cell line (Dami). Megakaryocytes incubated with [1-14C]arachidonic acid and either ionophore A23187 or thrombin generated both thromboxane and 12-hydroxyheptadecatrienoic acid (HHTrE). Exposure to phorbol myristate acetate (PMA) for 1 through 9 days induced differentiation and revealed an increase in the conversion of [1-14C]arachidonate to cyclooxygenase- and lipoxygenase (LO)-derived products. The LO-derived product was identified as 12S-HETE by its physical characteristics including GC/MS and chiral column SP-HPLC. PMA-treated Dami cells did not generate 5-HETE, leukotrienes or lipoxins from exogenous arachidonic acid while they did convert leukotriene A4 (LTA4) to lipoxin A4, lipoxin B4 and their respective all-trans isomers. In addition, COS-M6 cells transfected with a human 12-lipoxygenase cDNA and incubated with either arachidonic acid or LTA4 generated 12-HETE and lipoxins, respectively. The lipoxin profile generated by transfected COS-M6 cells incubated with LTA4 was similar to that generated by the PMA-treated Dami cells. Results indicate that human megakaryocytes can transform arachidonate and LTA4 to bioactive eicosanoids and that the 12-lipoxygenase appears upon further differentiation of these cells. In addition, they indicate that the 12-LO of human megakaryocytes and the 12-LO expressed by transfected COS cells can generate both lipoxins A4 and B4. Together they suggest that the human 12-LO can serve as a model of LX-synthetase activity with LTA4. 相似文献
14.
In vitro Studies on lignocellulose degradation by microbial strains isolated from composting processes 总被引:2,自引:0,他引:2
M.C. Vargas-García F. Surez-Estrella M.J. Lpez J. Moreno 《International biodeterioration & biodegradation》2007,59(4):322-328
An in vitro study of different strains isolated from composting piles in relation to their capacity to biodegrade lignocellulose was achieved. Thirteen microorganisms (five bacteria, one actinomycete, and seven fungi) isolated from compost windrows were grown on agricultural wastes and analyzed for cellulose, hemicellulose, and lignin degradation. Hemicellulose fraction was degraded to a lesser extent because only two of the isolates, B122 and B541, identified as Bacillus licheniformis and Brevibacillus parabrevis, respectively, were able to decrease the concentration of this polymer. On the contrary, most of the isolates were capable of reducing cellulose and lignin concentrations; strain B541 was the most active cellulose degrader (51%), while isolate B122 showed higher lignin degradation activity (68%). Consequently, an increase in humification indices was detected, especially with respect to humification index (HI) for both bacteria and CAH/AF in the case of strain B122. According to these data, the use of microbial inoculants as a tool to improve organic matter biodegradation processes (i.e., composting) may become important if microorganisms’ capabilities are in accordance with the final characteristics required in the product (high humic content, lignin content decrease, cellulose concentration decrease, etc.). 相似文献
15.
Resistance of tropoelastin and elastin peptides to degradation by alpha 2-macroglobulin-protease complexes 总被引:1,自引:0,他引:1
F Kueppers W R Abrams G Weinbaum J Rosenbloom 《Archives of biochemistry and biophysics》1981,211(1):143-150
When α-ketoglutarate is the substrate, malate is a considerably more effective inhibitor of glutamate dehydrogenase than glutamate, oxalacetate, aspartate, or glutarate. Malate is a considerably poorer inhibitor when glutamate is the substrate. Malate is competitive with α-ketoglutarate, uncompetitive with TPNH, and noncompetitive with glutamate. The above, plus the fact that malate is a considerably more potent inhibitor when TPNH rather than TPN is the coenzyme, indicates that malate is predominantly bound to the α-ketoglutarate site of the enzyme-TPNH complex and has a considerably lower affinity for the enzyme-TPN complex. Ligands which decrease binding of TPNH to the enzyme such as ADP and leucine markedly decrease inhibition by malate. Conversely, GTP, which increases binding of TPNH to the enzyme also enhances inhibition by malate. Malate also decreases interaction between mitochondrial aspartate aminotransferase and glutamate dehydrogenase. This effect of malate on enzyme-enzyme interaction is enhanced by DPNH and GTP which also increase inhibition of glutamate dehydrogenase by malate and is decreased by TPN, ADP, ATP, α-ketoglutarate, and leucine which decrease inhibition of glutamate dehydrogenase by malate. These results indicate that malate could decrease α-ketoglutarate utilization by inhibiting glutamate dehydrogenase and retarding transfer of α-ketoglutarate from the aminotransferase to glutamate dehydrogenase. These effects of malate would be most pronounced when the mitochondrial level of α-ketoglutarate is low and the level of malate and reduced pyridine nucleotide is high. 相似文献
16.
It is generally thought that only viable cells can elicit a primary cytotoxic T-lymphocyte (CTL) response. We present evidence that this is not so, since enucleated tumor cells can generate a strong cytolytic response of unprimed allogeneic human T lymphocytes. Cytoplasts (enucleated cells) were obtained by incubation with cytochalasin B and subsequent isopycnic centrifugation. Their purity was assessed by electron microscopy and flow cytometry. Membrane fractions were prepared by nitrogen cavitation, and used in parallel with cytoplasts and intact cells as stimulators in primary allo-CTL generation; although all cell fractions expressed high amounts of class I and II histocompatibility antigens, as assessed by flow cytometry and ELISA technique, only the cytoplasts generated a strong cytotoxic response of naive peripheral T cells, like that induced by intact cells. The dogma that an intact and metabolically active stimulator cell is required for the primary generation of CTLs is questioned. 相似文献
17.
Prions are composed mainly, if not entirely, of PrP(Sc), an infectious misfolded isoform of PrP(C), the normal isoform of the prion protein. Here we show that protein misfolding cyclic amplification (PMCA)-generated hypertransmissible mink encephalopathy (HY TME) PrP(Sc) is highly infectious and has a titer that is similar, if not identical, to that associated with brain tissue from animals infected with the HY TME agent that are in the terminal stage of disease. These data demonstrate that PMCA efficiently replicates the prion agent and provide further support for the hypothesis that in vitro-generated prions are bona fide and are not due to contamination. 相似文献
18.
The ability of two species of Bacillus to degrade child's scalp hair, cow horn, cow hooves, and human nails in vitro under static conditions was studied by the determination of soluble sulphhydryl compounds as cysteine, disulphides as cystine, and release of extracellular keratinase along with changes in alkalinity of the culture filtrate. Child's scalp hair was found to be the most favored keratin substrate for Bacillus spp. 相似文献
19.
K. J. Cho J. S. Kang W. T. Cho C. H. Lee J. K. Ha Kyung Bin Song 《Biotechnology letters》2010,32(12):1921-1924
Zearalenone (ZEN) is a non-steroidal estrogen produced by many Fusarium species in cereals and other plants, and is frequently implicated in safety of foods and feeds. A ZEN-degrading microorganism
has been isolated and identified as a Bacillus subtilis subspecies. It degraded 99% ZEN (1 mg kg−1) in liquid medium after 24 h and more than 95% of ZEN (0.25 mg kg−1) could be degraded after 48 h in a solid-state fermentation. This isolate can thus be used to decontaminate raw materials,
like grains, to reduce the mycotoxin concentration. 相似文献