首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 794 毫秒
1.
The posttranslational processing of the asparagine-linked oligosaccharide chain of the major myelin glycoprotein (P0) by Schwann cells was evaluated in the permanently transected, adult rat sciatic nerve, where there is no myelin assembly, and in the crush injured nerve, where there is myelin assembly. Pronase digestion of acrylamide gel slices containing the in vitro labeled [3H]mannose and [3H]fucose P0 after electrophoresis permitted analysis of the glycopeptides by lectin affinity and gel filtration chromatography. The concanavalin A-Separose profile of the [3H]mannose P0 glycopeptides from the transected nerve revealed the high-mannose-type oligosaccharide as the predominant species (72.9%), whereas the normally expressed P0 glycoprotein that is assembled into the myelin membrane in the crushed nerve contains 82.9-91.9% of the [3H]mannose radioactivity as the complex-type oligosaccharide chain. Electrophoretic analysis of immune precipitates verified the [3H]mannose as being incorporated into P0 for both the transected and crushed nerve. The high-mannose-type glycopeptides of the transected nerve isolated from the concanavalin A-Sepharose column were hydrolyzed by endo-beta-N-acetylglucosaminidase H, and the oligosaccharides were separated on Biogel P4. Man8GlcNAc and Man7GlcNAc were the predominant species with radioactivity ratios of 12.5/7.2/1.4/1.0 for the Man8, Man7, Man6, and Man5 oligosaccharides, respectively. Jack bean alpha-D-mannosidase gave the expected yields of free Man and ManGlcNAc from these high-mannose-type oligosaccharides. The data support the notion that at least two alpha-1,2-mannosidases are responsible for converting Man9GlcNAc2 to Man5GlcNAc2. The present experiments suggest distinct roles for each mannosidase and that the second mannosidase (I-B) may be an important rate-limiting step in the processing of this glycoprotein with the resulting accumulation of Man8GlcNAc2 and Man7GlcNAc2 intermediates. Pulse chase experiments, however, demonstrated further processing of this high-mannose-type oligosaccharide in the transected nerve. The [3H]mannose P0 glycoprotein with Mr of 27,700 having the predominant high-mannose-type oligosaccharide shifted its Mr to 28,500 with subsequent chase. This band at 28,500 was shown to have the complex-type oligosaccharide chain and to contain fucose attached to the core asparagine-linked GlcNAc residue. The extent of oligosaccharide processing of this down-regulated glycoprotein remains to be determined.  相似文献   

2.
Permanent nerve transection of the adult rat sciatic nerve forces Schwann cells in the distal nerve segment from a myelin-maintaining to a quiescent state. This transition was followed by serial morphometric evaluation of the percentage fascicular area having myelin (myelin percent of area) in transverse sections of the distal nerve segment and revealed a rapid decline from a normal value of 36.6% to 3.2% by 14 days for the sciatic nerve to less than 1.0% throughout the remaining time course (up to 105 days). No evidence of axonal reentry into the distal nerve segment or new myelin formation was observed at times under 70 days. In some of the distal nerve segments at 70, 90, and 105 days, new myelinated fibers were observed that usually consisted of only a few myelinated fibers at the periphery and in the worst case amounted to 1.6% (myelin percent of area). Radioactive precursor incorporation of [3H]mannose into endoneurial slices at 4 and 7 days after transection revealed two species of the major myelin glycoprotein, P0, with Mr of 28,500 and 27,700. By 14 days after nerve transection, only the 27,700 Mr species remained. Incorporation of [3H]mannose into the 27,700 Mr species increased progressively to 35 days after transection and then began to decline at 70 and 105 days. Alterations in the oligosaccharide structure of this down-regulated myelin glycoprotein accounted for the progressive increase in mannose incorporation. Lectin affinity chromatography of pronase-digested P0 glycopeptides on concanavalin A-Sepharose revealed that the 28,500 Mr species of P0 had the complex-type oligosaccharide as the predominant oligosaccharide structure (92%). In contrast, the high mannose-type oligosaccharide was the predominate structure for the 27,700 Mr form, which increased to 70% of the total radioactivity by 35 days after nerve transection. Since the biosynthesis of the complex-type oligosaccharide chains on glycoproteins involves high mannose-type intermediates, the mechanism of down-regulation in the biosynthesis of this major myelin glycoprotein, therefore, results in a biosynthetic switch from the complex-type oligosaccharide structure as an end product to the predominantly high mannose-type oligosaccharide structure as a biosynthetic intermediate. This biosynthetic switch occurs gradually between 7 and 14 days after nerve transection and likely reflects a decreased rate of processing through the Golgi apparatus. It remains to be determined if the high mannose-type oligosaccharide chain on P0 can undergo additional processing steps in this permanent nerve transection model.  相似文献   

3.
Rat liver synthesizes a glycoprotein with Mr of 80.000 (gp 80) which is partly inserted into the plasma membrane and partly secreted into the serum. The membrane-integrated and the secretory form of this glycoprotein have an identical peptide pattern, but different N-linked glycans. Whereas gp 80 from the serum is glycosylated with complex-type oligosaccharides, gp 80 from the plasma membrane has high mannose glycans. Phase separation with Triton X-114 showed that membrane-integrated gp 80 contains hydrophobic portions, whereas secretory gp 80 has hydrophilic properties. Intracellular transport and oligosaccharide processing of gp 80 were studied in vivo in the endoplasmic reticulum, the Golgi apparatus and plasma membranes of rat liver and in serum using pulse-chase labeling with L-[35S]methionine and immunoprecipitation. Peak labeling of gp 80 was reached in the endoplasmic reticulum 10 min after the pulse, in the Golgi apparatus 20 min later, and in the plasma membrane after 2 h; in the serum the specific radioactivity was steadily increasing during the experiment. Gp 80 of the endoplasmic reticulum was completely sensitive to endo-beta-N-glucosaminidase H (endo H), but simultaneously occurred in the Golgi apparatus in an endo H-sensitive and endo H-resistant form. The endo H-sensitive form was transported to the plasma membrane, the endo H-resistant species secreted into the serum. Conversion from the endo H-sensitive to the endo H-resistant form was completed within 10 min after transfer of gp 80 to the Golgi apparatus.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Previous studies have suggested that neonatal Schwann cell cultures deprived of axonal contact do not express components of the myelin membrane, including the major myelin glycoprotein, P0. In contrast, Schwann cells from permanently transected, adult nerve exhibit continued biosynthesis of P0 after culture, suggesting that the ability to express the myelin glycoprotein may depend on the degree of cellular differentiation. To examine further the ability of Schwann cell cultures to express P0 as a function of age, we have performed precursor incorporation studies on endoneurial explants from 4- to 12-day-old rat sciatic nerves after 5 days in culture. The data reveal that explants from 12-day-old animals synthesize detectable levels of this integral myelin protein when assayed by [3H]mannose incorporation, even though there is no apparent myelin assembly in the cultures. Pulse-chase analysis of cultures from 12-day-old rats demonstrates that [3H]mannose-labeled P0 is substantially degraded within 3 h. This catabolism largely can be prevented by the addition of swainsonine, ammonium chloride, or L-methionine methyl ester to the pulse-chase media. The former agent alters oligosaccharide processing whereas the latter two compounds inhibit lysosomal function. The P0 synthesized by the 12-day explant cultures following the addition of swainsonine is readily fucosylated, implying that the protein has progressed at least as far as the medial Golgi before its exit and subsequent catabolism. If cultures from 4-, 6-, and 8-day-old animals are analyzed for P0 biosynthesis by [3H]mannose incorporation in the presence of swainsonine, detectable levels of the glycoprotein are seen.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Treatment of the W7MG1 mouse T lymphoma cell line with glucocorticoid stimulates directly or indirectly two observable steps in the processing of mouse mammary tumor virus (MMTV) envelope glycoprotein precursor Pr74: cleavage of Pr74 to yield the mature glycoprotein products gp52 and gp33, and processing of the N-linked oligosaccharides to endoglycosidase H (endo H)-resistant forms found on the mature products but not on the precursor. Therefore, the primary hormone-regulated event in this pathway must occur at or before the point where MMTV envelope proteins become endo H resistant. Pulse-chase analyses identified a novel endo H-resistant 80-kDa species (designated gp80) as a processing intermediate. Therefore, in contrast to conclusions drawn for the envelope proteins of several other retroviruses, proteolytic cleavage of MMTV envelope proteins occurs after acquisition of endo H resistance. Also, proteolytic cleavage cannot be the primary hormone-regulated step. Second, inhibition of mannosidase II by the drug swainsonine did not prevent Pr74 from being proteolytically processed, thus demonstrating that conversion of oligosaccharide chains from endo H-sensitive to -resistant forms was not a prerequisite for proteolytic cleavage. Therefore, the requisite hormone-regulated event in MMTV glycoprotein processing must precede both acquisition of endo H resistance and proteolytic cleavage. This places the regulated event in the endoplasmic reticulum or early Golgi.  相似文献   

6.
Schwann cell biosynthesis of the major myelin glycoprotein, P0, was investigated in the crush-injured adult rat sciatic nerve, where there is myelin assembly, and in the permanently transected nerve, where there is no myelin assembly. Endoneurial fractions from desheathed rat sciatic nerves distal to the crush were compared with similar fractions from the permanently transected nerves at 7, 14, 21, 28, and 35 days after injury. The Schwann cell expression of this asparagine-linked glycoprotein was evaluated after sodium dodecyl sulfate-pore gradient electrophoresis by Coomassie Blue and silver stain and by autoradiography after direct overlay of radioiodinated lectins [wheat germ agglutinin, gorse agglutinin, and concanavalin A (Con A)]. As evaluated by these parameters, the concentration of P0 after crush decreased and subsequently increased as a function of time after injury, corresponding to the events of demyelination and remyelination. After permanent transection, the P0 concentration decreased following the same time course found after crush. At subsequent time points, P0 could not be detected with Coomassie Blue stain, silver stain, or wheat germ agglutinin. Both gorse agglutinin and Con A, however, showed binding to P0. Radioactive precursor incorporation studies with [3H]fucose or [3H]-mannose into endoneurial slices at 35 days posttransection revealed active oligosaccharide processing of P0 glycoprotein by Schwann cells in this permanent transection model. Compared with other Schwann cell glycoproteins in the transected nerve, the highest level of incorporation of [3H]mannose was found in P0 which accounted for 42.7% of the incorporated label. In contrast, incorporation of [3H]mannose into endoneurial slices at 35 days after crush accounted for only 13.3% in P0. In addition, higher levels of Con A binding were observed in P0 in the transected nerve compared with the contralateral control or the crushed nerve. Both the [3H]fucose incorporation and gorse agglutinin binding to P0 in the transected nerve suggest posttranslational processing of this glycoprotein in the Golgi apparatus; however, the absence of wheat germ agglutinin binding, the high level of mannose incorporation, and the high level of binding by Con A imply that additional processing steps are required prior to its assembly into myelin.  相似文献   

7.
The proposed structural protein of peripheral nerve myelin, P0, has been shown to have several covalent modifications. In addition to being glycosylated, sulfated, and acylated, P0 is phosphorylated, with the intracellular site of this latter addition being in question. By employing nerve injury models that exhibit different levels of P0 biosynthesis in the absence and presence of myelin assembly, we have examined the cellular location of P0 phosphorylation. It is demonstrated that there is comparable P0 phosphorylation in both normal and crush-injured adult rat sciatic nerves, although the level of biosynthesis of P0 differs between these myelin maintaining and actively myelinating nerve models, respectively. The glycoprotein does not appear to be phosphorylated readily in the transected adult sciatic nerve, a preparation in which P0 biosynthesis is observed but that lacks myelin membrane. These observations suggest that the modification is not associated with the biosynthesis or maturation of P0 in the endoplasmic reticulum or Golgi, but that it instead occurs after myelin assembly. That P0 phosphorylation occurs in the normal nerve even when translation is inhibited by cycloheximide treatment lends further support to this conclusion. P0 is shown to be phosphorylated on one or more serine residues, with all or most of the phosphate group(s) being labile as evidenced by pulse-chase analysis. Addition of a biologically active phorbol ester, 12-O-tetradecanoylphorbol-13-acetate or 4 beta-phorbol 12,13-dibutyrate, substantially increases the extent of [32P]orthophosphate incorporation into the glycoprotein of normal and crushed nerve but not transected nerve. Biologically inactive 4 alpha-phorbol 12,13-didecanoate has no effect on P0 phosphorylation. Similarly, the addition of the cyclic AMP analog 8-bromo-cyclic AMP causes no appreciable changes in P0 labeling. These findings indicate that the phorbol ester-sensitive enzyme, protein kinase C, may be responsible for the phosphorylation of P0 within the myelin membrane.  相似文献   

8.
Four inhibitors of oligosaccharide processing were used to investigate their effects on the transport of PNS myelin glycoproteins through the secretory pathway, as well as to gain further insight into the structure of the oligosaccharide chains of the P0 and 19-kDa glycoproteins. Several different inhibitors of oligosaccharide processing were incubated with chopped peripheral nerves from young rats (21-24 days of age) and the uptake of 14C-amino acid and [3H]fucose or [3H]mannose was measured in P0 and the 19-kDa glycoprotein after separation of homogenate and myelin proteins on polyacrylamide gels. [3H]Mannose was not found as suitable as [3H]fucose as an oligosaccharide precursor because glucose used as an energy source profoundly inhibited the uptake of [3H]mannose. The substitution of pyruvate as an energy source, however, resulted in incomplete glycosylation, poor amino acid uptake, and truncated oligosaccharide chains. Endoglycosidase H cleaved approximately 50% of the P0 labeled with [3H]fucose and 14C-amino acid. The lower molecular weight protein resulting from endoglycosidase H cleavage contained approximately one-half the [3H]fucose label on the protein, whereas one-half remained on the oligosaccharide chain of the undegraded P0, indicating that at least one-half the P0 has a hybrid structure. Deoxynojirimycin, deoxymannojirimycin, and castanospermine inhibited incorporation of [3H]fucose into the oligosaccharide chains of P0 and the 19-kDa glycoprotein as predicted from their action in blocking various stages of trimming of high mannose structures before the addition of fucose. P0 synthesized in the presence of these inhibitors was cleaved to a greater extent by endoglycosidase H than the normal protein, indicating increased vulnerability to this enzyme with arrest of normal processing. Similar results were obtained for the 19-kDa glycoprotein. Both the incompletely processed P0 and the 19-kDa glycoprotein formed in the presence of these inhibitors appeared to be transported normally into myelin.  相似文献   

9.
Human adipose tissues from the abdomen (subcutaneous), thigh (subcutaneous) and omentum were incubated for 2 h with [35S]methionine. Then glycosylation of lipoprotein lipase (LPL) was analyzed by sodium dodecylsulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of endoglycosidase H (endo H)-digested subunits of the 35S-labeled lipase. Adipose tissues from the abdomen, thigh, and omentum all synthesized LPL subunits with Mr = 57,000 composed of two types of subunits. One type was partially endo H-sensitive yielding a product with Mr = 55,000, indicating that it had one endo H-resistant and one endo H-sensitive oligosaccharide chain. The other type of subunit was totally endo H-sensitive yielding a product with Mr = 52,000. Subcutaneous adipose tissues contained nearly equal amounts of partially and totally endo H-sensitive subunits of LPL, whereas omental adipose tissues contained mainly partially endo H-sensitive subunits of LPL.  相似文献   

10.
Methodology is presented for the isolation of integral membrane proteins and applied to the purification of the major myelin glycoprotein, P0. This isolation scheme depends on the detergent solubilization of an isoosmotically extracted membrane fraction from sciatic nerve endoneurium, followed by the removal of lipids and detergent by chloroform/methanol extraction. The resulting membrane proteins are readily dissolved in acetic acid/water (1/1) and directly analyzed by reversed-phase high-performance liquid chromatography. The hydrophobic nature of the intrinsic membrane protein mixture results in strong binding to a C8 stationary phase, leading to poor resolution and yields. These problems can be eliminated by employing a C3 alkylsilane column, thereby allowing separation of the protein components and the isolation of P0. The purified P0 has an amino-terminal sequence that matches that predicted from nucleotide sequencing, and the glycoprotein contains the expected amount of sialic acid. This latter finding indicates that the isolation procedure is not detrimental to the complex-type oligosaccharide structure of P0 and should make the methodology readily applicable to the purification of other integral membrane proteins and glycoproteins.  相似文献   

11.
The enzyme UDP-N-acetylglucosamine: dolichyl phosphate, N-acetylglucosamine-1-phosphate transferase initiates the synthesis of the oligosaccharide chain of complex-type glycoproteins. In view of the high content of glycoprotein in peripheral nerve myelin, the properties of this enzyme, its changes with age, and the effect of the specific inhibitor tunicamycin were investigated. The enzyme activity in rat peripheral nerve homogenate was completely dependent on the presence of exogenous dolichyl phosphate as well as Mg2+ and a detergent (Triton X-100) and was also greatly stimulated by a high salt concentration (0.4 M KCl) and AMP. The highest specific activity was present in the postmitochondrial membranes. The specific activity in postmitochondrial membranes in the presence of exogenous dolichyl phosphate reached a maximum at 17 days and remained relatively high throughout development, up to 2 years of age, but the activity was much lower when dolichyl phosphate was not added. This indicates that the enzyme level does not decrease with age, but that the content of the lipid cofactor may limit glycoprotein synthesis in vivo. Tunicamycin (5 micrograms) was injected intraneurally into 24-day-old rat sciatic nerve, and the enzyme was assayed from 1 to 24 days after injection. The specific activity of the transferase remained at low levels (5-40% of the level in control nerve) in most injected nerves assayed throughout this postinjection period. A protein previously identified as the unglycosylated P0 protein was synthesized in vitro by the tunicamycin-injected nerve and could be demonstrated to be incorporated into myelin in large amounts at 2 days and in small amounts at 6 days after injection.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
13.
The effect of castanospermine (CSTP), an inhibitor of glucosidase I, on processing, activity, and secretion of lipoprotein lipase was studied in 3T3-L1 adipocytes. Processing was analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of endoglycosidase H (endo H)-digested subunits of lipoprotein lipase from cells incubated 1-2 h with [35S]methionine. Lipoprotein lipase in untreated cells consisted of two groups of subunits, M(r) = 55,000-58,000 and M(r) = 53,000-55,000. The heavier subunits were endo H-resistant, whereas the others were either totally or partially endo H-sensitive. The lipase secreted by untreated cells contained primarily endo H-resistant subunits. Immunofluorescent studies showed that lipoprotein lipase accumulated in Golgi in untreated cells. CSTP, 100 micrograms/ml for 18 h, decreased intracellular lipase activity by 80% and decreased secretion of lipase activity by 91%. Most of the lipase subunits in CSTP-treated cells were totally endo H-sensitive with M(r) = 57,000, some were partially endo H-sensitive, and a trace was endo-H resistant. Totally endo H-sensitive subunits in CSTP-treated cells had a M(r) 2,000-4,000 larger than that in untreated cells, indicating impaired trimming of sugar residues from oligosaccharide chains of the lipase in CSTP-treated cells. The small amount of lipase secreted by CSTP-treated cells consisted primarily of partially endo H-sensitive subunits, with one sensitive and one resistant chain per subunit. Immunofluorescent studies showed that lipoprotein lipase was excluded from Golgi in CSTP-treated cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Rats (14 days old) were injected with [14c]fucose and young adult rats with [3H]fucose in order to label the myelin-associated glycoproteins. As previously reported, the major [14C]fucose-labelled glycoprotein in the immature myelin had a higher apparent molecular weight on sodium dodecyl sulphate/polyacrylamide gels that the [3H]fucose-labelled glycoprotein in mature myelin. This predominant doubly labelled glycoprotein component was partially purified by preparative gel electrophoresis and converted to glycopeptides by extensive Pronase digestion. Gel filtration on Sephadex G-50 separated the glycopeptides into several clases, which were designted A,B, C AND D, from high to low molecular weight. The 14C-labelled glycopeptides from immature myeline were enriched in the highest-molecular-weight class A relative to the 3H-labelled glycopeptides from mature myelin. Neuraminidase treatment of the glycoprotein before Pronase digestion greatly decreased the proportion of glycopeptides fractionating in the higher-molecular-weight classes and largely eliminated the developmental differences that were apparent by gel filtration. However, neuraminidase treatment did not decrease the magnitude of the developmental difference revealed by electrophoresing the intact glycoprotein on sodium dodecyl sulphate gels, although it did decrease the apparent molecular weight of the glycoprotein from both the 15-day-old and adult rats by an amount comparable in magnitude to that developmental difference. The results from gel filtration of glycopeptides indicate that there is a higher content of large molecular weight, sialic acid-rich oligosaccharide units in the glycoprotein of immature myelin. However, the higher apparent molecular weight for the glycoprotein from 15-day-old rats on sodium dodcyl sulphate gels is not due primarily to its higher sialic acid content.  相似文献   

15.
The extent of involvement of carbohydrate structures in the mechanism of action of alpha and beta-interferon (IFN-alpha, IFN-beta) is undefined. In this report we examine the role of complex-type N-linked oligosaccharides in the response to these interferons. The response of mouse leukemia L 1210S cells, grown in the presence of swainsonine, an inhibitor of Golgi mannosidase II [Tulsiani, D. R. P., Harris, T. M. and Touster, O. (1982) J. Biol. Chem. 257, 7936-7939; Elbein A. D., Solf, R., Dorling, P. R. and Vosbeck, K. (1981) Proc. Natl Acad. Sci. USA 78, 7393-7397], to mouse IFN-alpha/beta, both with respect to antiviral and antigrowth effects, remains intact in spite of the total absence of complex-type N-linked oligosaccharides. Also, there is no difference in the response to human IFN-beta of a parental Chinese hamster ovary cell line and a mutant lacking beta-N-acetylglucosaminyltransferase I and therefore unable to synthesize complex-type N-linked oligosaccharides [Stanley, P., Callibot, V. and Siminovitch, L. (1975) Cell 6, 121-128]. These results are significant in permitting the conclusion that the carbohydrate-specific binding of IFN-alpha and IFN-beta to gangliosides cannot be due to a similarity of the ganglioside carbohydrate to that of a glycoprotein containing a complex-type N-liked oligosaccharide.  相似文献   

16.
Abstract: Glycoproteins from central nervous system myelin were evaluated for developmental alterations in their carbohydrate composition by autoradiographic analysis of radioiodinated lectin binding after separation by high-resolution sodium dodecyl sulfate-pore gradient slab gel electrophoresis (SDS-PGE). Sixteen lectin-binding components were assessed in highly purified myelin preparations from 15-day, 18-day, and adult rat brains, using the lectins Triticum vulgaris (wheat germ agglutinin) and Ulex europeus (gorse agglutinin I). Developmental changes in lectin binding for individual glycoproteins were evaluated semiquantitatively by comparing densitometric scans of the auto radiographs. Both increases and decreases in lectin binding for individual components were observed as a consequence of development, as well as the appearance and disappearance of lectin binding to three low-molecular-weight components. No changes in electrophoretic mobility and hence glycoprotein molecular weight were observed in any components when using these lectins. These developmental changes in lectin binding suggest that increases in glycoprotein (receptor) density occur, as well as an elaboration of oligosaccharide branching for individual glycoproteins. In addition, the appearance of a new glycoprotein in the adult myelin membrane could imply a new functional role not present in the immature membrane. These observations suggest that dynamic alterations of myelin-associated glycoproteins occur during development. Such developmental regulation of membrane glycoproteins increases the significance of their potential role in myelination and myelin maintenance.  相似文献   

17.
The carbohydrate structures present on the glycoproteins in the central and peripheral nerve systems are essential in many cell adhesion processes. The P0 glycoprotein, expressed by myelinating Schwann cells, plays an important role during the formation and maintenance of myelin, and it is the most abundant constituent of myelin. Using monoclonal antibodies, the homophilic binding of the P0 glycoprotein was shown to be mediated via the human natural keller cell (HNK)-1 epitope (3-O-SO(3)H-GlcUA(beta1-3)Gal(beta1-4)GlcNAc) present on the N-glycans. We recently described the structure of the N-glycan carrying the HNK-1 epitope, present on bovine peripheral myelin P0 (Voshol, H., van Zuylen, C. W. E. M., Orberger, G., Vliegenthart, J. F. G., and Schachner, M. (1996) J. Biol. Chem. 271, 22957-22960). In this study, we report on the structural characterization of the detectable glycoforms, present on the single N-glycosylation site, using state-of-the-art NMR and mass spectrometry techniques. Even though all structures belong to the hybrid- or biantennary complex-type structures, the variety of epitopes is remarkable. In addition to the 3-O-sulfate present on the HNK-1-carrying structures, most of the glycans contain a 6-O-sulfated N-acetylglucosamine residue. This indicates the activity of a 6-O-sulfo-GlcNAc-transferase, which has not been described before in peripheral nervous tissue. The presence of the disialo-, galactosyl-, and 6-O-sulfosialyl-Lewis X epitopes provides evidence for glycosyltransferase activities not detected until now. The finding of such an epitope diversity triggers questions related to their function and whether events, previously attributed merely to the HNK-1 epitope, could be mediated by the structures described here.  相似文献   

18.
Heterologous gene expression in either (1) the glycosylation-defective, mutant Chinese hamster ovary cell line, Lec3.2.8.1, or (2) the presence of the alpha-glucosidase inhibitor, N-butyldeoxynojirimycin facilitates the trimming of N-linked glycans of glycoproteins to single N-acetylglucosamine (GlcNAc) residues with endoglycosidase H (endo H). Both approaches are somewhat inefficient, however, with as little as 12% of the total protein being rendered fully endo H-sensitive under these conditions. It is shown here that the combined effects of these approaches on the restriction of oligosaccharide processing are essentially additive, thereby allowing the production of glycoproteins that are essentially completely endo H-sensitive. The preparation of a soluble chimeric form of CD58, the ligand of the human T-cell surface recognition molecule CD2, illustrates the usefulness of the combined approach when expression levels are low or the deglycosylated protein is unstable at low pH. The endo H-treated chimera produced crystals of space group P3(1)21 or P3(2)21, and unit cell dimensions a = b = 116.4 A, c = 51.4 A alpha = beta = 90 degrees , gamma = 120 degrees , that diffract to a maximum resolution of 1.8 A.  相似文献   

19.
Synthesis and processing of cellulase from ripening avocado fruit   总被引:7,自引:3,他引:4       下载免费PDF全文
The biosynthesis and processing of cellulase from ripening avocado fruit was studied. The mature protein is a glycoprotein, as judged by concanavalin A binding, with a molecular weight of 54,200. Upon complete deglycosylation by treatment with trifluoromethane sulfonic acid the mature protein has a molecular weight of 52,800 whereas the immunoprecipitated in vitro translation product has a molecular weight of 54,000. This result indicates that cellulase is synthesized as a large molecular weight precursor, which presumably possesses a short-lived signal peptide. A membrane-associated and heavily glycosylated form of the protein was also identified. This putative secretory precursor was enzymically active and the carbohydrate side chains were sensitive to endoglycosidase H cleavage. Results of partial endoglycosidase H digestion suggest that this precursor form of the mature glycoprotein possesses two high-mannose oligosaccharide side chains. The oligosaccharide chains of the mature protein were insensitive to endoglycosidase H cleavage, indicating that transport of the membrane-associated cellulase to the cell wall was accompanied by modification of the oligosaccharide side chains. The presence of a large pool of endoglycosidase H-sensitive membrane-associated cellulase (relative to an endoglycosidase H-insensitive form) suggest that transit of this protein through the Golgi is rapid relative to transit through the endoplasmic reticulum.  相似文献   

20.
Combined lipase deficiency (cld) is a recessive mutation which causes a severe deficiency of lipoprotein lipase and hepatic lipase activities and lethal hypertriacylglycerolemia within 3 days in newborn mice. The effect of this genetic defect on lipoprotein lipase was studied in primary cultures of brown adipocytes derived from tissue of newborn mice. Cells cultured from cld/cld mice replicated, accumulated triacylglycerol, and differentiated into adipocytes at normal rates. Lipoprotein lipase activity in unaffected cells was detectable on Day 0 of confluence and increased to 1.3 units/mg DNA by Day 6, while that in cld/cld cells was less than 4% of that in unaffected cells on Days 4-6. Unaffected cells released 1.2% of their lipase activity in 30 min in the absence of heparin, and 11% in 10 min in the presence of heparin, whereas cld/cld cells released no lipase activity. cld/cld cells contained 2-3 times as much lipoprotein lipase protein as unaffected cells, and released no lipase protein to the medium. Immunofluorescent lipoprotein lipase was not detectable in unaffected adipocytes unless lipase secretion was blocked with monesin, causing retention of the lipase in Golgi. cld/cld adipocytes, in contrast, contained immunofluorescent lipoprotein lipase distributed in a diffuse reticular pattern, indicating retention of lipase in endoplasmic reticulum. Lipoprotein lipase immunoprecipitated from cells incubated 1-3 h with [35S]methionine was digested with or without endoglycosidase H (endo H) or F, and resolved by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Lipoprotein lipase in unaffected cells (Mr = 56,000-58,000) consisted of three glycosylated forms, of which the most prevalent was endo H-resistant, the next was totally endo H-sensitive, and the least was partially endo H-sensitive. In contrast, lipoprotein lipase in cld/cld cells (Mr = 56,000) consisted of a single, totally endo H-sensitive form. Lipoprotein lipase in both groups of cells contained two oligosaccharide chains. Chromatography studies with heparin-Sepharose indicated that at least some of the lipoprotein lipase in cld/cld cells was dimerized. The findings demonstrate that brown adipocytes cultured from cld/cld mice synthesize lipoprotein lipase with two high mannose oligosaccharide chains, but it is inactive and retained in endoplasmic reticulum. Whether the cld mutation affects primarily processing of oligosaccharide chains of lipoprotein lipase in endoplasmic reticulum, transport of the lipase from the reticulum, or some other process, is to be resolved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号