首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 471 毫秒
1.
This report demonstrates that mice deficient in Flt-1 failed to establish ischemic preconditioning (PC)-mediated cardioprotection in isolated working buffer-perfused ischemic/reperfused (I/R) hearts compared to wild type (WT) subjected to the same PC protocol. WT and Flt-1+/- mice were divided into four groups: (1) WT I/R, (2) WT + PC, (3) Flt-1+/- I/R, and (4) Flt-1+/- + PC. Group 1 and 3 mice were subjected to 30 min of ischemia followed by 2 h of reperfusion and group 2 and 4 mice were subjected to four episodes of 4-min global ischemia followed by 6 min of reperfusion before ischemia/reperfusion. For both wild-type and Flt-1+/- mice, the postischemic functional recovery for the hearts was lower than the baseline, but the recovery for the knockout mice was less compared to the WT mice even in preconditioning. The myocardial infarction and apoptosis were higher in Flt-1+/- compared to wild-type I/R. Flt-1+/- KO mice demonstrated pronounced inhibition of the expression of iNOS, p-AKT & p-eNOS. Significant inhibition of STAT3 & CREB were also observed along with the inhibition of HO-1 mRNA. Results demonstrate that Flt-1+/- mouse hearts are more susceptible to ischemia/reperfusion injury and also document that preconditioning is not as effective as found in WT and therefore suggest the importance of VEGF/Flt-1 signaling in ischemic/reperfused myocardium.  相似文献   

2.
Our study is designed to correlate nitrite concentration, an index of nitric oxide (NO) release with mast cell peroxidase (MPO), a marker of cardiac mast cell degranulation and cardioprotective effect of ischaemic preconditioning in isolated perfused rat heart subjected to 30 min of global ischaemia and 30 min of reperfusion. Ischaemic preconditioning, comprised of four episodes of 5 min global ischaemia and 5 min of reperfusion, markedly reduced the release of lactate dehydrogenase (LDH) and creatine kinase (CK) in coronary effluent and incidence of ventricular premature beats (VPBs) and ventricular tachycardia and fibrillation (VT/VF) during reperfusion phase. Ischaemia-reperfusion induced release of MPO was markedly reduced in ischaemic preconditioned hearts. Increased release of nitrite was noted during reperfusion phase after sustained ischaemia in preconditioned hearts as compared to control hearts. No alterations in the release of nitrite was observed immediately after ischaemic preconditioning. However, ischaemic preconditioning markedly increased the release of MPO prior to global ischaemia. It is proposed that cardioprotective and antiarrhythmic effect of ischaemic preconditioning may be ascribed to degranulation of cardiac mast cells. Depletion of cytotoxic mediators during ischaemic preconditioning and consequent decreased release of these mediators during sustained ischaemia-reperfusion may be associated with preservation of structures in isolated rat heart responsible for NO release.  相似文献   

3.
Activation of A(1) adenosine receptors (A(1)ARs) may be a crucial step in protection against myocardial ischemia-reperfusion (I/R) injury; however, the use of pharmacological A(1)AR antagonists to inhibit myocardial protection has yielded inconclusive results. In the current study, we have used mice with genetically modified A(1)AR expression to define the role of A(1)AR in intrinsic protection and ischemic preconditioning (IPC) against I/R injury. Normal wild-type (WT) mice, knockout mice with deleted (A(1)KO(-/-)) or single-copy (A(1)KO(+/-)) A(1)AR, and transgenic mice (A(1)TG) with increased cardiac A(1)AR expression underwent 45 min of left anterior descending coronary artery occlusion, followed by 60 min of reperfusion. Subsets of each group were preconditioned with short durations of ischemia (3 cycles of 5 min of occlusion and 5 min of reperfusion) before index ischemia. Infarct size (IF) in WT, A(1)KO(+/-), and A(1)KO(-/-) mice was (in % of risk region) 58 +/- 3, 60 +/- 4, and 61 +/- 2, respectively, and was less in A(1)TG mice (39 +/- 4, P < 0.05). A strong correlation was observed between A(1)AR expression level and response to IPC. IF was significantly reduced by IPC in WT mice (35 +/- 3, P < 0.05 vs. WT), A(1)KO(+/-) + IPC (48 +/- 4, P < 0.05 vs. A(1)KO(+/-)), and A(1)TG + IPC mice (24 +/- 2, P < 0.05 vs. A(1)TG). However, IPC did not decrease IF in A(1)KO(-/-) + IPC mice (63 +/- 2). In addition, A(1)KO(-/-) hearts subjected to global I/R injury demonstrated diminished recovery of developed pressure and diastolic function compared with WT controls. These findings demonstrate that A(1)ARs are critical for protection from myocardial I/R injury and that cardioprotection with IPC is relative to the level of A(1)AR gene expression.  相似文献   

4.
We used Na(+)-Ca(2+) exchanger (NCX) knockout mice to evaluate the effects of NCX in cardiac function and the infarct size after ischemia/reperfusion injury. The contractile function in NCX KO mice hearts was significantly better than that in wild type (WT) mice hearts after ischemia/reperfusion and the infarct size was significantly small in NCX KO mice hearts compared with that in WT mice hearts. NCX is critically involved in the development of ischemia/reperfusion-induced myocardial injury and therefore the inhibition of NCX function may contribute to cardioprotection against ischemia/reperfusion injury.  相似文献   

5.
We have shown earlier that proteins released from the heart during preconditioning may protect non-preconditioned heart during sustained ischaemia, similarly as preconditioning itself. In other our experiments we have documented that also proteins released from isolated rat liver during reperfusion after global ischaemia performed a protective effect on isolated rat heart against ischaemia-reperfusion injury. In the current study we examined the effect of liver ischaemia in situ on resistance of rat heart to ischaemia and reperfusion injury. Wistar rats (male) were subjected to liver ischaemia maintained by occlusion of portal vein and hepatic artery for 20 min, followed with 30-min reperfusion after reopening of both vessels. Then the hearts were isolated and perfused according to Langendorf. Hearts, after initial stabilisation (15 min), were subjected to 20-min ischaemia and 30-min reperfusion. During reperfusion, the haemodynamic parameters of hearts were measured. The protein pattern of high soluble fraction (HS fraction) isolated from rat blood by precipitation with ammonium sulphate was detected by SDS-PAGE. Our results showed improved parameters of pressure and contractility in the group after liver ischaemia (ischaemic group), presented by decreased diastolic pressure and increased LVDP((S-D)) in comparison with levels of these parameters in the control group. We also observed improved heart contraction-relaxation cycles parameters (dP/dt)(max) and (dP/dt)(min) in ischaemic group as compared with the control group. On the other hand, there were no significant differences in heart rate and coronary flow between both experimental groups. SDS-PAGE showed changed protein pattern in HS fraction, particularly the levels of several low molecular weight proteins increased. We conclude that liver ischaemia induced a higher resistance of heart against ischaemia-reperfusion injury. We propose that release of some cardioprotective proteins present in HS fraction can also contribute to this cardioprotection.  相似文献   

6.
All four adenosine receptor subtypes have been shown to play a role in cardioprotection, and there is evidence that all four subtypes may be expressed in cardiomyocytes. There is also increasing evidence that optimal adenosine cardioprotection requires the activation of more than one receptor subtype. The purpose of this study was to determine whether adenosine A(2A) and/or A(2B) receptors modulate adenosine A(1) receptor-mediated cardioprotection. Isolated perfused hearts of wild-type (WT), A(2A) knockout (KO), and A(2B)KO mice, perfused at constant pressure and constant heart rate, underwent 30 min of global ischemia and 60 min of reperfusion. The adenosine A(1) receptor agonist N(6)-cyclohexyladenosine (CHA; 200 nM) was administrated 10 min before ischemia and for the first 10 min of reperfusion. Treatment with CHA significantly improved postischemic left ventricular developed pressure (74 ± 4% vs. 44 ± 4% of preischemic left ventricular developed pressure at 60 min of reperfusion) and reduced infarct size (30 ± 2% with CHA vs. 52 ± 5% in control) in WT hearts, effects that were blocked by the A(1) antagonist 8-cyclopentyl-1,3-dipropylxanthine (100 nM). Treatments with the A(2A) receptor agonist CGS-21680 (200 nM) and the A(2B) agonist BAY 60-6583 (200 nM) did not exert any beneficial effects. Deletion of adenosine A(2A) or A(2B) receptor subtypes did not alter ischemia-reperfusion injury, but CHA failed to exert a cardioprotective effect in hearts of mice from either KO group. These findings indicate that both adenosine A(2A) and A(2B) receptors are required for adenosine A(1) receptor-mediated cardioprotection, implicating a role for interactions among receptor subtypes.  相似文献   

7.
The present study is designed to investigate the role of Na+-H+ exchanger in the cardioprotective effect of ischaemic and angiotensin (Ang II) preconditioning. Isolated perfused rat heart was subjected to global ischaemia for 30 min followed by reperfusion for 120 min. Coronary effluent was analysed for LDH and CK release to assess the degree of cardiac injury. Myocardial infarct size was estimated macroscopically using TTC staining. Left ventricular developed pressure (LVDP) and dp/dt were recorded to evaluate myocardial contractility. Four episodes of ischaemic or Ang II preconditioning markedly reduced LDH and CK release in coronary effluent and decreased myocardial infarct size. 5-(N-ethyl-N-isopropyl)amiloride (EIPA), a Na+-H+ exchange inhibitor, produced no marked effect on ischaemic preconditioning and Ang II preconditioning induced cardioprotection. On the other hand, EIPA administration prior to global ischaemia produced a similar reduction in myocardial injury as was noted with ischaemic preconditioning or Ang II preconditioning. On the basis of these results, it may be concluded that inhibition of Na+-H+ exchanger protects against ischaemia-reperfusion induced myocardial injury whereas activation of Na+-H+ exchanger may not mediate the cardioprotective effect of ischaemic and Ang II preconditioning.  相似文献   

8.

Background

Adenosine is a powerful trigger for ischemic preconditioning (IPC). Myocardial ischemia induces intracellular and extracellular ATP degradation to adenosine, which then activates adenosine receptors and elicits cardioprotection. Conventionally extracellular adenosine formation by ecto-5’-nucleotidase (CD73) during ischemia was thought to be negligible compared to the massive intracellular production, but controversial reports in the past demand further evaluation. In this study we evaluated the relevance of ecto-5’-nucleotidase (CD73) for infarct size reduction by ischemic preconditioning in in vitro and in vivo mouse models of myocardial infarction, comparing CD73-/- and wild type (WT) mice.

Methods and Results

3x5 minutes of IPC induced equal cardioprotection in isolated saline perfused hearts of wild type (WT) and CD73-/- mice, reducing control infarct sizes after 20 minutes of ischemia and 90 minutes of reperfusion from 46 ± 6.3% (WT) and 56.1 ± 7.6% (CD73-/-) to 26.8 ± 4.7% (WT) and 25.6 ± 4.7% (CD73-/-). Coronary venous adenosine levels measured after IPC stimuli by high-pressure liquid chromatography showed no differences between WT and CD73-/- hearts. Pharmacological preconditioning of WT hearts with adenosine, given at the measured venous concentration, was evenly cardioprotective as conventional IPC. In vivo, 4x5 minutes of IPC reduced control infarct sizes of 45.3 ± 8.9% (WT) and 40.5 ± 8% (CD73-/-) to 26.3 ± 8% (WT) and 22.6 ± 6.6% (CD73-/-) respectively, eliciting again equal cardioprotection. The extent of IPC-induced cardioprotection in male and female mice was identical.

Conclusion

The infarct size limiting effects of IPC in the mouse heart in vitro and in vivo are not significantly affected by genetic inactivation of CD73. The ecto-5’-nucleotidase derived extracellular formation of adenosine does not contribute substantially to adenosine’s well known cardioprotective effect in early phase ischemic preconditioning.  相似文献   

9.
The present study is designed to investigate the effect of myocardial preconditioning with oxidative stress induced by pyrogallol or H2O2, on ischaemia-reperfusion induced myocardial injuiry. Isolated perfused rat heart was subjected to global ischaemia for 30 min followed by reperfusion for 120 min. Coronary effluent was analysed for LDH and CK release to assess the degree of cardiac injury. Myocardial infarct size was estimated macroscopically using TTC staining. Four episodes of preconditioning induced by pyrogallol or hydrogen peroxide (H2O2) or ischaemia markedly reduced LDH and CK release in coronary effluent and decreased myocardial infarct size. Administration of polymyxin B, a protein kinase C (PKC) inhibitor, during pyrogallol, H2O2 or ischaemic preconditioning markedly attenuated the cardioprotective effect of preconditioning produced with oxidative stress or ischaemia. These results suggest that preconditioning with oxidative stress may provide cardioprotection similar to ischaemic preconditioning, against ischaemia-reperfusion injury and this cardioprotective effect may be mediated through activation of PKC.  相似文献   

10.
Phosphatidyl-inositol-3-kinase (PI3K)-Akt pathway is essential for conferring cardioprotection in response to ischaemic preconditioning (IPC) stimulus. However, the role of the individual Akt isoforms expressed in the heart in mediating the protective response to IPC is unknown. In this study, we investigated the specific contribution of Akt1 and Akt2 in cardioprotection against ischaemia-reperfusion (I-R) injury. Mice deficient in Akt1 or Akt2 were subjected to in vivo regional myocardial ischaemia for 30 min. followed by reperfusion for 2 hrs with or without a prior IPC stimulus. Our results show that mice deficient in Akt1 were resistant to protection with either one or three cycles of IPC stimulus (42.7 ± 6.5% control versus 38.5 ± 1.9% 1 χ IPC, N = 6, NS; 41.4 ± 6.3% control versus 32.4 ± 3.2% 3 χ IPC, N = 10, NS). Western blot analysis, performed on heart samples taken from Akt1(-/-) mice subjected to IPC, revealed an impaired phosphorylation of GSK-3β, a downstream effector of Akt, as well as Erk1/2, the parallel component of the reperfusion injury salvage kinase pathway. Akt2(-/-) mice, which exhibit a diabetic phenotype, however, were amenable to protection with three but not one cycle of IPC (46.4 ± 5.6% control versus 35.9 ± 5.0% in 1 χ IPC, N = 6, NS; 47.0 ± 6.0% control versus 30.8 ± 3.3% in 3 χ IPC, N = 6; *P = 0.039). Akt1 but not Akt2 is essential for mediating a protective response to an IPC stimulus. Impaired activation of GSK-3β and Erk1/2 might be responsible for the lack of protective response to IPC in Akt1(-/-) mice. The rise in threshold for protection in Akt2(-/-) mice might be due to their diabetic phenotype.  相似文献   

11.
The Reperfusion Injury Salvage Kinase (RISK) pathway is considered the main pro‐survival kinase cascade mediating the ischaemic preconditioning (IPC) cardioprotective effect. To assess the role of PI3K‐Akt, its negative regulator PTEN and other pro‐survival proteins such as ERK and STAT3 in the context of IPC, C57BL/6 mouse hearts were retrogradely perfused in a Langendorff system and subjected to 4 cycles of 5 min. ischaemia and 5 min. reperfusion prior to 35 min. of global ischaemia and 120 min. of reperfusion. Wortmannin, a PI3K inhibitor, was administered either at the stabilization period or during reperfusion. Infarct size was assessed using triphenyl tetrazolium staining, and phosphorylation levels of Akt, PTEN, ERK, GSK3β and STAT3 were evaluated using Western blot analyses. IPC reduced infarct size in hearts subjected to lethal ischaemia and reperfusion, but this effect was lost in the presence of Wortmannin, whether it was present only during preconditioning or only during early reperfusion. IPC increased the levels of Akt phosphorylation during both phases and this effect was fully abrogated by PI3K, whilst its downstream GSK3β was phosphorylated only during the trigger phase after IPC. Both PTEN and STAT3 were phosphorylated during both phases after IPC, but this was PI3K independent. IPC increases ERK phosphorylation during both phases, being only PI3K‐dependent during the IPC phase. In conclusion, PI3K‐Akt plays a major role in IPC‐induced cardioprotection. However, PTEN, ERK and STAT3 are also phosphorylated by IPC through a PI3K‐independent pathway, suggesting that cardioprotection is mediated through more than one cell signalling cascade.  相似文献   

12.
Apelin, the endogenous ligand of the G protein-coupled APJ receptor, is a peptide mediator with emerging regulatory actions in the heart. The aim of the present studies was to explore potential roles of the apelin/APJ system in myocardial ischaemia/reperfusion injury. To determine the cardiac expression of apelin/APJ and potential regulation by acute ischaemic insult, Langendorff perfused rat hearts were subjected to regional ischaemia (left coronary artery occlusion, 35 min) or ischaemia followed by reperfusion (30 min). Apelin and APJ mRNA expression were then determined in ventricular myocardium by rt-PCR. Unlike APJ mRNA expression, which remained unchanged, apelin mRNA was upregulated 2.4 fold in ventricular myocardium from isolated rat hearts undergoing ischaemia alone, but returned back to control levels after 30 min reperfusion. We then proceeded to test the hypothesis that treatment with exogenous apelin is protective against ischaemia/reperfusion injury. Perfused hearts were subjected to 35 min left main coronary artery occlusion and 120 min reperfusion, after which infarct size was determined by tetrazolium staining. Exogenous Pyr(1)-apelin-13 (10(-8 )M) was perfused either from 5 min prior to 15 min after coronary occlusion, or from 5 min prior to 15 min after reperfusion. Whilst ineffective when used during ischaemia alone, apelin administered during reperfusion significantly reduced infarct size (47.6+/-2.6% of ischaemic risk zone compared to 62.6+/-2.8% in control, n=10 each, p<0.05) in hearts subject to temporary coronary occlusion followed by reperfusion. This protective effect was not abolished by co-administration of the PI3K inhibitor wortmannin (10(-7 )M, infarct size 49.8+/-4.1%, n=4) or the P70S6 kinase inhibitor rapamycin (10(-9 )M, 41.8+/-8.8%, n=4). In conclusion these results suggest that apelin may be a new and potentially important cardioprotective autacoid, upregulated rapidly after myocardial ischaemia and acting through an unknown pathway.  相似文献   

13.
Nicorandil has been shown to induce an infarct-limiting effect similar to that induced by the early phase of ischemic preconditioning (PC). The goals of this study were to determine whether nicorandil induces a delayed cardioprotection that is analogous to the late phase of ischemic PC and, if so, whether nicorandil-induced late PC is associated with upregulation of cardioprotective proteins. Chronically instrumented, conscious rabbits received vehicle (intravenous normal saline; control group, n = 10), nicorandil (100 microg/kg bolus + 30 microg x kg(-1) x min(-1) i.v. for 60 min; nicorandil group, n = 10), or ischemic PC (6 cycles of 4-min coronary occlusion/4-min reperfusion; PC group, n = 8). Twenty-four hours later, rabbits underwent a 30-min coronary occlusion, followed by 3 days of reperfusion. Myocardial infarct size was significantly reduced in rabbits pretreated with nicorandil (27.5 +/- 5.3% of the risk region) or with ischemia (30.3 +/- 4.2%) versus controls (59.1 +/- 4.7%, P < 0.05 vs. both). Furthermore, the expression of cyclooxygenase-2 (COX-2) and Bcl-2 was significantly elevated (+38% and +126%, respectively; P < 0.05) in myocardium of rabbits given nicorandil 24 h earlier versus controls. We conclude that nicorandil induces delayed cardioprotection against myocardial infarction similar to that afforded by the late phase of ischemic PC, possibly by upregulating COX-2 and Bcl-2.  相似文献   

14.
15.
16.
Necroptosis, a form of cell loss involving the RIP1‐RIP3‐MLKL axis, has been identified in cardiac pathologies while its inhibition is cardioprotective. We investigated whether the improvement of heart function because of ischaemic preconditioning is associated with mitigation of necroptotic signaling, and these effects were compared with a pharmacological antinecroptotic approach targeting RIP1. Langendorff‐perfused rat hearts were subjected to ischaemic preconditioning with or without a RIP1 inhibitor (Nec‐1s). Necroptotic signaling and the assessment of oxidative damage and a putative involvement of CaMKII in this process were analysed in whole tissue and subcellular fractions. Ischaemic preconditioning, Nec‐1s and their combination improved postischaemic heart function recovery and reduced infarct size to a similar degree what was in line with the prevention of MLKL oligomerization and translocation to the membrane. On the other hand, membrane peroxidation and apoptosis were unchanged by either approach. Ischaemic preconditioning failed to ameliorate ischaemia–reperfusion‐induced increase in RIP1 and RIP3 while pSer229‐RIP3 levels were reduced only by Nec‐1s. In spite of the additive phosphorylation of CaMKII and PLN because of ditherapy, the postischaemic contractile force and relaxation was comparably improved in all the intervention groups while antiarrhythmic effects were observed in the ischaemic preconditioning group only. Necroptosis inhibition seems to be involved in cardioprotection of ischaemic preconditioning and is comparable but not intensified by an anti‐RIP1 agent. Changes in oxidative stress nor CaMKII signaling are unlikely to explain the beneficial effects.  相似文献   

17.
To investigate the role of 12-lipoxygenase in preconditioning, we examined whether hearts lacking the "leukocyte-type" 12-lipoxygenase (12-LOKO) would be protected by preconditioning. In hearts from wild-type (WT) and 12-LOKO mice, left ventricular developed pressure (LVDP) and (31)P NMR were monitored during treatment (+/-preconditioning) and during global ischemia and reperfusion. Postischemic function (rate-pressure product, percentage of initial value) measured after 20 min of ischemia and 40 min of reperfusion was significantly improved by preconditioning in WT hearts (78 +/- 12% in preconditioned vs. 44 +/- 7% in nonpreconditioned hearts) but not in 12-LOKO hearts (47 +/- 7% in preconditioned vs. 33 +/- 10% in nonpreconditioned hearts). Postischemic recovery of phosphocreatine was significantly better in WT preconditioned hearts than in 12-LOKO preconditioned hearts. Preconditioning significantly reduced the fall in intracellular pH during sustained ischemia in both WT and 12-LOKO hearts, suggesting that attenuation of the fall in pH during ischemia can be dissociated from preconditioning-induced protection. Necrosis was assessed after 25 min of ischemia and 2 h of reperfusion using 2,3,5-triphenyltetrazolium chloride. In WT hearts, preconditioning significantly reduced the area of necrosis (26 +/- 4%) compared with nonpreconditioned hearts (62 +/- 10%) but not in 12-LOKO hearts (85 +/- 3% in preconditioned vs. 63 +/- 11% in nonpreconditioned hearts). Preconditioning resulted in a significant increase in 12(S)-hydroxyeicosatetraenoic acid in WT but not in 12-LOKO hearts. These data demonstrate that 12-lipoxygenase is important in preconditioning.  相似文献   

18.
19.
It has been recently reported that release of erythropoietin could mediate the cardioprotective effects of remote renal preconditioning. However, the mechanism of erythropoietin-mediated cardioprotection in remote preconditioning is still unexplored. Therefore, the present study was designed to investigate the possible signal transduction pathway of erythropoietin-mediated cardioprotection in remote preconditioning in rats. Remote renal preconditioning was performed by four episodes of 5 min renal artery occlusion followed by 5 min reperfusion. Isolated rat hearts were perfused on Langendorff apparatus and were subjected to global ischemia for 30 min followed by 120 min reperfusion. The levels of lactate dehydrogenase (LDH) and creatine kinase (CK) were measured in coronary effluent to assess the degree of myocardial injury. Extent of myocardial infarct size and coronary flow rate was also measured. Remote renal preconditioning and erythropoietin preconditioning (5,000 IUkg(-1), i.p.) attenuated ischemia-reperfusion-induced myocardial injury and produced cardioprotective effects. However, administration of diethyldithiocarbamic acid (150 mg kg(-1) i.p.), a selective NFkB inhibitor, and glibenclamide (5 mg kg(-1) i.p.), a selective K(ATP) channel blocker, attenuated cardioprotective effects of remote preconditioning and erythropoietin preconditioning. However, administration of minoxidil (1 mg kg(-1) i.v.), a selective K(ATP) channel opener, restored the attenuated cardioprotective effects of remote preconditioning and erythropoietin preconditioning in diethyldithiocarbamic acid pretreated rats. These results suggest that K(ATP) channel is a downstream mediator of NFkB activation in remote preconditioning and erythropoietin preconditioning. Therefore, it may be concluded that erythropoietin preconditioning and remote renal preconditioning trigger similar signaling mechanisms for cardioprotection, i.e., NFkB activation followed by opening of K(ATP) channels.  相似文献   

20.
Although the transient receptor potential vanilloid type 1 (TRPV1)-containing afferent nerve fibers are widely distributed in the heart, the relationship between TRPV1 function and cardiac ischemic preconditioning (PC) has not been well defined. Using TRPV1 knockout mice (TRPV1(-/-)), we studied the role of TRPV1 in PC-induced myocardial protection. Hearts of gene-targeted TRPV1-null mutant (TRPV1(-/-)) or wild-type (WT) mice were Langendorffly perfused in the presence or absence of CGRP(8-37), a selective calcitonin gene-related peptide (CGRP) receptor antagonist; or RP-67580, a selective neurokinin-1 receptor antagonist when hearts were subjected to three 5-min periods of ischemia PC followed by 30 min of global ischemia and 40 min of reperfusion (I/R). PC before I/R decreased left ventricular (LV) end-diastolic pressure and increased LV developed pressure, coronary flow (CF), peak-positive maximum rate of rise of LV pressure in WT mice (PC-WT) compared with PC-TRPV1(-/-), TRPV1(-/-), or WT hearts (P < 0.05), and PC also decreased LV end-diastolic pressure in PC-TRPV1(-/-) compared with TRPV1(-/-). CGRP(8-37) or RP-67580 abolished PC-induced protection in WT but not TRPV1(-/-) hearts (P < 0.05). Moreover, PC decreased lactate dehydrogenase release and infarct size in PC-WT compared with PC-TRPV1(-/-), TRPV1(-/-), or WT hearts, and it also lowered these parameters in PC-TRPV1(-/-) compared with TRPV1(-/-) hearts (P < 0.05). Radioimmunoassay showed that the release of substance P and CGRP after PC was higher in WT hearts than in TRPV1(-/-) hearts (P < 0.05), which was attenuated by capsazepine in WT but not TRPV1(-/-) hearts. Thus PC-induced protection of the heart was impaired in TRPV1(-/-) hearts, indicating that TRPV1 contributes to the beneficial effects of preconditioning against I/R injury through release substance P and CGRP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号