首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Etioplast membranes were solubilized with 1 mM Triton X-100in the presence of excess NADPH and protochlorophyllide to isolateNADPH:protochlorophyllide oxidoreductase. The activity of thisreductase was assayed as the formation of chlorophyllide bya single flash and was equivalent to the amount of photoactiveprotochlorophyllide-NADPH-enzyme complex present before illumination.The rate of regeneration of the phtoactive complex was estimatedfrom the time course of chlorophyllide formation under a longflash. The highest rate was 651 nmol chlorophyllide formed min–1mg–1 protein. Photoconversion of protochlorophyllide to chlorophyllide andregeneration of the photoactive protochlorophyllide-NADPH-enzymecomplex were not much affected in a pH range from 6 to 8, atleast for several minutes. The apparent dissociation constantsof the photoactive complex were 0.039 µM for protochlorophyllideand 0.44 µM for NADPH. Triton-solubilized etioplast membraneswere fractionated by glycerol density gradient centrifugationto isolate the NADPH:protochlorophyllide oxidoreductase. Mostof the 36,000-dalton protein, the major protein of the prolamellarbody was recovered in the fraction enriched by NADPH:protochlorophyllideoxidoreductase and protochlorophyllide. Protochlorophyll andcarotenoids were present in different fractions. This is evidencethat the 36,000-dalton protein has the activity of NADPH:protochlorophyllideoxidoreductase and specifically binds protochlorophyllide. Themost highly purified fraction of the enzyme showed an activityof 7.8 nmol chiorophyllide formed flash–1 mg–1 proteinand bound 11.1 nmol protochlorophyllide mg–1 of protein. (Received April 28, 1982; Accepted June 29, 1982)  相似文献   

2.
The biosynthetic chain leading from 5-aminolevulinic acid to chlorophyll is localised to the plastid. Many of the enzymes are nuclear-encoded. NADPH-protochlorophyllide oxidoreductase (EC 1.3.1.33) is one such enzyme which is encoded by two different genes and can exist in an A and a B form. Its import into the plastid seems to be facilitated when protochlorophyllide is present in the chloroplast envelope. Within the plastid the reductase is assembled to thylakoids or prolamellar bodies. The specific properties of the reductase together with the specific properties of the lipids present in the etioplast inner membranes promote the formation of the three-dimensional regular network of the prolamellar bodies. The reductase forms a ternary complex with protochlorophyllide and NADPH that gives rise to different spectral forms of protochlorophyllide. Light transforms protochlorophyllide into chlorophyllide and this photoreaction induces a conformational change in the reductase protein which leads to a process of disaggregation of enzyme, pigment aggregates and membranes, which can be followed spectroscopically and with electron microscopy. The newly formed chlorophyllide is esterified by a membrane-bound nuclear-encoded chlorophyll synthase and the chlorophyll molecule is then associated with proteins into active pigment protein complexes in the photosynthetic machinery.  相似文献   

3.
The molecular background of Hg (2+)-induced inhibition of protochlorophyllide (Pchlide) photoreduction was investigated in homogenates of dark-grown wheat leaves. Our earlier work showed that 15 min incubation with 10 (-2) M Hg (2+) completely inhibits the activity of NADPH : Pchlide oxidoreductase ( ). Detailed analysis of spectra recorded at 10 K indicated the appearance of emission bands at 638 and 650 nm, which are characteristic for NADP (+)-Pchlide complexes. Fluorescence emission spectra recorded with different excitation wavelengths, fluorescence lifetime measurements and the analysis of acetone extractions revealed that Hg (2+) can also react directly with Pchlide, resulting in protopheophorbide formation. At 10 (-3) M Hg (2+), the phototransformation was complete but the blue shift of the chlorophyllide emission band speeded up remarkably. This indicates oxidation of the NADPH molecules that have a structural role in keeping together the etioplast inner membrane components. We suggest a complex model for the Hg (2+) effect: depending on concentration it can react with any components of the NADPH : Pchlide oxidoreductase macrodomains.  相似文献   

4.
Barley (Hordeum vulgare L.) etioplasts were isolated, and the pigments were extracted with acetone. The extract was analyzed by HPLC. Only protochlorophyllide a and no protochlorophyllide b was detected (limit of detection < 1% of protochlorophyllide a). Protochlorophyllide b was synthesized starting from chlorophyll b and incubated with etioplast membranes and NADPH. In the light, photoconversion to chlorophyllide b was observed, apparently catalyzed by NADPH :protochlorophyllide oxidoreductase. In darkness, reduction of the analogue zinc protopheophorbide b to zinc 7-hydroxy-protopheophorbide a was observed, apparently catalyzed by chlorophyll b reductase. We conclude that protochlorophyllide b does not occur in detectable amounts in etioplasts, and even traces of it as the free pigment are metabolically unstable. Thus the direct experimental evidence contradicts the idea by Reinbothe et al. (Nature 397 (1999) 80-84) of a protochlorophyllide b-containing light-harvesting complex in barley etioplasts.  相似文献   

5.
The effects of modulated ADP/ATP and NADPH/NADP+ ratios, and of protein kinase inhibitors, on the in vitro reformation of phototransformable protochlorophyllide, i.e. the aggregated ternary complexes between NADPH, protochlorophyllide, and NADPH-protochlorophyllide oxidoreductase (POR, EC 1.3.1.33), in etioplast membranes isolated from dark-grown wheat (Triticum aestivum) were investigated. Low temperature fluorescence emission spectra (–196 °C) were used to determine the state of the pigments. The presence of spectral intermediates of protochlorophyllide and the reformation of phototransformable protochlorophyllide were reduced at high ATP, but favoured by high ADP. Increased ADP level partly prevented the chlorophyllide blue-shift. The protein kinase inhibitor K252a prevented reformation of phototransformable protochlorophyllide without showing any effect on the chlorophyllide blue-shift. Addition of NADPH did not overcome the inhibition. The results indicate that protein phosphorylation plays a role in the conversion of the non-phototransformable protochlorophyllide to POR-associated phototransformable protochlorophyllide. The possible presence of a plastid ADP-dependent kinase, the activity of which favours the formation of PLBs, is discussed. Reversible protein phosphorylation is suggested as a regulatory mechanism in the prolamellar body formation and its light-dependent dispersal by affecting the membrane association of POR. By the presence of a high concentration of phototransformable protochlorophyllide, prolamellar bodies can act as light sensors for plastid development. The modulation of plastid protein kinase and protein phosphatase activities by the NADPH/NADP+ ratio is suggested. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

6.
The primary stages of protochlorophyllide phototransformation in an artificially formed complex containing heterologously expressed photoenzyme protochlorophyllide-oxidoreductase (POR), protochlorophyllide, and NADPH were investigated by optical and ESR spectroscopy. An ESR signal (g = 2.002; H = 1 mT) appeared after illumination of the complex with intense white light at 77 K. The ESR signal appeared with simultaneous quenching of the initial protochlorophyllide fluorescence, this being due to the formation of a primary non-fluorescent intermediate. The ESR signal disappeared on raising the temperature to 253 K, and a new fluorescence maximum at 695 nm belonging to chlorophyllide simultaneously appeared. The data show that the mechanism of protochlorophyllide photoreduction in the complex is practically identical to the in vivo mechanism: this includes the formation of a short-lived non-fluorescent free radical that is transformed into chlorophyllide in a dark reaction.  相似文献   

7.
Two-d-old leaves which do not contain prolamellar bodies synthesizeactive protochlorophyllide in darkness. When protochlorophyllideis photoreduced by one intense white flash, a main chlorophyllidespecies emitting at 690 nm is formed. After the photoreduction,the emission maximum is shifted to 675 nm within 5s. This resultsuggests that in young leaves, chlorophyllide formed after oneflash is quickly released from the active site of NADPH: protochlorophyllideoxidoreductase. This interpretation is strenghtened by time-resolvedfluorescence measurements at room temperature, showing that675 nm emitting chlorophyllide does not transfer excitationenergy to the 696 nm emitting chlorophyllide which is formedin very low amount. In 10-d-old bean leaves, the 690 nm chlorophyllideemitting species formed after one short flash undergoes thewellknown rapid and Shibata spectral shifts. The 675 nm emittingchlorophyllide appears only as a shoulder. At both ages, thefluorescence intensity of the active protochlorophyllide stronglydecreases during and after photoreduction, suggesting rapidmodifications in the close environment of the pigment. Key words: Bean, chlorophyllide, etioplast, proplastid, protochlorophyllide  相似文献   

8.
An in vitro translation system using lysed etioplasts was developed to test if the accumulation of plastid-encoded chlorophyll a apoproteins is dependent on the de novo synthesis of chlorophyll a. The P700 apoproteins, CP47 and CP43, were not radiolabeled in pulsechase translation assays employing lysed etioplasts in the absence of added chlorophyll precursors. When chlorophyllide a plus phytylpyrophosphate were added to lysed etioplast translation assays in the dark, chlorophyll a was synthesized and radiolabeled P700 apoproteins, CP47 and CP43, and a protein which comigrates with D1 accumulated. Chlorophyllide a or phytylpyrophosphate added separately to the translation assay in darkness did not induce chlorophyll a formation or chlorophyll a apoprotein accumulation. Chlorophyll a formation and chlorophyll a apoprotein accumulation were also induced in the lysed etioplast translation system by the photoreduction of protochlorophyllide to chlorophyllide a in the presence of exogenous phytylpyrophosphate. Accumulation of radiolabeled CP47 was detectable when very low levels of chlorophyll a were synthesized de novo (less than 0.01 nmol/10(7) plastids), and radiolabel increased linearly with increasing de novo chlorophyll a formation. Higher levels of de novo synthesized chlorophyll a were required prior to detection of radiolabel incorporation into the P700 apoproteins and CP43 (greater than 0.01 nmol/10(7) plastids). Radiolabel incorporation into the P700 apoproteins, CP47 and CP43, saturated at a chlorophyll a concentration which corresponds to 50% of the etioplast protochlorophyllide content (0.06 nmol of chlorophyll a/10(7) plastids).  相似文献   

9.
Pigment-protein complexes of illuminated etiolated leaves   总被引:9,自引:4,他引:5       下载免费PDF全文
Photoconversion of protochlorophyllide in etiolated leaves of Avena sativa L., var. Pennal or Peniarth and Phaseolus vulgare L., var. `The Prince' results in the sequential appearance of spectrally distinct chlorophyllide complexes (Chlide 678, 684, and 672). This paper reports on the generation of similar forms in vitro, under controlled conditions, using well characterized etioplast membranes enriched in the enzyme protochlorophyllide reductase. Excess NADP+ and NADPH stabilize complexes related to Chlide 678 and Chlide 684, respectively, whereas addition of exogenous Pchlide induces formation of a species related to Chlide 672. Evidence is provided to support the suggestion that Chlide 678 and Chlide 684 represent ternary complexes of the enzyme protochlorophyllide reductase, with Chlide and either NADP+ (Chlide 678) or NADPH (Chlide 684). Chlide 672 is seen as `free' pigment dissociated from the enzyme. The role of Pchlide in this dissociation, observed spectroscopically as the `Shibata shift,' is discussed.  相似文献   

10.
The photoconversion of protochlorophyllide to chlorophyllide in etiolated bean leaves or leaf extracts exhibits complicated kinetics that are neither simple first-order nor second-order with respect to the reactant. By comparing the chlorophyllide absorbance with the intensity of chlorophyllide fluorescence excited at wavelengths where both pigments absorb, we demonstrate that the kinetic complexity results from the transfer of electronic excitation from protochlorophyllide to chlorophyllide. Measurements of the polarization of chlorophyllide fluorescence indicate that efficient excitation transfer occurs at room temperature over pigment aggregates containing at least four molecules. The relative quantum efficiency of chlorophyllide-excited chlorophyllide fluorescence remains constant during photoconversion of holochrome or etioplast preparations. This result does not support the proposal of increasing exciton interaction between chlorophyllides during the course of photoconversion.  相似文献   

11.
The photochemical activity of NADPH:protochlorophyllide oxidoreductase (POR) was studied in etiolated wheat (Triticum aestivum, L., cult. MV17) leaf homogenates. The kinetics of the transformation of protochlorophyllide into chlorophyllide was detected by fluorescence intensity changes at 690 nm (formation of chlorophyllide) and 655 nm (decay of protochlorophyllide) at 20 degrees C, excited at 440 nm while the pressure was varied between 0.1 and 400 MPa. Both kinetics could be fitted by two exponentials and the reaction rates were pressure-dependent. A model was suggested based on the comparison of the two kinetics. Reaction rates of the processes occurring during the prototransformation were determined in function of pressure. The evaluation yielded the activation volume as 1.7 ml mol(-1), which corresponds with the formation of one H-bond/molecule.  相似文献   

12.
1. Chlorophyll (ide) formation from protochlorophyll (ide) that is normally inactive was demonstrated in etioplast membranes isolated from maize and barlley plants, the process being dependent on intermittent illumination and the addition of NADPH. 2. The addition of NADPH to the membranes was shown to result in the conversion of inactive protochlorophyll (ide) absorbing at about 630 nm into a form(s) with light-absorption maxima at about 640 and 652 nm, both of which disappear when chlorophyll (ide) is formed on illumination. 3. The temperature-dependence of the activation process and its response to a variety of reagents were examined. From these, the conclusion is drawn that -SH groups are involved in the activation but in the active complex these are unavailable for reaction with -SH reagents. 4. Evidence is presented for the occurrence of glucose 6-phosphate dehydrogenase activity within etioplasts and the suggestion is made that the oxidative pentose phosphate pathway can provide the NADPH required for chlorophyll biosynthesis during the early stages of greening.  相似文献   

13.
R Parham  C A Rebeiz 《Biochemistry》1992,31(36):8460-8464
Some properties of [4-vinyl] chlorophyllide a reductase are described. This enzyme converts divinyl chlorophyllide a to monovinyl chlorophyllide a. The latter is the immediate precursor of monovinyl chlorophyll a, the main chlorophyll in green plants. [4-Vinyl] chlorophyllide a reductase plays an important role in daylight during the conversion of divinyl protochlorophyllide a to monovinyl chlorophyll a. [4-Vinyl] chlorophyllide a reductase was detected in isolated plastid membranes. Its activity is strictly dependent on the availability of NADPH. Other reductants such as NADH and GSH were ineffective. The enzyme appears to be specific for divinyl chlorophyllide a, and it does not reduce divinyl protochlorophyllide a to monovinyl protochlorophyllide a. The conversion of divinyl protochlorophyllide a to monovinyl protochlorophyllide a has been demonstrated in barley and cucumber etiochloroplasts and appears to be catalyzed by a [4-vinyl] protochlorophyllide a reductase [Tripathy, B.C., & Rebeiz, C.A. (1988) Plant Physiol. 87, 89-94]. On the basis of reductant requirements and substrate specificity, it is possible that two different 4-vinyl reductases may be involved in the reduction of divinyl protochlorophyllide a and divinyl chlorophyllide a to their respective 4-ethyl analogues.  相似文献   

14.
This review summarizes contemporary data on structure and function of photoactive pigment--enzyme complexes of the chlorophyll precursor that undergoes photochemical transformation to chlorophyllide. The properties and functions of the complex and its principal components are considered including the pigment (protochlorophyllide), the hydrogen donor (NADPH), and the photoenzyme protochlorophyllide oxidoreductase (POR) that catalyzes the photochemical production of chlorophyllide. Chemical variants of the chlorophyll precursor are described (protochlorophyllide, protochlorophyll, and their mono- and divinyl forms). The nature and photochemical activity of spectrally distinct native protochlorophyllide forms are discussed. Data are presented on structural organization of the photoenzyme POR, its substrate specificity, localization in etioplasts, and heterogeneity. The significance of different POR forms (PORA, PORB, and PORC) in adaptation of chlorophyll biosynthesis to various illumination conditions is considered. Attention is paid to structural and functional interactions of three main constituents of the photoactive complex and to possible existence of additional components associated with the pigment-enzyme complex. Historical aspects of the problem and the prospects of further investigations are outlined.  相似文献   

15.
The etioplast plastid type of dark-grown angiosperms is defined by the accumulation of the chlorophyll (Chl) precursor protochlorophyllide (Pchlide) and the presence of the paracrystalline prolamellar body (PLB) membrane. Both features correlate with the presence of NADPH:Pchlide oxidoreductase (POR), a light-dependent enzyme that reduces photoactive Pchlide-F655 to chlorophyllide and plays a key role in chloroplast differentiation during greening. Two differentially expressed and regulated POR enzymes, PORA and PORB, have recently been discovered in angiosperms. To investigate the hypothesis that etioplast differentiation requires PORA, we have constitutively overexpressed PORA and PORB in the Arabidopsis wild type and in the constitutive photomorphogenic cop1-18 (previously det340) mutant, which is deficient in the PLB and Pchlide-F655. In both genetic backgrounds, POR overexpression increased PLB size, the ratio of Pchlide-F655 to nonphotoactive Pchl[ide]-F632, and the amount of Pchlide-F655. Dramatically, restoration of either PORA or PORB to the cop1 mutant led to the formation of etioplasts containing an extensive PLB and large amounts of photoactive Pchlide-F655.  相似文献   

16.
Low-temperature fluorescence emission spectra of epicotyls of 6.5-day-old dark-grown seedlings of pea ( Pisum sativum L.) showed the dominance of short-wavelength protoch lorophyllide forms with emission maxima at 629 and 636 nm, respectively. The presence of long-wavelength protochlorophyllide with emission maxima around 650 nm was just detectable. Accordingly, irradiation with millisecond flashes gave a minute formation of chlorophyllide. The chlorophyll(ide) formation varied along the epicotyl. Irradiation with continuous light for 1.5 h resulted in an evident accumulation of chlorophyll(ide) in the upper part of the epicotyl. Only small amounts accumulated in the middle section. The conversion of protochlorophyllide to chlorophyllide was temperature dependent and almost arrested at 0°C. The chlorophyll(ide) formed had one dominating fluorescence peak at 681 nm. Irradiation for 24 h gave almost 100 times more chlorophyll in the upper part of the epicotyl than in the lower part. Electron micrographs from the upper part of the epicotyl irradiated for 6 h showed plastids with several developing thylakoids, while the plastids in the lower part of the epicotyl had only a few thylakoids. The dominance of short-wavelength protochlorophyllide forms indicated the presence of protochlorophyllide not bound to the active site of NADPH-protochlorophyllide oxidoreductase (EC 1.3.1.33). The inability of the short-wavelength form to transform into chlorophyllide with flash light denotes a dislocation from the active site. The time and temperature dependence of the chlorophyll(ide) formation in continuous light indicates that a relocation is required of the short-wavelength protochlorophyllide before chlorophyllide formation can occur.  相似文献   

17.
In Arabidopsis thaliana Por C has been identified only on sequence homology to that of por A and por B. To demonstrate its catalytic function Arabidopsis thaliana protochlorophyllide oxidoreductase C gene (por c) that codes for the mature part of POR C protein having 335 amino acids was expressed in Escherchia coli cells. The POR C enzyme in the presence of NADPH and protochlorophyllide when incubated in dark formed a ternary complex. When it was excited at 433 nm, it had a fluorescence emission peak at 636 nm. After illumination with actinic cool white fluorescent light, a peak at 673 nm due to chlorophyllide gradually increased with concomitant decrease of 636 nm emission, demonstrating the gradual phototransformation of protochlorophyllide to chlorophyllide. The significance of differential por gene expression in light and dark among different species is discussed.  相似文献   

18.
Klement H  Oster U  Rüdiger W 《FEBS letters》2000,480(2-3):306-310
Dark-grown angiosperm seedlings lack chlorophylls, but accumulate protochlorophyllide a complexed with the light-dependent enzyme NADPH:protochlorophyllide oxidoreductase. Previous investigators correlated spectral heterogeneity of in vivo protochlorophyllide forms and a shift of chlorophyllide forms from 680 to 672 nm (Shibata shift) occurring after irradiation, with intact membrane structures which are destroyed by solubilization. We demonstrate here that the various protochlorophyllide forms and the Shibata shift which disappear upon solubilization are restored if the reconstituted complex is treated with plastid lipids and 80% (w/v) glycerol. We hypothesize that the lipids can form a cubic phase and that this is the precondition in vitro and in vivo for the observed spectral properties before and after irradiation.  相似文献   

19.
Protochlorophyllide photoreduction   总被引:3,自引:0,他引:3  
  相似文献   

20.
The Shibata shift is a change in the absorption maximum of chlorophyllide from 684 to 672 nanometers that occurs within approximately 0.5 hour of phototransformation of protochlorophyllide to chlorophyllide. Two compounds, clomazone and amiprophos-methyl, which previously have been shown to inhibit the Shibata shift in vivo, were used to look for correlations between the Shibata shift and other processes that occur during etioplast to chloroplast transformation. Leaf sections from 6-day-old etiolated wheat seedlings (Triticum aestivum L. cv Walde) were treated with 0.5 millimolar clomazone or 0.1 millimolar amiprophos-methyl in darkness. In addition to the Shibata shift, the esterification of chlorophyllide to chlorophyll and the relocation of protochlorophyllide reductase from the prolamellar bodies to the developing thylakoids were inhibited by these treatments. Prolamellar body transformation did not appear to be affected by amiprophos-methyl and was only slightly affected by clomazone. The results indicate that: (a) there is a strong correlation between the occurrence of the Shibata shift and esterification activity; (b) transformation of the prolamellar bodies does not depend on the Shibata shift; and (c) the occurrence of the Shibata shift may be a prerequisite to the relocation of protochlorophyllide reductase from prolamellar bodies to thylakoids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号