首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The presence of a nuclear DNA polymerase in mouse sperm from adult testes has been confirmed and the properties of this enzyme further investigated. This activity was shown to be greatly enhanced by treating the spermatozoa with methanol or ethanol before incubation in the reaction medium or by their addition in small amounts to this medium. It was protected against degradation by nuclear proteases by adding soybean trypsin inhibitor and was stimulated by ATP. It was found to be Mg2+ dependent (optimum concentration: 7.5 mM), DNA dependent, and all four deoxynucleoside triphosphates were needed for optimal reaction. The radioactive acid-precipitable product of polymerization was not eliminated by organic solvents, nor by pronase, ribonuclease or by nuclease S1; however, it was converted to a large extent to acid-soluble products by pancreatic deoxyribonuclease. Since it was only partially solubilized by Triton X-100, it therefore did not appear to be preferentially associated with the nuclear membranes. The activity recovered after incubation depended also on the pH (optimum at pH 8.3) and did not work well in a medium for DNA polymerase alpha. The temperature for maximum incorporation of nucleotides was found to be 32 degrees C and, under our conditions, the reaction was linear for 30 min. The DNA polymerase activity was inhibited by low and high concentrations of KCl. It was not lowered by N-ethylmaleimide or p-hydroxymercuribenzoate; urea slightly stimulated the reaction and this stimulation was reversed by subsequent treatment with N-ethylmaleimide. Actinomycin D (40 mug/ml), ethidium bromide (25--50 muM), netropsin (5--50 mug/ml), and spermidine (0.5--2.5 mM) lowered the polymerization of DNA precursors. The nuclear enzyme could shift from the endogenous template to activated exogenous calf thymus DNA, the resulting nuclear radioactivity being reduced. The endogenous DNP template ability was not increased by deoxyribonuclease activation according to the method of Aposhian and Kornberg (J. Biol. Chem. (1962) 237, 519--525) suggesting that the amount of DNA polymerase associated with chromatin was probably limiting the reaction. The DNA polymerase activity detected in mouse sperm nuclei has numerous properties of low molecular weight DNA polymerases (DNA polymerase beta) reported in several eukaryotic organisms.  相似文献   

2.
Bull spermatozoa heads were separated from cytoplasmic contaminants, especially mitochondria-rich middle pieces, by centrifugation through 2.4M-sucrose. DNA polymerase activity was demonstrated by incubating nuclear heads for 1 h at 37 degrees C or for 20 h at room temperature in a medium containing detergent and dithiothreitol or 2-mercaptoethanol. Optimal DNA polymerase activity was detected after extraction in a medium containing 50 mM-borate, pH9, 1 mg of soya-bean trypsin inhibitor/ml and supplemented with either 20 mM-dithiothreitol and 4% Tween 80 or 100mM-2-mercaptoethanol and 10% Tween 80. The DNA polymerase reaction was Mg2+-dependent; Mn2+ or Ca2+ could not replace Mg2+ and all four deoxynucleoside triphosphates were required for optimal activity. The polymerase activity was pH-dependent (optimum between 8.2 and 10.5) and was a function of buffer composition and also of pH values. Optimal activity was obtained with 50 mM-Na+ or 150mM-K+ and was partially lowered by N-ethylmaleimide; it was inhibited by spermidine and by salmon protamines, but was greatly stimulated by calf thymus histones. It was also resistant to actinomycin D, netropsin and ethidium bromide. The present results suggest that bull spermatozoa heads contain a beta-type DNA polymerase activity.  相似文献   

3.
A nuclear DNA-polymerase activity has been detected in situ in mouse spermatozoa with a cytochemical method. The acid-insoluble radioactive product obtained after incubation in a mixture containing all four deoxyribonucleoside 5-triphosphates, Mg++,KCl and dithiothreitol (DTT) was completely removed by DNAse but was insensitive to RNAse and pronase action. The polymerization reaction did not take place in the presence of only one nucleotide and was dramatically reduced when actinomycin D was present; it did not seem to be inhibited markedly by N-ethylmaleimide (NEM) or by parahydroxymercuribenzoate (PHMB) but was sensitive to high concentrations of KCl. — The reaction depended strictly on the presence of nuclear DNA as template since treatment with pancreatic DNAse before the DNA-polymerase assay completely prevented the appearance of any radioactivity.  相似文献   

4.
We have examined the association of DNA polymerase α activity with the nuclear matrix prepared by different techniques from mouse erythroleukemia cells. At variance with the data obtained using other cell types we have found that only a small amount (less than 2%) of nuclear DNA polymerase α activity resisted extraction with high-ionic strength buffers, even if nuclei were heat-stabilized by incubation at 37°C for 45 min prior to subfractionation. The recovery of DNA polymerase α activity bound to the matrix was unaffected by the type of extracting agent used (NaCl or (NH4)2 SO4), by the extraction sequence or by the method employed for obtaining nuclei. These results could indicate that in some types of cells the nuclear matrix is not involved in DNA replication.  相似文献   

5.
Highly purified preparation of DNA polymerases A and B from yeast were compared with respect to antigenic relationship, ability to use ribonucleotide primers and associated nuclease activity. The following results were obtained. 1. Antiserum directed against DNA polymerase A inhibits this enzyme but does not interfere with activity of DNA polymerase B or of mitochondrial DNA polymerase, nor does it precipitate the latter two enzymes. 2. DNA polymerase A is capable of using oligo(ribouridylic acid) as a primer for the polymerization of dTMP. This reaction is not catalyzed by polymerase B to any significant extent. 3. Whereas DNA polymerase A is devoid of nuclease activity, DNA polymerase B catalyses an exonucleolytic release of mononucleotide units from the 3' end of polynucleotides. The results of several experiments suggest that this nuclease activity is associated with the DNA polymerase B molecule.  相似文献   

6.
Several preparations of nuclear matrices containing varying amounts of DNA were obtained from mouse plasmocytoma P3-X63-Ag8.653 cells and tested for the presence of RNA polymerase II activity. It has been demonstrated that about 25% of RNA polymerase II activity detected in the original nuclei can be recovered in isolated nuclear matrices. Only DNA-bound RNA polymerase II was found in the isolated matrices, while both free and DNA-bound RNA polymerase II activities were detected in the original nuclei. RNA polymerase II activity found in the isolated matrices did not depend on the portion of DNA recovered in the nuclear matrices in a large interval between 91 and 1.5% of DNA content in the original nuclei. The conclusion has been drawn that initiated RNA polymerase II molecules are non-randomly distributed along DNA loops. They are concentrated near the points of DNA attachment to the nuclear skeleton.  相似文献   

7.
The localization of DNA polymerases in Xenopus laevis oocytes and eggs was studied. Oocytes have a high level of DNA polymerase alpha activity detected exclusively in the nuclei, while mitochondria contain all the DNA polymerase activity of the gamma type. No DNA polymerase beta activity is present in the nuclear fraction. Moreover, the beta activity is not present in unfertilized eggs. In oocytes, DNA polymerase alpha is weakly bound to the nucleoplasm. The leakage of the enzyme from whole nuclei can be prevented using polyvinylpyrrolidone, a nuclear pore sealing agent.  相似文献   

8.
A DNA polymerase-endogenous template complex was isolated from nuclear heads of bull spermatozoa. The buoyant density of the complex was 1.15 g/cm 3. The sedimentation coefficient of the nuclear DNA polymerase isolated from the complex was higher at low ionic strength, but approached 3.4S when centrifuged in a medium containing 2M-KCl. Activated exogenous DNA increased polymerase activity. Only very low activities were detected with synthetic templates such as poly(A).(dT)12-18 and poly(dT).poly(A). The nuclear reaction was stimulated by 150mM-KCl and was slightly inhibited by N-ethylmaleimide; it was resistant to actinomycin D, netropsin and ethidium bromide. Another DNA polymerase, highly sensitive to ethidium bromide, was extracted from the mitochondira-rich middle-piece fraction. Its sedimentation coefficient was close to 9S, but fell to approx. 4S in high-ionic-strength medium.  相似文献   

9.
Characterization of human poly(ADP-ribose) polymerase with autoantibodies   总被引:7,自引:0,他引:7  
The addition of poly(ADP-ribose) chains to nuclear proteins has been reported to affect DNA repair and DNA synthesis in mammalian cells. The enzyme that mediates this reaction, poly(ADP-ribose) polymerase, requires DNA for catalytic activity and is activated by DNA with strand breaks. Because the catalytic activity of poly(ADP-ribose) polymerase does not necessarily reflect enzyme quantity, little is known about the total cellular poly(ADP-ribose) polymerase content and the rate of its synthesis and degradation. In the present experiments, specific human autoantibodies to poly(ADP-ribose) polymerase and a sensitive immunoblotting technique were used to determine the cellular content of poly(ADP-ribose) polymerase in human lymphocytes. Resting peripheral blood lymphocytes contained 0.5 X 10(6) enzyme copies per cell. After stimulation of the cells by phytohemagglutinin, the poly(ADP-ribose) polymerase content increased before DNA synthesis. During balanced growth, the T lymphoblastoid cell line CEM contained approximately 2 X 10(6) poly(ADP-ribose) polymerase molecules per cell. This value did not vary by more than 2-fold during the cell growth cycle. Similarly, mRNA encoding poly(ADP-ribose) polymerase was detectable throughout S phase. Poly(ADP-ribose) polymerase turned over at a rate equivalent to the average of total cellular proteins. Neither the cellular content nor the turnover rate of poly(ADP-ribose) polymerase changed after the introduction of DNA strand breaks by gamma irradiation. These results show that in lymphoblasts poly(ADP-ribose) polymerase is an abundant nuclear protein that turns over relatively slowly and suggest that most of the enzyme may exist in a catalytically inactive state.  相似文献   

10.
Nuclei were isolated from monolayer cultures of mouse and human cells using a nonaqueous procedure of cell fractionation in which lyophilized cells were homogenized and centrifuged in 100% glycerol. In previous work we have shown that the nuclear pellet and cytoplasmic supernatant fraction contained 10% or less of the nucleic acids characteristic of the other cell fraction. Aqueous extracts made from fresh cultures and from nonaqueous material at each step of the fractionation procedure were assayed fro DNA polymerase activity. Activities were normalized to DNA contents of extracted material. Specific activity was preserved quantitatively through freezing and drying the cells, but was found to be unstable in glycerol suspensions with approximate half-lives and 1 h at 23 degrees and 4 h at 0-4 degrees. Activities were relatively stable at -25 degrees, however, so that by homogenizing only 15 min at 4 degrees and centrifuging at -25 degrees we preserved approximately 85% of the specific activity of fresh cultures in the nonaqueous nuclear fraction. Sedimentation analyses showed that the nuclear fraction contained both DNA polymerase-alpha and-beta in approximately the proportions expected if all polymerase activities were confined to the nucleus in living cells. DNA polymerase-alpha was found to be more unstable in glycerol suspensions than DNA polymerase-beta. Nuclear location of both activities was found in exponential cultures and in 3T3 mouse cultures synchronized in the G1 and S phases of the cell division cycle. We found no evidence for cytoplasmic factors affecting nuclear polymerase activities. We have concluded that the two major DNA polymerases are nuclear although one, DNA polymerase-alpha, frequently is present as a weakly bound nuclear protein.  相似文献   

11.
More than half of the DNA polymerase beta in mouse ascites cell chromatin was found to be associated with monomeric nucleosomal particles (produced by micrococcal nuclease treatment of chromatin). Almost all nuclear DNA polymerase activity in lymphocytes was found to be associated with nucleosomes. The nucleosome-associated enzyme was mainly DNA polymerase beta in chromatin from resting and mainly DNA polymerase alpha in chromatin from concanavalin-A-stimulated lymphocytes.  相似文献   

12.
About 50% of the SV40 DNA in the process of replication (sv40(ri) dna) completed replication in lysates of infected BSC-1 cells by conversion to covalently closed, superhelical SV40 DNA (SV40(I) DNA). Fractionation of the lysate into nuclear and cytoplasmic components blocked 99% of the synthesis of SV40(I) DNA in the purified nuclei. The reconstituted system, made by adding back the cytoplasmic fraction before incubation at 30 degrees, completely restored the in vitro level of SV40(I) DNA synthesis. Preliminary characterization of the activity found in the cytoplasmic fraction suggested it was a soluble, heat-labile protein (or proteins) with a minimum molecular weight of about 30,000 and an active sulfhydryl group. The activity was present in both infected and uninfected monkey cells, and at a lower level in mouse, hamster, and human cell lines. Neither serum starvation nor cycloheximide treatment of cells diminished the activity in the cytoplasmic fraction. Purified cytoplasmic DNA polymerase from KB cells did not substitute for the cytoplasmic fraction which was required for elongation of newly synthesized DNA strands. In the absence of the cytoplasmic fraction, conversion of 4 S DNA into longer strands was inhibited, and SV40(RI) DNA appeared to be broken specifically at the replication forks.  相似文献   

13.
A new gene (POLL) encoding a novel DNA polymerase (Pol lambda) has been identified at mouse chromosome 19. Murine Pol lambda, consisting of 573 amino acid residues, has a 32% identity to Pol beta, involved in nuclear DNA repair in eukaryotic cells. It is interesting that Pol lambda contains all the critical residues involved in DNA binding, nucleotide binding and selection, and catalysis of DNA polymerization, that are conserved in Pol beta and other DNA polymerases belonging to family X. Murine Pol lambda, overproduced in Escherichia coli, displayed intrinsic DNA polymerase activity when assessed by in situ gel analysis. Pol lambda also conserves the critical residues of Pol beta required for its intrinsic deoxyribose phosphate lyase (dRPase) activity. The first 230 amino acid residues of Pol lambda, that have no counterpart in Pol beta, contain a BRCT domain, present in a variety of cell-cycle check-point control proteins responsive to DNA damage and proteins involved in DNA repair. Northern blotting, in situ hybridization analysis and immunostaining showed high levels of Pol lambda specifically expressed in testis, being developmentally regulated and mainly associated to pachytene spermatocytes. These first evidences, although indirect, suggest a potential role of Pol lambda in DNA repair synthesis associated with meiosis.  相似文献   

14.
1. DNA polymerase activity is present in both nuclear and supernatant fractions prepared from rapidly dividing L929 mouse cells. 2. Nuclear preparations are 2-5 times more active with added native DNA as template and the supernatant fractions show an equivalent preference for heat-denatured DNA. 3. Isolated nuclei can carry on limited DNA synthesis in the absence of added template but are stimulated five- to ten-fold by addition of 50mug of native DNA per assay. 4. DNA polymerase activity can be released from intact nuclei by ultrasonic treatment or by extraction with 1.5m-potassium chloride. 5. The activities in nuclear and supernatant fractions, with their preferred templates, respond similarly to changes in pH and Mg(2+) and K(+) concentrations. 6. Maximal enzyme activity is approached with 40mug of DNA per assay and activation of the DNA template by treatment with deoxyribonuclease does not decrease the amount of DNA required to reach saturation. 7. The nuclear enzyme, incubated with native DNA, is markedly inhibited by the addition of heat-denatured DNA to the assay. In contrast, the supernatant DNA polymerase activity on denatured templates is not affected by the presence of native DNA. 8. The nuclear enzyme exhibits high activity in the absence of one or more deoxyribonucleoside triphosphates but this is much diminished after partial purification of the enzyme by precipitation at pH5 and fractionation on Sephadex G-200 columns. 9. The (3)H-labelled DNA products formed by Sephadex-purified nuclear and supernatant fractions, with their preferred templates, were found to be resistant to treatment with exonuclease I. Alkali-denaturation of the (3)H-labelled DNA products rendered them susceptible to attack by exonuclease I. 10. Analysis of the products on alkaline sucrose density gradients suggests that the newly synthesized material may not be covalently bound to the original DNA template. 11. By using their preferred templates the specific activity of supernatant fractions varies markedly with the position of the cells in the cell-cycle, but the specific activity of nuclear fractions varies only slightly.  相似文献   

15.
Ejaculated rabbit spermatozoa washed with buffer prior to decondensation by Triton X-100 and dithiothreitol were good templates for DNA synthesis by Escherichia coli DNA polymerase. This result agrees with the observations of Zirkin and Chang [1977], and implies that the sperm DNA is nicked. Template activity, however, was reduced if spermatozoa were extensively washed before decondensation, and if DNase inhibitors EDTA or Na2SO4 were present during decondensation. Template activity was also low if decondensation was induced with DNase inhibitors thioglycollic acid, Na2SO3 or sodium dodecylsulphate and dithiothreitol instead of with Triton X-100 and dithiothreitol. Calf thymus DNA was completely degraded when incubated with rabbit seminal plasma or buffer-washed spermatozoa, but much less degradation was observed if EDTA, Na2SO4, thioglycollic acid, Na2SO3 or sodium dodecylsulphate were also present, or if spermatozoa were extensively washed with buffer. Centrifugation of spermatozoa through 2.05 M sucrose completely removed contaminating DNase, and such spermatozoa were inactive as DNA templates after decondensation. The DNA template activity of swollen rabbit sperm nuclei thus parallels the activity of a contaminating seminal plasma DNase. This suggest that the nicks in sperm DNA enabling it to act as a template for DNA synthesis were generated by the DNase during decondensation and thus are not a natural structural feature of the DNA. The presence of breaks in the DNA of decondensed buffer-washed spermatozoa (DNase contaminated) was confirmed by their incorporation of phosphate from [γ?32 P] ATP in the presence of the enzyme polynucleotide kinase. These spermatozoa were found to contain as few as two breaks/mole of DNA, but sucrose-washed spermatozoa (DNase free) were free of breaks. The possible use of this enzymic procedure for the assessment of sperm genome damage and the evaluation of the quality of a sperm population are discussed.  相似文献   

16.
A specific inhibitor of DNA polymerase alpha was isolated from the lipid fraction prepared from myxoamoebae of a true slime mold, Physarum polycephalum. The purified substance was subjected to structural studies by fast atom bombardment mass spectroscopy, infrared spectroscopy, and two-dimensional nuclear magnetic resonance spectroscopy. The structure of this substance was thereby suggested to be a novel lysophosphatidic acid (LPA) composed of cyclic phosphate and cyclopropane-containing hexadecanoic acid. Then we named this substance PHYLPA (Physarum LPA). PHYLPA inhibited more than 80% of the affinity-purified calf thymus DNA polymerase alpha activity at a concentration of 10 micrograms/ml (approximately 20 microM). Inhibition was observed for DNA polymerase alpha but not for DNA polymerase beta or gamma from various eukaryotic species, nor did it inhibit DNA polymerase I from E. coli. From kinetic analyses, the inhibition was considered to be caused by the interaction of PHYLPA with the template DNA.  相似文献   

17.
J M Collins  A K Chu 《Biochemistry》1987,26(18):5600-5607
It is well-known that there are multiple forms of DNA polymerase alpha. In order to determine which form(s) is (are) tightly bound, the activities were dissociated from DNA-poor nuclear matrices, with octyl beta-D-glucoside. Sucrose gradient sedimentation analysis revealed three bands with s values of 7.5, 10.5, and 13. The 7.5S form was free of DNA primase and represented only 10% of the total DNA polymerase alpha bound to the nuclear matrix. The 13S and the 10.5S forms each contained DNA primase activity. The 10.5S form comprised 85% of the DNA polymerase alpha activity and 95% of the DNA primase activity, dissociated from the nuclear matrix. Neither temperature of nuclease digestion nor various salt treatments of nuclei had significant effects on the proportions of DNA polymerase alpha and DNA primase activities bound to, or subsequently dissociated from, nuclear matrices. In a comparison of primase activity bound to the nuclear matrix, dissociated from the nuclear matrix, and in the soluble fraction, it was found that the bound activity had a lower ATP dependence, had less KCl inhibition, and was less sensitive to heat, compared to the dissociated and soluble activities. No differences in Mg2+ or pH dependence were noted. The amounts of DNA polymerase alpha and DNA primase activities bound to the nuclear matrix varied over the cell cycle of synchronized cells. Over the S phase, there were two peaks of matrix-bound DNA primase and two peaks of subsequently dissociated DNA polymerase alpha-DNA primase complex.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
By reconstituting lysolecithin-permeabilized hamster cells with endogenous proteins, a protein(s) which stimulated bleomycin-induced DNA repair synthesis was identified. The repair protein was inactivated by proteinase K and had an apparent molecular weight of 12000–15000 D. The following enzymatic activities were not detected in the partially purified DNA repair protein: general endonuclease, apurinic endonuclease, exonuclease, DNA polymerase or DNA polymerase β-stimulating activity. The subcellular location of the DNA repair-stimulating activity was investigated by cytochalasin B enucleation; approx. 80% of the activity was associated with karyoplasts, suggesting a nuclear location. Neither the activity nor subcellular location of the repair protein fluctuated appreciably during the cell cycle, consistent with a physiological role in DNA repair. Although the function of the DNA repair protein is not yet known, this approach should be useful in identifying and characterizing mammalian DNA repair proteins.  相似文献   

19.
DNA polymerase alpha activity was markedly higher in all nuclear subfractions, including nuclear matrix, from transplanted R3230AC mammary adenocarcinomas than in the analogous fractions from mammary gland of same tumor-bearing pregnant or lactating rats. Changes in host lactational status had no significant effect on subnuclear distribution of tumor DNA polymerase alpha activity, with the majority (60-75%) localized in soluble nucleoplasm and a significant amount (13-20%) retained in the nuclear matrix. In the host mammary gland, nuclear matrix-bound DNA polymerase alpha was highest, accounting for 48% of total nuclear activity, during late pregnancy when mammary cells undergo rapid raplication. During lactation, when cells in mammary gland cease to divide, only 8% of enzyme activity was in the nuclear matrix, while the majority (60-80%) of DNA polymerase alpha activity was localized in nucleoplasm. In both R3230AC tumor and mammary gland regardless of host's lactational status, the majority (60-80%) of DNA polymerase beta activity was localized in the high salt-soluble chromatin. These present data thus suggest that, regardless of host lactational status, R3230AC tumor has many cycling cells, each with a large pool of DNA polymerase alpha molecules maintaining maximal and constant replicative activity, while normal mammary gland cells have a smaller pool of DNA polymerase alpha which become primarily matrix-bound only during active cell replication during late pregnancy. A constant localization of nuclear DNA polymerase beta in chromatin in both mammary gland and the tumor suggest it is not important in mammary cell proliferation.  相似文献   

20.
Isolation of the DNA polymerase alpha core enzyme from mouse cells   总被引:2,自引:0,他引:2  
DNA polymerase alpha has been purified from mouse hybridoma cells approximately 30,000-fold using a combination of conventional and high performance liquid chromatography. In contrast to previous characterizations of mammalian DNA polymerase alpha, this enzyme has a single high molecular mass polypeptide (185 kDa) in tight association with a 68-kDa polypeptide and this structure appears to be the core DNA polymerase of the mouse cells. The biochemically purified enzyme, with a specific activity of approximately 200,000 units/mg protein, has an estimated molecular mass by gel filtration chromatography of 240 kDa and sedimentation value of 9 S, consistent with the enzyme being a heterodimer of 185 and 68 kDa. The enzyme is sensitive to both N-ethylmaleimide and aphidicolin and insensitive to ddTTP. Using an activated DNA template, the apparent Km values for the deoxynucleotide triphosphates are approximately 0.5-1 microM. The purified DNA polymerase has neither exonuclease nor primase activities and is the predominant DNA polymerase alpha activity in the mouse cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号