首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.

Background

Streptococcus pneumoniae is a major pathogen responsible of important diseases worldwide such as pneumonia and meningitis. An increasing resistance level hampers the use of currently available antibiotics to treat pneumococcal diseases. Consequently, it is desirable to find new targets for the development of novel antimicrobial drugs to treat pneumococcal infections. Surface choline-binding proteins (CBPs) are essential in bacterial physiology and infectivity. In this sense, esters of bicyclic amines (EBAs) such as atropine and ipratropium have been previously described to act as choline analogs and effectively compete with teichoic acids on binding to CBPs, consequently preventing in vitro pneumococcal growth, altering cell morphology and reducing cell viability.

Methods

With the aim of gaining a deeper insight into the structural determinants of the strong interaction between CBPs and EBAs, the three-dimensional structures of choline-binding protein F (CbpF), one of the most abundant proteins in the pneumococcal cell wall, complexed with atropine and ipratropium, have been obtained.

Results

The choline analogs bound both to the carboxy-terminal module, involved in cell wall binding, and, unexpectedly, also to the amino-terminal module, that possesses a regulatory role in pneumococcal autolysis.

Conclusions

Analysis of the complexes confirmed the importance of the tropic acid moiety of the EBAs on the strength of the binding, through π–π interactions with aromatic residues in the binding site.

General significance

These results represent the first example describing the molecular basis of the inhibition of CBPs by EBA molecules and pave the way for the development of new generations of antipneumococcal drugs.  相似文献   

2.
Ceragenin CSA-13, a cationic steroid, is here reported to show a concentration-dependent bactericidal/bacteriolytic activity against pathogenic streptococci, including multidrug-resistant Streptococcus pneumoniae. The autolysis promoted by CSA-13 in pneumococcal cultures appears to be due to the triggering of the major S. pneumoniae autolysin LytA, an N-acetylmuramoyl-L-alanine amidase. CSA-13 also disintegrated pneumococcal biofilms in a very efficient manner, although at concentrations slightly higher than those required for bactericidal activity on planktonic bacteria. CSA-13 has little hemolytic activity which should allow testing its antibacterial efficacy in animal models.  相似文献   

3.
Streptococcus pneumoniae (pneumococcus) forms organized biofilms to persist in the human nasopharynx. This persistence allows the pneumococcus to produce severe diseases such as pneumonia, otitis media, bacteremia and meningitis that kill nearly a million children every year. While bacteremia and meningitis are mediated by planktonic pneumococci, biofilm structures are present during pneumonia and otitis media. The global emergence of S. pneumoniae strains resistant to most commonly prescribed antibiotics warrants further discovery of alternative therapeutics. The present study assessed the antimicrobial potential of a plant extract, 220D-F2, rich in ellagic acid, and ellagic acid derivatives, against S. pneumoniae planktonic cells and biofilm structures. Our studies first demonstrate that, when inoculated together with planktonic cultures, 220D-F2 inhibited the formation of pneumococcal biofilms in a dose-dependent manner. As measured by bacterial counts and a LIVE/DEAD bacterial viability assay, 100 and 200 µg/ml of 220D-F2 had significant bactericidal activity against pneumococcal planktonic cultures as early as 3 h post-inoculation. Quantitative MIC’s, whether quantified by qPCR or dilution and plating, showed that 80 µg/ml of 220D-F2 completely eradicated overnight cultures of planktonic pneumococci, including antibiotic resistant strains. When preformed pneumococcal biofilms were challenged with 220D-F2, it significantly reduced the population of biofilms 3 h post-inoculation. Minimum biofilm inhibitory concentration (MBIC)50 was obtained incubating biofilms with 100 µg/ml of 220D-F2 for 3 h and 6 h of incubation. 220D-F2 also significantly reduced the population of pneumococcal biofilms formed on human pharyngeal cells. Our results demonstrate potential therapeutic applications of 220D-F2 to both kill planktonic pneumococcal cells and disrupt pneumococcal biofilms.  相似文献   

4.
Streptococcus pneumoniae persist in the human nasopharynx within organized biofilms. However, expansion to other tissues may cause severe infections such as pneumonia, otitis media, bacteremia, and meningitis, especially in children and the elderly. Bacteria within biofilms possess increased tolerance to antibiotics and are able to resist host defense systems. Bacteria within biofilms exhibit different physiology, metabolism, and gene expression profiles than planktonic cells. These differences underscore the need to identify alternative therapeutic targets and novel antimicrobial compounds that are effective against pneumococcal biofilms. In bacteria, DNA adenine methyltransferase (Dam) alters pathogenic gene expression and catalyzes the methylation of adenine in the DNA duplex and of macromolecules during the activated methyl cycle (AMC). In pneumococci, AMC is involved in the biosynthesis of quorum sensing molecules that regulate competence and biofilm formation. In this study, we examine the effect of a small molecule Dam inhibitor, pyrimidinedione, on Streptococcus pneumoniae biofilm formation and evaluate the changes in global gene expression within biofilms via microarray analysis. The effects of pyrimidinedione on in vitro biofilms were studied using a static microtiter plate assay, and the architecture of the biofilms was viewed using confocal and scanning electron microscopy. The cytotoxicity of pyrimidinedione was tested on a human middle ear epithelium cell line by CCK-8. In situ oligonucleotide microarray was used to compare the global gene expression of Streptococcus pneumoniae D39 within biofilms grown in the presence and absence of pyrimidinedione. Real-time RT-PCR was used to study gene expression. Pyrimidinedione inhibits pneumococcal biofilm growth in vitro in a concentration-dependent manner, but it does not inhibit planktonic cell growth. Confocal microscopy analysis revealed the absence of organized biofilms, where cell-clumps were scattered and attached to the bottom of the plate when cells were grown in the presence of pyrimidinedione. Scanning electron microscopy analysis demonstrated the absence of an extracellular polysaccharide matrix in pyrimidinedione-grown biofilms compared to control-biofilms. Pyrimidinedione also significantly inhibited MRSA, MSSA, and Staphylococcus epidermidis biofilm growth in vitro. Furthermore, pyrimidinedione does not exhibit eukaryotic cell toxicity. In a microarray analysis, 56 genes were significantly up-regulated and 204 genes were significantly down-regulated. Genes involved in galactose metabolism were exclusively up-regulated in pyrimidinedione-grown biofilms. Genes related to DNA replication, cell division and the cell cycle, pathogenesis, phosphate-specific transport, signal transduction, fatty acid biosynthesis, protein folding, homeostasis, competence, and biofilm formation were down regulated in pyrimidinedione-grown biofilms. This study demonstrated that the small molecule Dam inhibitor, pyrimidinedione, inhibits pneumococcal biofilm growth in vitro at concentrations that do not inhibit planktonic cell growth and down regulates important metabolic-, virulence-, competence-, and biofilm-related genes. The identification of a small molecule (pyrimidinedione) with S. pneumoniae biofilm-inhibiting capabilities has potential for the development of new compounds that prevent biofilm formation.  相似文献   

5.
Streptococcus pneumoniae is an important pathogen that causes otitis media, pneumonia, meningitis and bacteremia. As an important virulence factors of S. pneumoniae, pneumolysin (PLY) can penetrate cell membranes and lead to cell lysis and inflammation, which is one of the main causes of infection and damage of S. pneumoniae. Therefore, using pneumolysin as a target to study its inhibitors can provide a new treatment strategy for pneumococcal disease. This study analyzed the inhibitory effect of the natural compound hederagenin on PLY in vitro. The results show that hederagenin has great potential as a new strategy for the treatment of pneumococcal diseases.  相似文献   

6.
Microbial biofilms have become increasingly problematic in the food processing and medical industries where they cause food and surface contamination. Biofilms have also been implicated as the cause of serious infections in humans as their occurrence makes it difficult to treat common infections and the likelihood of recurrent infections is high. Due to emerging resistance, conventional control methods are fast becoming ineffective. In this study, the use of a selection of commercial plant extracts is investigated. The inhibitory effects of eight herbal extracts on the development of microbial biofilms was investigated against clinical and reference strains of Pseudomonas aeruginosa and Candida albicans. The antimicrobial activity was investigated on the planktonic forms using the minimum inhibitory concentration assay. The extracts that showed the highest antimicrobial activity against the two test organisms were Echinacea angustifolia (cone flower), Mentha piperita (peppermint) and Rosmarinus officinalis (rosemary) with minimum inhibitory concentration values between 0.38 and 2.5 mg/ml. The crystal violet assay was used to assess the effect of pre-treating a surface with plant extracts on cell attachment and the extent of biofilm development following exposure to extracts (biofilm biomass). Most of the extracts reduced microbial colonization by at least 50%. In contrast, preformed biofilms were less responsive to the majority of extracts, thus growth inhibition was more difficult to achieve. Mentha piperita was the only extract that showed some antibiofilm activity against both pathogens.  相似文献   

7.
Promoter-probe and terminator-probe plasmid vectors make possible to rapidly examine whether particular sequences function as promoter or terminator signals in various genetic backgrounds and under diverse environmental stimuli. At present, such plasmid-based genetic tools are very scarce in the Gram-positive pathogenic bacteria Streptococcus pneumoniae and Enterococcus faecalis. Hence, we developed novel promoter-probe and terminator-probe vectors based on the Streptococcus agalactiae pMV158 plasmid, which replicates autonomously in numerous Gram-positive bacteria. As reporter gene, a gfp allele encoding a variant of the green fluorescent protein was used. These genetic tools were shown to be suitable to assess the activity of promoters and terminators (both homologous and heterologous) in S. pneumoniae and E. faecalis. In addition, the promoter-probe vector was shown to be a valuable tool for the analysis of regulated promoters in vivo, such as the promoter of the pneumococcal fuculose kinase gene. These new plasmid vectors will be very useful for the experimental verification of predicted promoter and terminator sequences, as well as for the construction of new inducible-expression vectors. Given the promiscuity exhibited by the pMV158 replicon, these vectors could be used in a variety of Gram-positive bacteria.  相似文献   

8.
Streptococcus mitis is the closest relative of the major human pathogen S. pneumoniae. The 2,15 Mb sequence of the Streptococcus mitis B6 chromosome, an unusually high-level beta-lactam resistant and multiple antibiotic resistant strain, has now been determined to encode 2100 genes. The accessory genome is estimated to represent over 40%, including 75 mostly novel transposases and IS, the prophage φB6 and another seven phage related regions. Tetracycline resistance mediated by Tn5801, and an unusual and large gene cluster containing three aminoglycoside resistance determinants have not been described in other Streptococcus spp. Comparative genomic analyses including hybridization experiments on a S. mitis B6 specific microarray reveal that individual S. mitis strains are almost as distantly related to the B6 strain as S. pneumoniae. Both species share a core of over 900 genes. Most proteins described as pneumococcal virulence factors are present in S. mitis B6, but the three choline binding proteins PcpA, PspA and PspC, and three gene clusters containing the hyaluronidase gene, ply and lytA, and the capsular genes are absent in S. mitis B6 and other S. mitis as well and confirm their importance for the pathogenetic potential of S. pneumoniae. Despite the close relatedness between the two species, the S. mitis B6 genome reveals a striking X-alignment when compared with S. pneumoniae.  相似文献   

9.
We previously reported that Klebsiella pneumoniae MGH78578 exhibited higher resistance against various antimicrobials than K. pneumoniae ATCC10031. In this study, we showed that the plasmid, pKPN5, in K. pneumoniae MGH78578 played an important role in resistance against aminoglycosides, ampicillin, tetracycline, and chloramphenicol, while genome-derived β-lactamases and drug efflux pumps appeared to be more important in resistance to cloxacillin. acrAB, encoding a potent multidrug efflux pump, was cloned from K. pneumoniae MGH78578 and ATCC10031, to investigate reasons for the high drug resistance of K. pneumoniae MGH78578, and the results revealed that AcrAB from K. pneumoniae ATCC10031 conferred weaker drug resistance than AcrAB from K. pneumoniae MGH78578. DNA sequencing revealed that acrB from K. pneumoniae ATCC10031 carried the nonsense mutation, UGA, which was not found in acrB from K. pneumoniae MGH78578. However, acrB from K. pneumoniae ATCC10031 conferred slightly elevated resistant levels to several antimicrobials. The intact length of AcrB was detected in K. pneumoniae ATCC10031 by Western blot analysis, even though its quantity was small. Therefore, the stop codon UGA in acrB was thought to be overcome to some extent in this strain. We artificially introduced the nonsense mutation, UGA to the cat gene on pACYC184, and the plasmid also elevated the MIC of chloramphenicol in K. pneumoniae ATCC10031. These results suggest that a mechanism to overcome the nonsense mutation in acrB sustained resistance against a few β-lactams, dyes, and cholic acid in K. pneumoniae ATCC10031.  相似文献   

10.

Background

Since the use of pneumococcal conjugate vaccines PCV7 and PCV13 in children became widespread, invasive pneumococcal disease (IPD) has dramatically decreased. Nevertheless, there has been a rise in incidence of Streptococcus pneumoniae non-vaccine serotypes (NVT) colonising the human nasopharynx. Nasopharyngeal colonisation, an essential step in the development of S. pneumoniae-induced IPD, is associated with biofilm formation. Although the capsule is the main pneumococcal virulence factor, the formation of pneumococcal biofilms might, in fact, be limited by the presence of capsular polysaccharide (CPS).

Methodology/Principal Findings

We used clinical isolates of 16 emerging, non-PCV13 serotypes as well as isogenic transformants of the same serotypes. The biofilm formation capacity of isogenic transformants expressing CPSs from NVT was evaluated in vitro to ascertain whether this trait can be used to predict the emergence of NVT. Fourteen out of 16 NVT analysed were not good biofilm formers, presumably because of the presence of CPS. In contrast, serotypes 11A and 35B formed ≥45% of the biofilm produced by the non-encapsulated M11 strain.

Conclusions/Significance

This study suggest that emerging, NVT serotypes 11A and 35B deserve a close surveillance.  相似文献   

11.
During bacteremia Streptococcus pneumoniae can translocate across the vascular endothelium into the myocardium and form discrete bacteria-filled microscopic lesions (microlesions) that are remarkable due to the absence of infiltrating immune cells. Due to their release of cardiotoxic products, S. pneumoniae within microlesions are thought to contribute to the heart failure that is frequently observed during fulminate invasive pneumococcal disease in adults. Herein is demonstrated a protocol for experimental mouse infection that leads to reproducible cardiac microlesion formation within 30 hr. Instruction is provided on microlesion identification in hematoxylin & eosin stained heart sections and the morphological distinctions between early and late microlesions are highlighted. Instruction is provided on a protocol for verification of S. pneumoniae within microlesions using antibodies against pneumococcal capsular polysaccharide and immunofluorescent microscopy. Last, a protocol for antibiotic intervention that rescues infected mice and for the detection and assessment of scar formation in the hearts of convalescent mice is provided. Together, these protocols will facilitate the investigation of the molecular mechanisms underlying pneumococcal cardiac invasion, cardiomyocyte death, cardiac remodeling as a result of exposure to S. pneumoniae, and the immune response to the pneumococci in the heart.  相似文献   

12.
BackgroundThe worldwide emergence of antibiotic resistance represents a serious medical threat. The ability of these resistant pathogens to form biofilms that are highly tolerant to antibiotics further aggravates the situation and leads to recurring infections. Thus, new therapeutic approaches that adopt novel mechanisms of action are urgently needed. To address this significant problem, we conjugated the antibiotic kanamycin with a novel antimicrobial peptide (P14LRR) to develop a kanamycin peptide conjugate (P14KanS).MethodsAntibacterial activities were evaluated in vitro and in vivo using a Caenorhabditis elegans model. Additionally, the mechanism of action, antibiofilm activity and anti-inflammatory effect of P14KanS were investigated.ResultsP14KanS exhibited potent antimicrobial activity against ESKAPE pathogens. P14KanS demonstrated a ≥ 128-fold improvement in MIC relative to kanamycin against kanamycin-resistant strains. Mechanistic studies confirmed that P14KanS exerts its antibacterial effect by selectively disrupting the bacterial cell membrane. Unlike many antibiotics, P14KanS demonstrated rapid bactericidal activity against stationary phases of both Gram-positive and Gram-negative pathogens. Moreover, P14KanS was superior in disrupting adherent bacterial biofilms and in killing intracellular pathogens as compared to conventional antibiotics. Furthermore, P14KanS demonstrated potent anti-inflammatory activity via the suppression of LPS-induced proinflammatory cytokines. Finally, P14KanS protected C. elegans from lethal infections of both Gram-positive and Gram-negative pathogens.ConclusionsThe potent in vitro and in vivo activity of P14KanS warrants further investigation as a potential therapeutic agent for bacterial infections.General significanceThis study demonstrates that equipping kanamycin with an antimicrobial peptide is a promising method to tackle bacterial biofilms and address bacterial resistance to aminoglycosides.  相似文献   

13.
Fucose metabolism pathways are present in many bacterial species and typically contain the central fucose-processing enzymes fucose isomerase (FcsI), fuculose kinase (FcsK), and fuculose-1-phosphate aldolase (FcsA). Fucose initially undergoes isomerization by FcsI producing fuculose, which is then phosphorylated by FcsK. FcsA cleaves the fuculose-1-phosphate product into lactaldehyde and dihydroxyacetone phosphate, which can be incorporated into central metabolism allowing the bacterium to use fucose as an energy source. Streptococcus pneumoniae has fucose-processing operons containing homologs of FcsI, FcsK, and FcsA; however, this bacterium appears unable to utilize fucose as an energy source. To investigate this contradiction, we performed biochemical and structural studies of the S. pneumoniae fucose-processing enzymes SpFcsI, SpFcsK, and SpFcsA. These enzymes are demonstrated to act in a sequential manner to ultimately produce dihydroxyacetone phosphate and have structural features entirely consistent with their observed biochemical activities. Analogous to the regulation of the Escherichia coli fucose utilization operon, fuculose-1-phosphate appears to act as an inducing molecule for activation of the S. pneumoniae fucose operon. Despite our evidence that S. pneumoniae appears to have the appropriate regulatory and biochemical machinery for fucose metabolism, we confirmed the inability of the S. pneumoniae TIGR4 strain to grow on fucose or on the H-disaccharide, which is the probable substrate of the transporter for the pathway. On the basis of these observations, we postulate that the S. pneumoniae fucose-processing pathway has a non-metabolic role in the interaction of this bacterium with its human host.  相似文献   

14.
Streptococcus pneumoniae is an important cause of bacterial meningitis and pneumonia but usually colonizes the human nasopharynx harmlessly. As this niche is simultaneously populated by other bacterial species, we looked for a role and pathway of communication between pneumococci and other species. This paper shows that two proteins of non-encapsulated S. pneumoniae, AliB-like ORF 1 and ORF 2, bind specifically to peptides matching other species resulting in changes in the pneumococci. AliB-like ORF 1 binds specifically peptide SETTFGRDFN, matching 50S ribosomal subunit protein L4 of Enterobacteriaceae, and facilitates upregulation of competence for genetic transformation. AliB-like ORF 2 binds specifically peptides containing sequence FPPQS, matching proteins of Prevotella species common in healthy human nasopharyngeal microbiota. We found that AliB-like ORF 2 mediates the early phase of nasopharyngeal colonization in vivo. The ability of S. pneumoniae to bind and respond to peptides of other bacterial species occupying the same host niche may play a key role in adaptation to its environment and in interspecies communication. These findings reveal a completely new concept of pneumococcal interspecies communication which may have implications for communication between other bacterial species and for future interventional therapeutics.  相似文献   

15.
In the human host, Streptococcus pneumoniae encounters a variety of glycoconjugates, including mucin, host defense molecules, and glycans associated with the epithelial surface. S. pneumoniae is known to encode a number of glycosidases that may modify these glycoconjugates in vivo. Three exoglycosidases, a neuraminidase (NanA), β-galactosidase (BgaA), and N-acetylglucosaminidase (StrH), have been previously demonstrated to sequentially deglycosylate N-linked glycans on host defense molecules, which coat the pneumococcal surface in vivo. This cleavage is proposed to alter the clearance function of these molecules, allowing pneumococci to persist in the airway. However, we propose that the exoglycosidase-dependent liberation of monosaccharides from these glycoconjugates in close proximity to the pneumococcal surface provides S. pneumoniae with a convenient source of fermentable carbohydrate in vivo. In this study, we demonstrate that S. pneumoniae is able to utilize complex N-linked human glycoconjugates as a sole source of carbon to sustain growth and that efficient growth is dependent upon the sequential deglycosylation of the glycoconjugate substrate by pneumococcal exoglycosidases. In addition to demonstrating a role for NanA, BgaA, and StrH, we have identified a function for the second pneumococcal neuraminidase, NanB, in the deglycosylation of host glycoconjugates and have demonstrated that NanB activity can partially compensate for the loss or dysfunction of NanA. To date, all known functions of pneumococcal neuraminidase have been attributed to NanA. Thus, this study describes the first proposed role for NanB by which it may contribute to S. pneumoniae colonization and pathogenesis.  相似文献   

16.
17.
Sialidases are key virulence factors that remove sialic acid from host cell surface glycans, thus unmasking receptors to facilitate bacterial adherence and colonization. In this study, we report the isolation and characterization of novel inhibitors of the Streptococcus pneumoniae sialidases NanA, NanB, and NanC from Myristica fragrans seeds. Of the isolated compounds (112), malabaricone C showed the most pneumococcal sialidases inhibition (IC50 of 0.3 μM for NanA, 3.6 μM for NanB, and 2.9 μM for NanC). These results suggested that malabaricone C and neolignans could be potential agents for combating S. pneumoniae infection agents.  相似文献   

18.
With the introduction of the pneumococcal conjugate vaccine (PCV), the number of cases of non-vaccine type pneumococci and non-encapsulated Streptococcus pneumoniae (NESp) infection have increased. In order to clarify how pspK-harbouring NESp might have emerged, we characterised NESp and analysed the correlation between transformation and non-encapsulation. A total of 26 NESp strains were used in this study. The genetic backgrounds were compared using multilocus sequence typing (MLST). The ΔpspK::ermB strain, in which pspK was replaced by ermB in NESp, was constructed by homologous recombination. The genomic DNA of the ΔpspK::ermB strain was transformed into two types of encapsulated S. pneumoniae via transformation. The fitness of the parent and non-encapsulated transformants was compared using the growth curve. All NESp had pspK instead of capsular coding regions and were classified into 14 types by MLST, which indicated that NESp had several genetic backgrounds. Transformation of ΔpspK::ermB genomic DNA resulted in 10−4‒10−5 non-encapsulated transformants. Non-encapsulated transformants could grow faster than the encapsulated parent strain. The acquisition of pspK region via transformation contributed to the loss of encapsulation with high frequency. The present results suggest that non-encapsulation through pspK acquisition could be a potential mechanism to evade PCV.  相似文献   

19.
Co-infections with pathogens and secondary bacterial infections play significant roles during the pandemic coronavirus disease 2019 (COVID-19) pathogenetic process, caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Notably, co-infections with Streptococcus pneumoniae (S. pneumoniae), as a major Gram-positive pathogen causing pneumonia or meningitis, severely threaten the diagnosis, therapy, and prognosis of COVID-19 worldwide. Accumulating evidences have emerged indicating that S. pneumoniae evolves multiple virulence factors, including pneumolysin (PLY) and sortase A (SrtA), which have been extensively explored as alternative anti-infection targets. In our study, natural flavonoid kaempferol was identified as a potential candidate drug for infection therapeutics via anti-virulence mechanisms. We found that kaempferol could interfere with the pore-forming activity of PLY by engaging with catalytic active sites and consequently inhibit PLY-mediated cytotoxicity. Additionally, exposed to kaempferol significantly reduced the SrtA peptidase activity by occupying the active sites of SrtA. Further, the biofilms formation and bacterial adhesion to the host cells could be significantly thwarted by kaempferol incubation. In vivo infection model by S. pneumoniae highlighted that kaempferol oral administration exhibited notable treatment benefits, as evidenced by decreased bacterial burden, suggesting that kaempferol has tremendous potential to attenuate S. pneumoniae pathogenicity. Scientifically, our study implies that kaempferol is a promising therapeutic option by targeting bacterial virulence factors.  相似文献   

20.
Streptococcus pneumoniae causes a series of devastating infections in humans. Previous studies have shown that the endo-β-N-acetylglucosaminidase LytB is critical for pneumococcal cell division and nasal colonization, but the biochemical mechanism of LytB action remains unknown. Here we report the 1.65 Å crystal structure of the catalytic domain (residues Lys-375–Asp-658) of LytB (termed LytBCAT), excluding the choline binding domain. LytBCAT consists of three structurally independent modules: SH3b, WW, and GH73. These modules form a “T-shaped” pocket that accommodates a putative tetrasaccharide-pentapeptide substrate of peptidoglycan. Structural comparison and simulation revealed that the GH73 module of LytB harbors the active site, including the catalytic residue Glu-564. In vitro assays of hydrolytic activity indicated that LytB prefers the peptidoglycan from the lytB-deficient pneumococci, suggesting the existence of a specific substrate of LytB in the immature peptidoglycan. Combined with in vitro cell-dispersing and in vivo cell separation assays, we demonstrated that all three modules are necessary for the optimal activity of LytB. Further functional analysis showed that the full catalytic activity of LytB is required for pneumococcal adhesion to and invasion into human lung epithelial cells. Structure-based alignment indicated that the unique modular organization of LytB is highly conserved in its orthologs from Streptococcus mitis group and Gemella species. These findings provided structural insights into the pneumococcal cell wall remodeling and novel hints for the rational design of therapeutic agents against pneumococcal growth and thereby the related diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号