首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A cDNA clone from a human placental library was found to consist of an essentially full-length cDNA of 4.6 kb for the prepro alpha 2(I) chain of type I procollagen. Nucleotide sequencing of the 5'-end of the cDNA provided a sequence of 1617 nucleotide residues and codons for 539 amino acid residues not previously defined. Comparison of the complete structure of the prepro alpha 2(I) cDNA with previously reported sequences for the chicken pro alpha 2(I) gene indicated that 83% of 1366 total amino acid residues were conserved. In the alpha-chain domain 84% of 1014 amino acid residues were conserved. Also, there was conservation of the previously noted preference for U and C in the third position of codons for glycine, proline and alanine. One major difference between the human and the chicken prepro alpha 2(I) chain was that the human chain contained 21 fewer proline residues, an observation that probably explains why the triple helix of human type I procollagen unfolds at temperatures that are 1-2 degrees C lower. In parallel experiments, sequencing of intron-exon boundaries for nine exons of genomic subclones confirmed and extended previous observations that the pro alpha 2(I) gene, like other genes from fibrillar collagens, has an unusual 54-base pattern of exon sizes that is highly conserved through evolution.  相似文献   

2.
Overlapping cDNA clones were isolated for human type II procollagen. Nucleotide sequencing of the clones provided over 2.5 kb of new coding sequences for the human pro alpha 1(II) gene and the first complete amino acid sequence of type II procollagen from any species. Comparison with published data for cDNA clones covering the entire lengths of the human type I and type III procollagens made it possible to compare in detail the coding sequences and primary structures of the three most abundant human fibrillar collagens. The results indicated that the marked preference in the third base codons for glycine, proline and alanine previously seen in other fibrillar collagens was maintained in type II procollagen. The domains of the pro alpha 1(II) chain are about the same size as the same domains of the pro alpha chains of type I and type III procollagens. However, the major triple-helical domain is 15 amino acid residues less than the triple-helical domain of type III procollagen. Comparison of hydropathy profiles indicated that the alpha chain domain of type II procollagen is more similar to the alpha chain domain of the pro alpha 1(I) chain than to the pro alpha 2(I) chain or the pro alpha 1(III) chain. The results therefore suggest that selective pressure in the evolution of the pro alpha 1(II) and pro alpha 1(I) genes is more similar than the selective pressure in the evolution of the pro alpha 2(I) and pro alpha 1(III) genes.  相似文献   

3.
Dysfunctions of the genes coding for the two chains of the human type-I procollagen result in genetic disorders that affect the integrity of bone, ligaments, tendons, and other connective tissues. While the primary amino acid (aa) sequence of one of the two type-I subunits, pro alpha 2(I), has been derived in its entirety from the analysis of overlapping cDNAs, the sequence of the first 247 aa residues of the helical domain of the other polypeptide, pro alpha 1(I), had yet to be determined. To this end, we have sequenced nearly 4 kb of the human pro alpha 1(I) collagen gene and identified twelve open reading frames whose conceptual amino acid translation exhibits 95% homology to the first 247 aa of rat alpha 1(I) chain. Furthermore, with these and other data, some of which previously unpublished, we have derived the complete sequence of the first 7618 bp of the gene. This region comprises the 25 exons encoding the N-terminal pre-propeptide and five of the eight cyanogen-bromide-derived peptides. This information therefore represents a most useful reference for the characterization of molecular defects in individuals affected by various connective tissue disorders.  相似文献   

4.
Comparison of the nucleotide sequence and primary structure of murine and human pro alpha 2(I) collagen indicates a high degree of homology: 87% at the nucleotide level and 87% at the amino acid level, with the greatest degree of variability in the amino- and carboxy-pro-peptide domains. The homology is greatest in the triple helical domain, repeating [Gly-X-Y]338, exhibiting 90% homology at the amino acid level, with only X and Y position residue substitutions. The X and Y residues show 86% homology between murine and human pro alpha 2(I) collagen triple helices, with no truly nonconservative substitutions.  相似文献   

5.
6.
J F Lees  M Tasab    N J Bulleid 《The EMBO journal》1997,16(5):908-916
A key question relating to procollagen biosynthesis is the way in which closely related procollagen chains discriminate between each other to assemble in a type-specific manner. Intracellular assembly of procollagen occurs via an initial interaction between the C-propeptides followed by vectorial propagation of the triple-helical domain in the C to N direction. Recognition signals within the C-propeptides must, therefore, determine the selective association of individual procollagen chains. We have used the pro alpha1 chain of type III procollagen [pro alpha1(III)] and the pro alpha2 chain of type I procollagen [pro alpha2(I)] as examples of procollagen chains that are either capable or incapable of self-assembly. When we exchanged the C-propeptides of the pro alpha1(III) chain and the pro alpha(I) chain we demonstrated that this domain is both necessary and sufficient to direct the assembly of homotrimers with correctly aligned triple-helices. To identify the sequences within this domain that determine selective association we constructed a series of chimeric procollagen chains in which we exchanged specific sequences from the pro alpha1(III) C-propeptide with the corresponding region within the pro alpha2(I) C-propeptide (and vice versa) and assayed for the ability of these molecules to form homotrimers. Using this approach we have identified a discontinuous sequence of 15 amino acids which directs procollagen self-association. By exchanging this sequence between different procollagen chains we can direct chain association and, potentially, assemble molecules with defined chain compositions.  相似文献   

7.
8.
The fibronectin receptor is a complex of two cell surface glycopeptides that mediate the binding of cells to fibronectin substrata. To study the structure of this receptor, we have isolated cDNA clones coding for the human fibronectin receptor alpha subunit from a lambda gt11 placental cDNA library. The cDNAs code for 229 amino acids from the COOH terminus of the alpha subunit. The deduced sequence has a hydrophobic region with properties characteristic of a membrane-spanning domain. From the membrane-spanning domain to the COOH terminus are 23-28 amino acids that are likely to constitute the cytoplasmic domain. These results establish the fibronectin receptor alpha subunit as an integral membrane protein.  相似文献   

9.
Two overlapping cDNA clones that cover the complete length of the mRNA for human type III procollagen were characterized. The data provided about 2500 base pairs of sequence not previously defined for human type III procollagen. Two tripeptide sequences of -Gly-Xaa-Yaa- were identified that were not detected previously by amino acid sequencing of human type III collagen. The two additional tripeptide units, together with three previously detected, establish that the alpha 1 (III) chain is 15 amino acids longer than either the alpha 1 (I) or alpha 2 (I) chains of type I collagen. The additional tripeptide units made hydropathy plots of the N-terminal and C-terminal regions of type III collagen distinctly different from those of type I collagen. The data also demonstrated that human type III procollagen has the same third base preference in codons for glycine, proline and alanine that was previously found with human and chick type I procollagen. In addition, comparison of two cDNA clones from the same individual revealed a variation in structure in that the codon for amino acid 880 of the alpha 1 (III) chain was -CTT- for leucine in one clone and -TTT- for phenylalanine in the other.  相似文献   

10.
The nucleotide sequence of a segment of the chick alpha 1 type III collagen gene which codes for the C-propeptide was determined and compared with the corresponding sequence in the alpha 1 type I and alpha 2 type I collagen genes. As in the alpha 2 type I gene the coding information for the C-propeptide of the type III collagen gene is subdivided in four exons. Similarly, the amino proximal exon contains sequences for both the carboxy terminal end of the alpha-helical segment of collagen and for the beginning of the C-propeptide in both genes. Therefore, this organization of exons must have been established before these two collagen genes arose by duplication of a common ancestor. In several subsegments the deduced amino acid sequence for the C-propeptide of type III collagen shows a strong homology with the corresponding amino acid sequence in alpha 1 and alpha 2 type I. For one of these homologous amino acid sequences, however, the nucleotide sequence is much better conserved than for the others. It is possible that a mechanism of gene conversion has maintained the homogeneity of this nucleotide sequence among the interstitial collagen genes. Alternatively, the conserved nucleotide sequence may represent a regulatory signal which could function either in the DNA or in the RNA.  相似文献   

11.
12.
Type I procollagen was examined in cultured skin fibroblasts from a patient with a lethal variant of osteogenesis imperfecta. About half of the pro-alpha chains were post-translationally overmodified and had a decreased thermal stability. The vertebrate collagenase A fragment had a normal thermal stability, but the B fragment had a decreased thermal stability. Therefore, there was a change in primary structure in amino acids 776-1014 of either the alpha 1(I) or alpha 2(I) chain. Three of five cDNA clones for the alpha 2(I) chain contained a single-base substitution of an A for a G that converted the codon for glycine at amino acid position 907 to aspartate. Complete nucleotide sequencing of bases coding for amino acids 776 to 1014 of the alpha 2(I) chain was carried out in one cDNA clone that contained the mutation in the glycine codon and in one that did not. Also, nucleotide sequencing was performed of bases coding for amino acids 776-1014 of the alpha 1(I) chain in seven independent cDNA clones. No other mutations were found. Therefore, the single base substitution that converts glycine 907 in the alpha 2(I) chain to aspartate is solely responsible for the decreased thermal stability of the type I procollagen synthesized by the proband's fibroblasts. Also, glycine 907 of the alpha 2(I) chain is an important component of a cooperative block that determines the melting temperature of the whole molecule.  相似文献   

13.
We have isolated several overlapping cDNA clones encoding alpha 1(XI) collagen chains from human and rat cDNA libraries. Together the human cDNAs code for 335 uninterrupted Gly-X-Y triplets, and a 264-amino acid C-propeptide, while the rat cDNAs cover the entire C-propeptide and about a third of the triple-helical domain. Comparison of the human and rodent nucleotide sequences showed a 95% sequence similarity. The identification of the clones as alpha 1(XI) cDNAs was based on the complete identity between the amino acid sequences of three human alpha 1(XI) cyanogen bromide peptides and the cDNA-derived sequence. Examination of and the cDNA-derived amino acid sequence showed a variety of structural features characteristic of fibrillar-forming collagens. In addition, nucleotide sequence analysis of a selected portion of the corresponding human gene revealed the characteristic 54-base pair exon motif. We conclude therefore that pro-alpha 1 (XI) collagen belongs to the group of fibrillar collagen genes. We also suggest that the expression of this gene is not restricted to cartilage, as previously thought, since the cDNA libraries from which the clones were isolated, originated from both cartilagenous and noncartilaginous tissues.  相似文献   

14.
Partial covalent structure of the human alpha 2 type V collagen chain   总被引:5,自引:0,他引:5  
Human cDNA libraries were screened with a cDNA fragment presumably encoding the 3' terminus of a procollagen carboxyl propeptide not identifiable as types I, II, III, or IV by protein sequence or Northern blot hybridization. One clone contained a 1350-base pair insert coding in part for 55 uninterrupted Gly-X-Y triplets. Comparison with the amino acid composition of the COOH-terminal cyanogen bromide (CB) peptides of the alpha 1 and alpha 2 type V collagen chains showed similarity only to the alpha 2(V)CB fragment. To identify the NH2 terminus of the peptide designated by methionine, an additional isolate was sequenced and found to contain a Gly-Met-Pro triplet. Thirty-one amino acids from the NH2 terminus of the alpha 2(V)CB9 fragment were then determined by Edman degradation and found to be identical to those derived from the cDNA clone. The DNA sequence encoding part of the triple helical region establishes for the first time the partial structure of a type V collagen chain. Although comparison of residues 796-1020 of the alpha 2(V) collagenous region with alpha 1 (III), alpha 1(I), and alpha 2(I) shows strong conservation of charged positions, the latter three chains appear considerably more similar to each other than to alpha 2(V). A striking feature of the alpha 2(V) sequence between 918-944 is the absence of proline residues. In the analogous region of alpha 1(I) where this amino acid is also lacking, a flexible site in the rigid triple helical structure of type I collagen has been observed (Hofmann, H., Voss, T., Kuhn, K. and Engel, J. (1984) J. Mol. Biol. 172, 325-343).  相似文献   

15.
A cDNA clone for human carbonic anhydrase (CA) II was isolated from a kidney lambda gt10 library. Expression of the cDNA insert in Cos-7 cells produced an immunoprecipitable product and enzymatically active carbonic anhydrase. The cDNA insert is 1551 bp in length and contains an open reading frame which encodes a 260-amino-acid polypeptide. The deduced amino acid sequence is identical to that reported for human CA II. The protein coding region of this cDNA for human CA II shows 81 and 70% nucleotide identity with cDNAs for CA II from mouse and chick, respectively. Even the long 3'-untranslated region of the cDNA for human CA II (703 bp) is 64 and 42% identical to those of CA II from mouse and chick, showing remarkable conservation of the CA II cDNAs in amniotes. The protein coding region of the human CA II cDNA is 64 and 65% identical with those of human CA I and CA III, which are thought to have arisen from a common precursor by gene duplication.  相似文献   

16.
The murine GABAA/benzodiazepine (GABAA/BZ) receptor alpha 1 subunit cDNA has been isolated from a BALB/c mouse brain library and sequenced. The cDNA is 2665 nucleotides long with an open reading frame of 455 amino acids. It shows significant homology to the GABAA receptor alpha 1 subunit cDNA sequences of other species. Excluding deletions, the murine GABAA alpha 1 receptor exhibits 96% nucleotide and 100% amino acid sequence homology to the rat alpha 1 receptor cDNA and over 91% nucleotide and 98% amino acid sequence homology to the bovine and human alpha 1 receptor cDNAs in the protein coding region. This murine cDNA was used to locate the alpha 1 receptor subunit gene, Gabra-1, to murine Chromosome 11 between Il-3 and Rel. This assignment extends proximally the segment of mouse Chromosome 11 with known homology to human chromosome 5.  相似文献   

17.
Full-length sequence of the cDNA for human erythroid beta-spectrin   总被引:22,自引:0,他引:22  
Spectrin is the major molecular consituent of the red cell membrane skeleton. We have isolated overlapping human erythroid beta-spectrin cDNA clones and determined 6773 base pairs of contiguous nucleotide sequence. This includes the entire coding sequence of beta-spectrin. The sequence translates into a 2137 amino acid, 246-kDa peptide. beta-Spectrin is found to consist of three distinct domains. Domain I, at the N terminus, is a 272-amino acid region lacking resemblance to the spectrin repetitive motif. Sequences in this region exhibit striking sequence homology, at both nucleotide and amino acid levels, to the N-terminal "actin-binding" domains of alpha-actinin and dystrophin. Between residues 51 and 270 there is 55% amino acid identity to human dystrophin, with only four single amino acid gaps in alignment. Domain II consists of 17 spectrin repeats. Several sequence variations are observed in typical repeat structure. Homology to alpha-actinin extends beyond domain I into the N-terminal portion of domain II. Domain III, 52 amino acid residues at the C terminus, does not adhere to the spectrin repeat motif. Combining knowledge of spectrin primary structure with previously reported functional studies, it is possible to make several inferences regarding structure/function relationships within the beta-spectrin molecule.  相似文献   

18.
We have isolated a cDNA clone (pRcol 2) which is complementary to the 5'-terminal portion of the rat pro-alpha 1(II) chain mRNA. A synthetic oligonucleotide was used both as a primer for cDNA synthesis and as a probe for screening a cDNA library. The probe was a mixture of sixteen 14-mers deduced from an amino acid sequence present in the amino-terminal telopeptide of the rat cartilage alpha 1(II) chain. This primer was chosen so that the resulting cDNA would contain the sequence of the 5' end of the mRNA. The nucleotide sequences of the cDNA were determined and compared with that of three other interstitial procollagen chain mRNAs (pro-alpha 1(I), pro-alpha 2(I), and pro-alpha 1(III) chain mRNA). pRcol 2 contains a 521-base pair (bp) insert, including 153 bp of the 5' untranslated region plus 368 bp coding for the signal peptide, the amino-terminal propeptide, and a part of the telopeptide. The signal peptide of the type II collagen chain is composed of about 20 amino acids. There is little homology between the amino acid sequence of the signal peptide in the pro-alpha 1(II) chain and that of three other interstitial procollagen chains. The NH2-terminal propeptide is deduced to contain short nonhelical sequences at its amino and carboxyl ends and an internal helical collagenous domain comprising 25 repeats of Gly-X-Y with one interruption. There is a strong conservation of the amino acid sequence of the carboxyl-terminal part of the NH2-terminal propeptide in the pro-alpha 1(II), pro-alpha 1(I), and pro-alpha 2(I) chains. Type II collagen mRNA does not contain a sequence corresponding to a uniquely conserved nucleotide sequence around the translation initiation site which occurs in mRNA for other procollagen chains.  相似文献   

19.
Type I/II procollagen N-proteinase was partially purified from chick embryos and used to examine the rate of cleavage of a series of purified type I procollagens synthesized by fibroblasts from probands with heritable disorders of connective tissue. The rate of cleavage was normal with procollagen from a proband with osteogenesis imperfecta that was overmodified by posttranslational enzymes. Therefore, posttranslational overmodification of the protein does not in itself alter the rate of cleavage under the conditions of the assay employed. Cleavage of the procollagen, however, was altered in several procollagens with known mutations in primary structure. Two of the procollagens had in-frame deletions of 18 amino acids encoded by exons 11 and 33 of the pro alpha 2(I) gene. In both procollagens, both the pro alpha 1(I) and the pro alpha 2(I) chains were totally resistant to cleavage. With a procollagen in which glycine-907 of the alpha 2(I) chain domain was substituted with aspartate, both pro alpha chains were cleaved but at a markedly decreased rate. The results, therefore, establish that mutations that alter the primary structure of the pro alpha chains of procollagen at sites far removed from the N-proteinase cleavage site can make the protein resistant to cleavage by the enzyme. The long-range effects of in-frame deletions or other changes in amino acid sequence are probably explained by their disruption of the hairpin structure that is formed by each of the three pro alpha chains in the region containing the cleavage site and that is essential for cleavage of the procollagen molecule by N-proteinase.  相似文献   

20.
M H Finer  H Boedtker  P Doty 《Gene》1987,56(1):71-78
As a first step in isolating the 5' end of the chicken pro alpha 1(I) collagen gene, we constructed cDNA clones complementary to the 5' end of the pro alpha 1(I) mRNA using synthetic oligodeoxynucleotides complementary to a conserved region within the N-terminal telopeptide as primers. cDNA clones corresponding to the 5'-untranslated region, signal peptide, N-propeptide and telopeptide were identified based on homology with the human pro alpha 1(I) collagen protein sequence, and on hybridization to pro alpha 1(I) mRNA on Northern blots. A comparison of the nucleotide sequence of these clones with the sequence of the 5' end of the pro alpha 2(I) collagen mRNA confirms that there is 84% homology in a 49-bp region surrounding the translation start point, and shows that there is 70% homology in the nucleotide sequences encoding the N-propeptide triple helical region of the two type-I collagen chains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号