首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The PC12 cell line displays cell surface receptors for both nerve growth factor (NGF) and epidermal growth factor (EGF). It has been previously shown that the lectin wheat germ agglutinin (WGA) alters the properties of NGF receptors on these cells. We now report that preincubations with either WGA or concanavalin A (Con A) decrease the binding of 125I-EGF to PC12 cells by greater than 50%. The inhibition of binding occurred at 37°C and 4°C and could be blocked or reversed by the addition of sugars which bind specifically to WGA or Con A. Scatchard analysis revealed that these lectins decreased binding primarily by lowering the affinity of the receptor and to a lesser extent by decreasing receptor number. Succinylalion of Con A (sCon A) produced a derivative that was less effective than the native lectin in decreasing EGF binding; however, addition of an antibody against Con A restored the ability of sCon A to decrease binding. Similar to results obtained with 125I-NGF binding, WGA but not Con A was found to increase, by scveralfold; the proportion of 125I-EGF binding that is resistant to solubilization by Triton X-100 detergent. A potential association of the EGF receptor with cytoskeletal elements is discussed which could account for such results.  相似文献   

2.
Receptor sites for insulin on GH3 cells were characterized. Uptake of 125I-labeled insulin by the cells was dependent upon time and temperature, with apparent steady-states reached by 120, 20 and 10 min at 4, 23 and 37°C, respectively. The binding sites were sensitive to trypsin, suggesting that the receptors contain protein. Insulin competed with 125I-labeled insulin for binding sites, with half-maximal competition observed at 5 nM insulin. Neither adrenocorticotropic hormone nor growth hormone competed for 125I-labeled insulin binding sites. 125I-labeled insulin binding was reversible, and saturable with respect to hormone concentration. 125I-labeled insulin was degraded at both 4 and 37°C by GH3 cells, but not by medium conditioned by these cells. After a 5 min incubation at 37°C, products of 125I-labeled insulin degradation could be recovered from the cells but were not detected extracellularly. Extending the time of incubation resulted in the recovery of fragments of 125I-labeled insulin from both cells and the medium. Native insulin inhibited most of the degradation of 125I-labeled insulin suggesting that degradation resulted, in part, from a saturable process. At steady-state, degradation products of 125I-labeled insulin, as well as intact hormone, were recovered from GH3 cells. After 30 min incubation at 37°C, 80% of the cell-bound radioactivity was not extractable from GH3 cells with acetic acid.  相似文献   

3.
The role of the binding of succinylated concanavalin A to tissue culture cells in influencing epidermal growth factor (EGF)-mediated cell proliferation has been studied. Succinylated concanavalin A dramatically reduces the stimulation of 3T6 cells by EGF in Dulbecco's modified Eagle's medium (DME) containing insulin and vitamin B12 as additional growth factors, but no serum. Furthermore, binding studies using 125I-labeled EGF have shown that the binding of EGF to the cell surface is reduced upon addition of succinylated concanavalin A.  相似文献   

4.
Rhodopsin-containing liposomes may provide a model for investigating the interaction of intrinsic membrane glycoproteins in biological systems. As part of the characterization of this preparation, the surface orientation of the carbohydrates of rhodopsin, assembled from purified bovine rhodopsin and egg phosphatidylcholine was examined, and is the topic of this report. The major tool used in these studies was the interaction with the carbohydrate-specific reagents, plant lectins. Two techniques were used: lectin-mediated aggregation of the liposomes, as measured by light scattering; the binding of 125I-labeled succinylated concanavalin A, and Scatchard analysis as a measure of affinity. The preparation most extensively examined had a mole ratio of rhodopsin:phospholipid of 1:100. Among a variety of lectins which were examined, only concanavalin A, succinylated concanavalin A, and wheat germ agglutinin were able to mediate the aggregation of rhodopsin-containing liposomes, as expected. The aggregation with concanavalin A was prevented by the presence of sugars having the alpha-D-glucopyranosyl configuration, and that brought about with wheat germ agglutinin, by N-acetylglucosamine (GlcNAc). In addition, the aggregation with concanavalin A was reversed with methyl alpha-D-mannoside, and with wheat germ agglutinin, by GlcNAc, suggesting that membrane fusion did not take place. On a molar basis, wheat germ agglutinin brought about a greatly reduced extent of aggregation as compared to concanavalin A, suggesting the relative inaccessibility of GlcNAc residues in the liposomes as compared to mannose. The initial rate of the aggregation, however, were similar with either lectin. The first-order rate constants were unaffected by wide variation in the concentrations of concanavalin A and wheat germ agglutinin, and by variation in the mole ratios of rhodopsin in the liposomes from 0.2 to 19 moles per 100 moles of egg lecithin. Rhodopsin-liposomes were also prepared from a total lipid extract of rod outer segments instead of egg lecithin. Similar kinetic properties were exhibited by this preparation as were obtained with the liposome prepared with the purified phospholipid. Scatchard analysis of the binding of 125I-labeled succinylated concanavalin A by rhodopsin liposomes indicated the presence of a single class of binding site as the preferred fit, with an apparent Kd of 2.8 X 10(-7) M. The binding was destroyed or extensively interfered with by trypsinization and by periodate treatment.  相似文献   

5.
Biosignalling via lectins may involve modulation of protein kinase activities. This aspect of the biological action of mammalian and plant lectins has been investigated for their effect on the activity of the isolated epidermal growth factor receptor (EGFR). The constitutive tyrosine kinase activity of the epidermal growth factor receptor from rat liver, isolated by calmodulin-affinity chromatography, was activated by concanavalin A (ConA), and wheat germ agglutinin (WGA) to a similar extent as the measured enhancement induced by EGF. In contrast, two mannose-specific lectins, the mannan-binding protein (MBP) and serum amyloid P component (SAP), isolated from human serum, have inhibitory effects, both in the absence and presence of EGF. The differential effects of these lectins were tested using as phosphorylatable substrates a co-polymer of glutamic acid-tyrosine, as well as calmodulin. However, two galactoside-specific lectins, the laminin-binding -galactoside-binding 14 kDa lectin, isolated from bovine heart (14K-BHL), and the /-galactoside-binding lectin, isolated from mistletoe (Viscum album L.) leaves (VAA), do not inhibit the EGFR tyrosine kinase activity. The sugar dependence of the lectin-mediated action was studied by inhibition assays. Mannose and a mannose-containing neoglycoprotein prevent the activating effect of ConA, and N-acetyl-D-glucosamine partially prevents the activation produced by WGA. However, mannose and mannose-containing neoglycoprotein were ineffective to reduce the inhibitory effect of MBP or SAP. Although the response to binding of ConA and WGA was different to that of MBP or SAP with respect to the tyrosine kinase activity of the EGFR, it should be noted that the four lectins inhibited the binding of [125I]EGF to its receptor with similar efficiency.Abbreviations EGF epidermal growth factor - EGFR epidermal growth factor receptor - ConA concanavalin A - MBP mannan-binding protein - SAP serum amyloid P component - WGA wheat germ agglutinin - 14K-BHL bovine heart 14 kDa lectin - VAA Viscum album L. (mistletoe) agglutinin - EGTA [ethylenebis(oxyethylenenitrilo)]-tetraacetic acid; poly(Glu:Tyr)-co-polymer of L-glutamic acid and L-tyrosine - Hepes 4-(2-hydroxyethyl)-1-piperazinethanesulfonic acid - Tris tris(hydroxymethyl)-aminomethane - DSS suberic acid bis(N-hydroxy-succinimide ester) - PMSF phenylmethanesulfonyl fluoride - Man mannose - Gal galactose - BSA bovine serum albumin - Man-BSA neoglycoprotein containing -D-mannose - Lac-BSA neoglycoprotein containing -lactose - Gal-BSA neoglycoprotein containing galactose  相似文献   

6.
The saxitoxin-binding component of the excitable membrane sodium channel exhibits glycoprotein characteristics as evidenced by its specific interaction with various agarose-immobilized lectins. The detergent-solubilized saxitoxin-binding component interacts quantitatively with immobilized wheat germ agglutinin and concanavalin A and fractionally with immobilized Lens culinaris hemagglutinin and Ricinus communis agglutinin. These lectins preferentially bind N-acetylglucosamine and sialic acid (wheat germ agglutinin), mannose (concanavalin A and Lens cunilaris and galactose (Ricinus communis). Removal of terminal sialic acid residues by neuraminidase markedly decreases binding to immobilized wheat germ agglutinin but uncovers sites capable of interacting with lectins specific for galactose and N-acetylgalactosamine. β-N-acetylglucosaminidase, an exoglycosidase has no effect on the binding of the channel protein to wheat germ agglutinin. Similarly, phospholipase C has no effect on binding of the solubilized toxin binding component to this lectin. Neither wheat germ agglutinin nor concanavalin A free in solution alters the number of toxin binding sites or their affinity for toxin. The sodium channel saxitoxin-binding component appears to be a glycoprotein containing terminal sialic acid residues and internal mannose, galactose, N-acetylglucosamine, and N-acetylgalactosamine residues. The toxin binding site is spatially separated from the binding sites for the lectins studied. The effect of these sugar moieties must be considered when evaluating the biophysical parameters of the sodium channel.  相似文献   

7.
The binding of 125I-labeled epidermal growth factor (EGF) was studied in Panc-I human pancreatic carcinoma cells. At 37°C, binding was rapid and associated with marked endocytosis of the ligand. Bound EGF was sequentially converted to a number of more acidic species as follows: pI 4.55 to pI 4.2, to pI 4.35, to pI 4.0. EGF internalization and processing were blocked at 4°C. EGF did not alter cell growth when Panc-I cells were incubated in the presence of 2 to 10% serum. In contrast, when the serum concentration was lowered to 0.1%, EGF significantly enhanced cell replication after 6 days of culture.  相似文献   

8.
Hydrocortisone modulates the binding capacity of HeLa cells for 125I-labeled epidermal growth factor (EGF). A twofold increase in 125I-labeled EGF binding is observed within 24 hours after the addition of pharmacological concentration of hydrocortisone (5 × 10?8?1 × 10?6 M). This enhancement of binding is reversible, and occurs when the cells are cultured in either serum-supplemented or completely defined, serum-free, hormone-supplemented medium. Scatchard analysis of the binding data indicates that the number of 125I-EGF binding sites is increased, and that no appreciable change in the affinity of the EGF receptor for labeled EGF occurs. In the serum-free condition hydrocortisone stimulates the growth of HeLa cells, but we have observed no connection between this growth stimulation and the enhancement of EGF binding. The growth response to hydrocortisone is independent of EGF, and the concentration dependency of the growth response to EGF is unaltered by the addition of hydrocortisone to the medium. Hydrocortisone elicits the growth response at a concentration as low as 5 × 10?9 M, while a concentration higher than 5 × 10?8 M is required to affect the binding capacity for 125I-EGF. These effects are specific for glucocorticoid steroids. Similar concentrations of progesterone, testosterone, or estradiol produce no measurable response. Although the elevation of EGF receptor levels in the serum-supplemented medium is similar to that observed in the serum-free cultures, hydrocortisone is growth-inhibitory under these conditions. This growth inhibition occurs at pharmacological concentrations of hydrocortisone with a concentration dependency that is similar to that of the EGF receptor modulation.  相似文献   

9.
Concanavalin A, which binds to specific carbohydrate determinants on the cell surface, was used to investigate the binding of prolactin to its receptors in liver membranes from female rats. The binding of 125I-labeled ovine prolactin to receptors was sharply inhibited by concanavalin A. This effect was reversed by the competitive sugar α-methyl-D-mannopyranoside and thus required the presence of specifically bound lectin. Concentrations of concanavalin A of up to 50 μg/ml caused a progressive decrease in the apparent affinity of the prolactin receptor for hormone. When higher concentrations were used, the number of available binding sites decreased. Concanavalin A-resistant receptors, about 30% of the total, had the same dissociation constant (Kd) as the controls. The binding of 125I-labeled concanavalin A in the same membrane preparations showed the presence of two distinct types of concanavalin A binding. At low concentrations, the lectin bound with high affinity (Kd ≈ 6.6 · 10?8 M). At high lectin concentrations, low affinity (Kd ≈ 6.7 · 10?5 M) binding predominated. Since high affinity concanavalin A binding was saturated at 50 μg/ml, this class of binding most likely alters the affinity of the prolactin receptor for hormone; low affinity concanavalin A binding may mask prolactin receptors, making them inaccessible to the hormone.Binding sites for concanavalin A and prolactin appear to be independent but closely related since (i) concanavalin A did not displace bound prolactin from its receptor, and (ii) detergent-solubilized 125I-labeled prolactin-receptor complexes bound to concanavalin A-Sepharose and were eluted by α-methyl-D-mannopyranoside.  相似文献   

10.
Protein from the jack bean, peanut, soybean and kidney bean seeds were extracted with a solution containing 9.3 molar urea, 5 millimolar K2CO3, 0.5% dithiothreitol and 2% Nonidet P-40 and then subjected to two-dimensional gel electrophoresis. After electrophoresis, the slab gels were stained with a variety of 125I-labeled lectins and the lectin-binding proteins were identified after autoradiography. Incubation of slab gels of jack bean with concanavalin A, peanut with peanut agglutinin, soybean with soybean agglutinin, and kidney bean with phytohemagglutinin showed that the majority of the polypeptides in each seed type were able to bind to their homologous lectins. Control slab gels in which incubations were carried out with identical amounts of proteins, 125I-lectin and an appropriate sugar inhibitor showed little or no lectin binding to the polypeptides. Additionally, incubation of slab gels of peanut proteins with 125I-ricin, 125I-wheat germ agglutinin, 125I-concanavalin A, and 125I-soybean agglutinin each revealed a clearly distinct binding pattern compared to the one observed with the peanut agglutinin. The results demonstrate that a large number of legume seed polypeptides are glycoproteins and that the carbohydrate groups within a seed species are heterogeneous in structure, thus indicating the existence of complex glycosylating enzyme systems in legume seeds. It is suggested that the high degree of binding between seed proteins and their homologous lectins might have some functional significance in maintaining large aggregates of protein in compact, insoluble form.  相似文献   

11.
Cell electrophoretic mobility of cultured melanoma cells or rat erythrocytes decreased with time after X-irradiation. Addition of tetravalent concanavalin A or divalent succinyl-concanavalin A before (not after) irradiation, completely blocked the mobility reduction in greater concentrations than 5 μg/l.At 5 μg/1 only 3.7 · 103 concanavalin A molecules bound to receptors per cell, while 4.18 · 107 molecules/cell bound at saturating concentrations. Preincubation with concanavalin A at 37°C was effective even when the cells were treated with α-methylmannoside immediately after irradiation. At low temperature, however, concanavalin A was not effective despite a sufficient amount of bound 125I-labelled concanavalin A. Treatment with α-methylmannoside following the binding of concanavalin A at 37°C before irradiation inhibited the concanavalin A effect depending on temperature. The residual amount of bound lectin could not account for the temperature dependence. The amount of sialic acid (the main charged substance) was not altered by X-irradiation with or without the lectin. Divalent succinyl-concanavalin A was also effective in blocking the radiation effect on electrophoretic mobility. These results seem to suggest that binding of a very small amount of concanavalin A without causing cell agglutination or clustering of its receptors, induces some alteration in the conformation of receptor glycoprotein, which blocks the internalization of acidic sugar residues by subsequent irradiation.  相似文献   

12.
The binding of concanavalin A to the plasmalemma of acinar carcinoma cells was characterized by electron microscopy utilizing horseradish peroxidase. Heavy labeling due to specific concanavalin A binding was detected on the plasmalemma of undifferentiated carcinoma cells lacking zymogen maturation, neoplastic cells of intermediate differentiation with only occasional zymogen granules, and highly differentiated acinar carcinoma cells containing numerous cytoplasmic zymogen granules. The plasmalemma of acinar carcinoma cells was also compared to the normal pancreatic acinar cell plasmalemma by measurement of specific 125I-labeled concanavalin A binding. Although only about one-third of pancreatic acinar carcinoma cells demonstrate mature zymogen differentiation, the acinar carcinoma had a full complement of normal plasmalemma receptors for 125I-labeled concanavalin A. It is concluded that, unlike normal pancreas, the presence of concanavalin A receptors on the plasmalemma of acinar carcinoma cells is not a specific membrane marker for differentiated cells containing zymogen granules.  相似文献   

13.
Adult rat liver parenchymal cells in primary culture exhibit specific saturable binding of 125I-labeled murine epidermal growth factor (EGF). The Scatchard plot of the binding data obtained at 36 °C was curvilinear yielding two apparent dissociation constants of 1.5 × 10?10m and 1.2 × 10?9m with 27,000 and 57,000 sites per cell, respectively. The binding data obtained at 2 °C yielded a linear Scatchard plot with an apparent dissociation constant of 4.4 × 10?9m and 78,000 sites per cell. Exposure of the hepatocytes to EGF at 36 °C resulted in a loss of EGF binding capacity due to down regulation of receptors. The cells recovered the capacity to bind EGF upon incubation in medium which did not contain EGF; this recovery was inhibited by cycloheximide. The cultures appeared to internalize and degrade bound EGF at 36 °C but not at 2 °C. The degradation of EGF was inhibited by chloroquine, an inhibitor of lysosomal enzymes. These data indicate that liver specifically binds and further processes EGF, and therefore, may be a physiological target tissue for this growth factor.  相似文献   

14.
A method which demonstrates that the removal of polymannosyl chains from glycoproteins by endo-β-N-acetylglucosaminidase H can be monitored reliably using only submicrogram quantities of glycoprotein is described. Glycoproteins and their endoglycosidase-treated forms are subjected to electrophoresis on SDS-polyacrylamide gels, which are then overlaid with [125I]concanavalin A or [125I]wheat germ agglutinin. The degree to which these lectins bind is measured by autoradiography. The complete loss of [125I]concanavalin A binding by glycoproteins such as deoxyribonuclease I, ovalbumin, carboxypeptidase Y, and invertase is associated with the removal of their oligosaccharide chains. Invertase, unlike the above mannose-containing glycoproteins, acquires the capacity to bind [125I]wheat germ agglutinin only upon partial or complete deglycosylation, a finding substantiated by wheat germ agglutinin-Sepharose column chromatography. In addition to providing a procedure for monitoring the enzymatic deglycosylation of mannose-containing glycoproteins, the lectin-gel binding technique is shown to provide an estimate of the mannose content of neutral glycoproteins at levels which cannot be detected by conventional methods. In some cases, this method may be useful in distinguishing between N- and O-glycosidic linkages where the oligosaccharide is predominantly mannosyl.  相似文献   

15.
A receptor glycopeptide for concanavalin A was isolated from calf thymocytes by a method originally devised for the isolation of a lectin receptor from human erythrocytes (Kubánek, J., Entlicher, G.; and Kocourek, J. [1973] Biochim, Biophys. Acta 304, 93–102). The method consisted of pronase digestion of the lipid-depleted thymocyte membrane material followed by ethanol fractionation, separation on Sephadex and preparative paper electrophoresis. The isolated glycopeptide contains 10.4% of neutral sugar. The molar ratios of the sugar components mannose, galactose, glucosamine, glucose, fucose and sialic acid are 3 : 2 : 2 : 1 : 1 : 1. The minimum molecular weight calculated from the sugar composition is about 12 000.Concanavalin A receptor activity of the glycopeptide was demonstrated in three different ways: (i) Reduction of the 125I-labeled concanavalin A binding to thymocytes. (ii) Prevention of concanavalin A induced agglutination of calf thymocytes. (iii) Inhibition of concanavalin A stimulated DNA synthesis in calf and rabbit thymocytes and rabbit lymph node lymphocytes cultivated in vitro.The isolated glycopeptide seems to be involved in the interaction of lymphocytes with concanavalin A and the subsequent stimulation.  相似文献   

16.
ABSTRACT. We studied the cellular regulation of vesicle exocytosis by Entamoeba histolytica utilizing release of endocytosed 125iodine (125I) labeled tyrosine conjugated dextran; 125I-dextran entered the acid pH vesicles of the amebae and was not degraded during these studies. Exocytosis was temperature dependent with 74%, 36%, 4%, and 0% of 125I-dextran released after 120 min at 37°C, 31°C, 25°C, and 4°C, respectively (P < 0.01 for each). Exocytosis at 37°C was inhibited by cytochalasin D (10 μg/ml), EDTA (10 mM), or the putative intracellular calcium antagonist TMB-8 (250 μM) (P < 0.01 for each at ≥ 60 min). Calcium ionophore A23187 (1 μM) enhanced exocytosis at 5 and 15 min (P < 0.01). Elevation of vesicle pH with NH4Cl (10 mM) had no effect on release of 125I-dextran; phorbol myristate acetate (10?6 M) increased exocytosis by 46% at 30 min (P < 0.01). Centrifugation of amebae with target Chinese hamster ovary cells resulted in decreased 125I-dextran release into the cell supernatant after 30 and 60 min at 37°C (by 40% and 42%, respectively, P < 0.01); release of 125I-dextran returned to control values with addition of 1.0 g% galactose or GalNac but not with mannose or N-acetyl-D-glucosamine. Amebic phagocytosis of serum-exposed latex beads had no effect on release of dextran by amebae (n = 16). Exocytosis of acid pH vesicles by E. histolytica is temperature-, microfilament-, and calcium-dependent, and stimulated by phorbol esters.  相似文献   

17.
The carbohydrate of variant-specific surface antigen glycoproteins from bloodstream forms of 13 cloned variants of Trypanosoma brucei was analyzed by gas-liquid chromatography. The glycoproteins contained from 6 to 17% carbohydrate by weight, and all contained the same 4 sugars: mannose, galactose, glucose, and glucosamine (probably as N-acetylglucosamine). The glycoprotein from variant 048, strain 427 contained (+20%) 11 mannose, 4 galactose, 4 glucose, and 5 glucosamine residues/mole of glycoprotein (molecular weight 65,000). Glucose was an intergral component of the glycoproteins, not dissociable by sodium dodecyl sulphate, 8 M urea, or 1 M acetic acid. Some of the glucose was dissociated by trichloroacetic acid. Most of the glycoproteins formed precipitin with concanavalin A in Ouchterlony double diffusion, but none formed such bands with wheat germ agglutinin or Ricinus communis lectin (molecular weight 120, 000).  相似文献   

18.
The major sialoglycoprotein of mammalian erythrocytes has been incorporated into phosphatidylcholine membranes to generate a model system, glycoprotein-liposomes. Electron microscopic examination revealed these structures to be vesicles, approximately 300 Å in diameter. An aqueous compartment inside the glycoprotein-liposomes has been identified by trapped volume studies with [14C]sucrose. These glycoprotein-liposomes were found to interact with the lectins, wheat germ agglutinin, and phytohemagglutinin, to form aggregates of mainly unfused vesicles. The aggregation process has been studied by electron microscopy, 90° light scattering, and differential ultracentrifugation analysis. Hapten inhibitors of the lectins were found to inhibit the lectin-induced aggregation of the glycoprotein-liposomes. Binding of 125I-labeled wheat germ agglutinin to glycoprotein-liposomes was studied by differential ultracentrifugation. Hapten inhibitors of wheat germ agglutinin were also found to inhibit the binding of 125I-labeled wheat germ agglutinin to the glycoprotein-liposomes. The characteristics of the lectin interactions with glycoprotein-liposomes appeared to be phenomenologically similar to lectin-cell interactions.  相似文献   

19.
Abstract: Energy-dependent internalization of 125I-labeled tetanus toxin into cultured neural cells is shown to follow an energy-independent binding process. A three-step model, involving receptor-mediated binding followed by sequestration and internalization is proposed. In the first step, binding of toxin is enhanced in appearance under low ionic strength medium, at 0–4°C; it is suppressed, however, with increasing incubation temperature under physiological salt concentrations. Cell-bound toxin is displaced by approximately 35.5% when high-salt medium (physiological concentrations) is added to cells at 0–4°C; the effect is further amplified at 37°C. Addition of disialoganglioside GD1b (1–5 μg/ml) also lowers the amount of cell-associated toxin. The fraction of 125I-labeled toxin retained by the cells after exposure to high-salt medium at 0–4°C or after addition of GD1b is operationally defined as sequestered toxin. This second step, characterized by a stable association of the toxin with the neural cells, is affected by both physiological salt and by 37°C conditions. Lastly, an energy-dependent phenomenon of firm association of tetanus toxin with neural cells, compatible with internalization, is described. The toxin residing in this fraction is bioactive and cannot be removed by salts, gangliosides, or by treatment with protease or neuraminidase. Binding, sequestration, and internalization are mutually dependent, as they are all blocked by pretreatment of cells with neuraminidase and by an enhanced energy-independent sequestration event, which results in enhanced tetanus toxin internalization by an energy-dependent process.  相似文献   

20.
Epidermal Growth Factor (EGF), a small polypeptide which acts as a mitogen for many cell types, has previously been shown to bind to a specific plasma membrane receptor on 3T3 cells. If 125I-EGF is bound to 3T3 cells for one hour at 4°C, it remains predominantly associated with the plasma membrane-containing fractions obtained by subjecting cell supernatants to equilibrium sedimentation on sucrose gradients. When binding is followed by a 10-minute incubation at 37°C, over 50% of the 125I-EGF is associated with two internal membrane-containing peaks having higher densities than the plasma membrane. After one hour at 37°C, over 80% of the 125I-EGF is degraded and removed from the cells. The most rapidly labeled internal peak corresponds in density to brain-coated vesicles (CVs). Antiserum prepared against coated vehicles from brain precipitates the 125I-EGF in this peak. In addition, CVs containing 125I-EGF can be co-purified from 3T3 cells exposed to 125I-EGF, using brain as a carrier. Several lines of evidence suggest that the other 125I-EGF-labeled intracellular peak is 125I-EGF in lysosomes. These results provide kinetic and biochemical evidence for a unidirectional pathway for EGF catabolism by 3T3 cells. EGF first binds to the plasma membrane bound receptors, is then moved to the cytoplasm in CVs, and finally appears in lysosomes, where it is degraded and released from the cells. Ten-millimolar NH4Cl blocks lysosomal hydrolysis of EGF almost completely. Subsequently, EGF internalization is inhibited. This finding suggests that the pathway for EGF internalization and degradation is tightly coupled.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号