首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Autosomal dominant polycystic kidney disease (ADPKD) is characterized by the slow growth of multiple fluid-filled cysts predominately in the kidney tubules and liver bile ducts. Elucidation of mechanisms that control cyst growth will provide the basis for rational therapeutic intervention. We used electrophysiological methods to identify lysophosphatidic acid (LPA) as a component of cyst fluid and serum that stimulates secretory Cl- transport in the epithelial cell type that lines renal cysts. LPA effects are manifested through receptors located on the basolateral membrane of the epithelial cells resulting in stimulation of channel activity in the apical membrane. Concentrations of LPA measured in human ADPKD cyst fluid and in normal serum are sufficient to maximally stimulate ion transport. Thus, cyst fluid seepage and/or leakage of vascular LPA into the interstitial space are capable of stimulating epithelial cell secretion resulting in cyst enlargement. These observations are particularly relevant to the rapid decline in renal function in late-stage disease and to the "third hit" hypothesis that renal injury exacerbates cyst growth.  相似文献   

2.
In autosomal recessive polycystic kidney disease (ARPKD), progressive enlargement of fluid-filled cysts is due to aberrant proliferation of tubule epithelial cells and transepithelial fluid secretion leading to extensive nephron loss and interstitial fibrosis. Congenital hepatic fibrosis associated with biliary cysts/dilatations is the most common extrarenal manifestation in ARPKD and can lead to massive liver enlargement. Peroxisome proliferator-activated receptor γ (PPAR-γ), a member of the ligand-dependent nuclear receptor superfamily, is expressed in a variety of tissues, including the kidneys and liver, and plays important roles in cell proliferation, fibrosis, and inflammation. In the current study, we determined that pioglitazone (PIO), a PPAR-γ agonist, decreases polycystic kidney and liver disease progression in the polycystic kidney rat, an orthologous model of human ARPKD. Daily treatment with 10 mg/kg PIO for 16 wk decreased kidney weight (% of body weight), renal cystic area, serum urea nitrogen, and the number of Ki67-, pERK1/2-, and pS6-positive cells in the kidney. There was also a decrease in liver weight (% of body weight), liver cystic area, fibrotic index, and the number of Ki67-, pERK1/2-, pERK5-, and TGF-β-positive cells in the liver. Taken together, these data suggest that PIO inhibits the progression of polycystic kidney and liver disease in a model of human ARPKD by inhibiting cell proliferation and fibrosis. These findings suggest that PPAR-γ agonists may have therapeutic value in the treatment of the renal and hepatic manifestations of ARPKD.  相似文献   

3.
An epithelial cell line from pig kidney (LLC-PK1) with properties of proximal tubular cells can be maintained indefinitely in hormone-supplemented serum-free medium. Continuous growth requires the presence of seven factors: transferrin, insulin, selenium, hydrocortisone, triiodothyronine, vasopressin, and cholesterol. The hormone-defined medium (a) supports growth of LLC-PK1 cells at a rate of approaching that observed in serum-supplemented medium; (b) allows vectorial transepithelial salt and fluid transport as measured by hemicyst formation; and (c) influences cell morphology. The vasopressin dependency for growth and morphology can be partially replaced by isobutylmethylxanthine or dibutyryl cyclic AMP. The medium has been used to isolate rabbit proximal tubular kidney epithelial cells free of fibroblasts.  相似文献   

4.
The clearance and metabolism of N6-substituted (N6-dimethyl-), C8-substituted (8-bromo-, 8-p-chlorophenylthio- (PCPT-)), and exocyclic oxygen substituted phosphorothioate diastereomers (cAMPS(Sp)) and cAMPS (Rp)) of adenosine 3':5'-monophosphate (cyclic AMP, cAMP) has been studied in an isolated perfused rat kidney. The N6- and C8-substituted analogs of cyclic AMP (10-100 microM) were not cleared as rapidly as exogenous cyclic AMP and were metabolized: N6- and C8-substituted analogs of adenosine accumulated in perfusate and urine. All analogs exhibited net transtubular secretion, i.e. their urinary excretion rate greater than glomerular filtration rate. Probenecid (0.9 mM) included in the perfusate abolished transtubular secretion and inhibited the metabolism of PCPT-cyclic AMP, suggesting that cyclic AMP analogs, like cyclic AMP itself, penetrate the renal cell at the peritubular membrane by an organic acid transport system. The phosphorothioate diastereomers of cyclic AMP: cAMPS(Sp) and cAMPS(Rp) were cleared as rapidly from the perfusate as cyclic AMP, were extensively secreted (urinary excretion/ glomerular filtration greater than or equal to 10) and exhibited no metabolism. The latter analog would seem most suitable as an intracellular agonist for cyclic AMP-mediated phenomena in the rat kidney.  相似文献   

5.
6.
The role of cyclic AMP in the secretory mechanism of mast cells has been investigated by comparing the time course of changes in cellular levels of this cyclic nucleotide with the kinetics of secretion induced by basic peptides, antigen, anti-IgE and calcium ionophore. ACTH(1–24) peptide and a synthetic decapeptide representative of the sequence 497–506 within the Cε4 domain of human IgE induced a transient rise in cyclic AMP which reached approx. 150% of the resting levels by 10 s. Peptide-induced secretion of histamine was also rapid, reaching a maximum after 5–10 s. Immunological triggering of mast cells with antigen and anti-IgE raised levels of cyclic AMP to 150% of resting levels within 15 s, accompanying secretion of histamine which reached a maximum after 30 s. A relatively slower release of histamine induced by the calcium ionophore A23187 was paralleled by a significant reduction in cyclic AMP to 50% of the resting levels after 300 s. These data suggest a relationship between the accumulation of cyclic AMP in mast cells and secretion of histamine mediated by the Cε4 decapeptide and the ACTH(1–24) peptide as well as by IgE-dependent mechanisms. However, the simultaneous increase in cyclic AMP and secretion of histamine suggests that the two events may not be causally related.  相似文献   

7.
Nine human kidney epithelial cell lines, isolated from small biopsied material and from whole kidney, were propagated in both a hormonally defined medium and a medium supplemented with serum. At confluency, hemicysts or domes, typical of cultured epithelial cells, were formed by these cells. Monolayers had junctional complexes between cells and the presence of numerous microvilli on the cell surface. Parathyroid hormone markedly stimulated these cells to produce cyclic AMP. They also contained high levels of gamma-glutamyltranspeptidase, leucine aminopeptidase, and maltase, enzymes that are associated with the brush-border membrane of the proximal tubule. The cultured cells demonstrated the ability to transport amino acids and alpha-methylglucoside, a substrate actively transported only by the proximal tubule in the kidney. Based on these findings, the cultured cells reflected a number of characteristics associated with the proximal tubule. These renal epithelial cell lines may provide a useful model for studying various aspects of human renal physiology and biochemistry.  相似文献   

8.
Aeromonas sobria hemolysin (ASH) is one of the major virulence factors produced by A. sobria, a human pathogen that causes diarrhea. We investigated the effects of ASH on Cl(-) transport in human colonic epithelial cells. ASH increased short-circuit currents (Isc) and (125)I efflux from Caco-2 cells, indicating ASH activate Cl(-) secretion. Additions of inhibitors of cyclic AMP dependent Cl(-) channels, glybenclamide and NPPB suppressed the Isc and (125)I efflux increases induced by ASH. And ASH increased the intracellular cyclic AMP concentration. Moreover, ASH stimulated fluid accumulation in the iliac loop test, and glybenclamide and NPPB suppressed this fluid accumulation. Thus, cAMP-dependent Cl(-) secretory pathway could be related with diarrhea induced by A. sobria.  相似文献   

9.
H2 Histamine Receptors on the Epithelial Cells of Choroid Plexus   总被引:2,自引:2,他引:0  
A major site of cerebrospinal fluid production in vertebrates is the choroid plexus. The epithelial cells of the choroid plexus accumulate intracellular cyclic AMP in response to several effectors, including histamine. Since histamine is known to regulate fluid secretion in the stomach via H2 histamine receptors, we asked whether H2 receptors might also be present on epithelial cells of bovine choroid plexus. Using agonists and antagonists of histamine, we show that an agonist and antagonist pair specific for the H2 subtype were clearly more effective than an H1 agonist and antagonist pair in mimicking or inhibiting histamine stimulation of cellular cyclic AMP. Analysis by Schild plot allowed assignment of an apparent dissociation constant to the H2 antagonist metiamide which was 34-fold lower than that of its H1 counterpart, diphenhydramine. These results indicate that epithelial cells of the choroid plexus possess H2 histamine receptors.  相似文献   

10.
Summary Autosomal dominant polycystic kidney disease (ADPKD) is one of the most frequent human inherited diseases. The main feature of the disease is the development of renal cysts, first occurring in the proximal tubules, and with time, dominating all segments of the nephron, leading to end-stage renal disease in 50% of the patients in their fifth decade of life. A therapy for polycystic kidney disease (PKD) has not yet been developed. Patients coming to end-stage ADPKD require long-term dialysis and/or transplantation. A suitable animal model to study ADPKD is the spontaneously mutated Han:SPRD (cy/ +) rat, but a method to cultivate Han:SPRD (cy/ +) derived renal cells which preserves their ability to form cyst-like structures in vitro has previously not been reported. Based on this well-characterized animal model, we developed a cell culture model of renal cyst formation in vitro. When renal cells of the Han:SPRD (cy/ +) rat were isolated and cultured under conditions that prevent cell-substratum adhesion, large amounts of cyst-like structures were formed de novo from Han:SPRD (cy/ +) derived renal cells, but only a few from control rat renal cells. In contrast, when cultivated on plastic as monolayer cultures, Han:SPRD (cy/ +)-derived and control rat-derived renal cells were indistinguishable and did not form cyst-like structures. Immunohistochemical characterization of the cyst-like structures suggests tubular epithelial origin of the cyst-forming cells. The amount of cysts formed from Han:SPRD (cy/ +)-derived renal cells grown in a stationary suspension culture is susceptible to modulation by different conditions. Human cyst fluid and epidermal growth factor both stimulated the formation of cysts from Han:SPRD (cy/ +)-derived renal cells whereas taxol inhibited cystogenesis. In contrast, neither human cyst fluid nor epidermal growth factor affected the amount of cysts formed by control rat renal cells. As the culture model reported here allows not only the distinction of PKD-derived tubular epithelium from its normal counterpart, but also the modulation of cyst formation especially by Han:SPRD (cy/ +)-derived renal cells, it might be a useful prescreening protocol for potential treatments for PKD and thus reduce the need for animal experiments. Both authors contributed equally to the work.  相似文献   

11.
Polycystic kidney disease (PKD) is a common hereditary disorder which is characterized by fluid-filled cysts in the kidney. Mutation in either PKD1, encoding polycystin-1 (PC1), or PKD2, encoding polycystin-2 (PC2), are causative genes of PKD. Recent studies indicate that renal cilia, known as mechanosensors, detecting flow stimulation through renal tubules, have a critical function in maintaining homeostasis of renal epithelial cells. Because most proteins related to PKD are localized to renal cilia or have a function in ciliogenesis. PC1/PC2 heterodimer is localized to the cilia, playing a role in calcium channels. Also, disruptions of ciliary proteins, except for PC1 and PC2, could be involved in the induction of polycystic kidney disease. Based on these findings, various PKD mice models were produced to understand the roles of primary cilia defects in renal cyst formation. In this review, we will describe the general role of cilia in renal epithelial cells, and the relationship between ciliary defects and PKD. We also discuss mouse models of PKD related to ciliary defects based on recent studies. [BMB Reports 2013; 46(2): 73-79]  相似文献   

12.
Certain epithelial cell lines have morphologic, physiologic, biochemical and pharmacologic characteristics of transporting epithelia from intact organs. In this paper we show that dibutyryl cyclic AMP, 5' AMP, adenosine and cyclic AMP phosphodiesterase inhibitors stimulate hemicyst formation by the dog kidney cell line MDCK. It is suggested that this effect is explained by elevation of intracellular cyclic AMP levels by means of an exogenous non-metabolizable source of cyclic AMP, phosphodiesterase inhibition or adenyl cyclase stimulation. Since hemicyst formation is in part due to transepithelial fluid transport, these findings raise the possibility that this fraction might be modulated by cAMP in an established cell line. We believe that cultured epithelial cells may provide an exploitable model system to investigate at the cellular and subcellular levels, the mechanism by which cyclic AMP modifies water and solute movements across epithelia.  相似文献   

13.
The established cell lines isolated from mammalian kidney were characterized by its receptor activities against hormones and the ability to synthesize sulfolipids localized in the renal tubule. The level of 3':5'-cyclic AMP in JTC-12.P3 (monkey kidney) cells increased in 2 min as much as 2.5-5-fold on activation with 1.0 unit/ml of bovine parathyroid hormone or 1.9 units/ml of synthetic parathyroid hormone (1-34) resulting in intracellular cyclic AMP concentration of more than 40 pmol/mg protein. Prostaglandin E1 (14 micronM) and isopropylnorepinephrine (10 micronM) were also found to increase the concentration of cyclic AMP by more than 30- and 9-fold, respectively. Addition in medium of calcitonin, arginine vasopressin, adrenocorticotropic hormone and glucagon caused no significant changes of cyclic AMP level in the cell. In contrast, MDCK, a cell line isolated from canine kidney, reacted to arginine vasopressin, isopropylnorepinephrine and prostaglandin E1 and only slightly to parathyroid hormone. MDBK cell line derived from bovine kidney or fibroblast cell lines from rat lung and guinea pig kidney did not react to any of the hormones specific to kidney, i.e. arginine vasopressin, calcitonin or parathyroid hormone in the presence of theophylline. However, in the presence of 2 mM isobutylmethylxanthine, small but significant elevation of cellular cyclic AMP levels in response to calcitonin, arginine vasopressin, isopropylnorepinephrine and prostaglandin E1 was observed. The cell lines JTC-12, MDCK and MDBK, when incubated with H235SO4, incorporated the isotope into sulfolipids assigned as sulfatides and ceramide dihexoside sulfate or in MDCK also into cholesterol sulfate. The results suggested that JTC-12, MDCK and MDBK cell lines are epithelial origin and also JTC-12 and MDCK originated most probably from renal tubular cells of cortex and medulla, respectively.  相似文献   

14.
15.
The established cell lines isolated from mammalian kidney were characterized by its receptor activities against hormones and the ability to synthesize sulfolipids localized in the renal tubule.The level of 3′: 5′-cyclic AMP in JTC-12.P3 (monkey kidney) cells increased in 2 min as much as 2.5–5-fold on activation with 1.0 unit/ml of bovine parathyroid hormone or 1.9 units/ml of synthetic parathyroid hormone (1–34) resulting in intracellular cyclic AMP concentration of more than 40 pmol/mg protein. Prostaglandin E1 (14 μM) and isopropylnorepinephrine (10 μM) were also found to increase the concentration of cyclic AMP by more than 30- and 9-fold, respectively. Addition in medium of calcitonin, arginine vasopressin, adrenocorticotropic hormone and glucagon caused no significant changes of cyclic AMP level in the cell.In contrast, MDCK, a cell line isolated from canine kidney, reacted to arginine vasopressin, isopropylnorepinephrine and prostaglandin E1 and only slightly to parathyroid hormone. MDBK cell line derived from bovine kidney or fibroblast cell lines from rat lung and guinea pig kidney did not react to any of the hormones specific to kidney, i.e. arginine vasopressin, calcitonin or parathyroid hormone in the presence of theophylline. However, in the presence of 2 mM isobutylmethylxanthine, small but significant elevation of cellular cyclic AMP levels in response to calcitonin, arginine vasopressin, isopropylnorepinephrine and prostaglandin E1 was observed.The cell lines JTC-12, MDCK and MDBK, when incubated with H235SO4, incorporated the isotope into sulfolipids assigned as sulfatides and ceramide dihexoside sulfate or in MDCK also into cholesterol sulfate.The results suggested that JTC-12, MDCK and MDBK cell lines are epithelial origin and also JTC-12 and MDCK originated most probably from renal tubular cells of cortex and medulla, respectively.  相似文献   

16.
Catecholamine-stimulated salivary fluid secretion (in vitro) by ixodid ticks is reduced by deletion or lowering the concentration of exogenous bathing medium Ca++. The Ca++ antagonist, verapamil, reversibly inhibits dopamine-stimulated secretion. Ionophore A-23187 is unable to induce glands to secrete. Studies in which labeled and unlabeled Ca++ flux were measured indicate that catecholamines induce release of calcium from intracellular stores during secretion. Cyclic AMP/theophylline-stimulated secretion is inhibited by verapamil, and the exclusion of calcium from the support medium. It is concluded that the primary catecholamine stimulus induces cyclic AMP formation and mobilization of Ca++ (intra- and extracellular). Cyclic AMP and calcium are thought to interact to control secretion within the fluid transporting cells of types II and III alveoli.  相似文献   

17.
In autosomal dominant polycystic kidney disease (ADPKD), arginine vasopressin (AVP) accelerates cyst growth by stimulating cAMP-dependent ERK activity and epithelial cell proliferation and by promoting Cl(-)-dependent fluid secretion. Tolvaptan, a V2 receptor antagonist, inhibits the renal effects of AVP and slows cyst growth in PKD animals. Here, we determined the effect of graded concentrations of tolvaptan on intracellular cAMP, ERK activity, cell proliferation, and transcellular Cl(-) secretion using human ADPKD cyst epithelial cells. Incubation of ADPKD cells with 10(-9) M AVP increased intracellular cAMP and stimulated ERK and cell proliferation. Tolvaptan caused a concentration-dependent inhibition of AVP-induced cAMP production with an apparent IC(50) of ~10(-10) M. Correspondingly, tolvaptan inhibited AVP-induced ERK signaling and cell proliferation. Basolateral application of AVP to ADPKD cell monolayers grown on permeable supports caused a sustained increase in short-circuit current that was completely blocked by the Cl(-) channel blocker CFTR(inh-172), consistent with AVP-induced transepithelial Cl(-) secretion. Tolvaptan inhibited AVP-induced Cl(-) secretion and decreased in vitro cyst growth of ADPKD cells cultured within a three-dimensional collagen matrix. These data demonstrate that relatively low concentrations of tolvaptan inhibit AVP-stimulated cell proliferation and Cl(-)-dependent fluid secretion by human ADPKD cystic cells.  相似文献   

18.
We have previously demonstrated that a cultured porcine kidney cell, LLC-PK(1), maintains the characteristics of a polar renal epithelial cell in culture, and responds to salmon calcitonin and [arginine]vasopressin by increasing cyclic AMP content. To demonstrate the usefulness of this cell line as a model for the study of the biochemical events distal to cyclic AMP production, the activation of cyclic AMP-dependent protein kinase was examined. Intact cells in monolayer demonstrated progressive increases in cyclic AMP content and activation of protein kinase in response to [arginine]vasopressin (2-200nm) and salmon calcitonin (0.03-30nm) with both hormones fully activating the enzyme at a cell cyclic AMP content of 35pmol/mg of protein. Of the total cyclic AMP-dependent protein kinase activity, 80% was found in the 27000g supernatant fraction of sonicated cell material, and this soluble protein kinase could be fully activated by hormone. Conversely, the 27000g pellet contained a significant proportion of cyclic AMP-independent protein kinase and only 20% of total cell cyclic AMP-dependent protein kinase; the latter showed little response to hormone. On the basis of DEAE-cellulose chromatography, type II protein kinase was the predominant isoenzyme in both soluble and particulate fractions of the LLC-PK(1) cells and the soluble fractions of rat and guinea-pig renal medulla. Thus, the LLC-PK(1) cell line can serve as a model for hormonal modulation of protein kinase and as a potential source for defining the endogenous substrates for these enzymes.  相似文献   

19.
Humoral hypercalcemia of malignancy has been associated with the production of a recently cloned peptide human parathyroid hormone related protein (hPTHRP). One of the markers of this disease is an increased urinary excretion of cyclic AMP. The postreceptor mechanism of action and physiological role of hPTHRP remain obscure. To study the activity of hPTHRP 1-34 compared to rat and human parathyroid hormone (PTH) 1-34 we incubated these peptides with rat kidney slices and measured the cyclic AMP generated in the supernatant. hPTHRP 1-34 was equipotent with human PTH 1-34 but both were 5 times less active than rat PTH 1-34. Previous studies have suggested that a low dietary phosphate intake results in renal resistance to the phosphaturic action of PTH perhaps mediated by reduced adenylate cyclase activation by PTH. To determine whether, during dietary phosphate restriction, hPTHRP 1-34 has actions different from hPTH 1-34 we studied their effects following dietary phosphate deprivation. Dietary phosphate restriction had no significant effect on the cyclic AMP generating activity of any of the peptides. We conclude that hPTHRP 1-34 may be operating through similar mechanisms as human PTH 1-34 and that the previously observed effects of dietary phosphate deprivation on PTH mediated cyclic AMP generation in a broken cell preparation do not occur in intact cell preparations.  相似文献   

20.
We previously reported that endogenous nitric oxide (NO) is involved in the peripheral control of gastric acid secretion induced by some secretagogues, and that endogenous NO is involved in the acid secretion process via histamine release from histamine-containing cells. However, the stimulus-secretion coupling in the cells remains to be clarified. In the present study, we investigated the effect of dibutyryl cyclic GMP on gastric acid secretion in mouse isolated stomach and on histamine release in gastric mucosal cells, in comparison with those of dibutyryl cyclic AMP. Dibutyryl cyclic GMP (300 microM) produced a slight but significant increase of gastric acid secretion, which was completely inhibited by the histamine-H2 receptor antagonist famotidine. In contrast, dibutyryl cyclic GMP (1 mM) markedly inhibited histamine-induced acid secretion. Dibutyryl cyclic AMP (100 microM) produced a sustained increase of gastric acid secretion. The pretreatment with famotidine partially inhibited dibutyryl cyclic AMP-induced gastric acid secretion. Dibutyryl cyclic GMP and dibutyryl cyclic AMP significantly increased the histamine release from gastric mucosal cells. These results suggest that both intracellular cyclic GMP and cyclic AMP act as second messengers for histamine release in the histamine-containing cells, probably ECL cells. On the other hand, in gastric parietal cells, cyclic AMP has a stimulatory effect on gastric acid secretion, whereas cyclic GMP has an inhibitory effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号