首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 163 毫秒
1.
The Mexica Empire reached an outstanding social, economic and politic organization among Mesoamerican civilizations. Even though archaeology and history provide substantial information about their past, their biological origin and the demographic consequences of their settlement in the Central Valley of Mexico remain unsolved. Two main hypotheses compete to explain the Mexica origin: a social reorganization of the groups already present in the Central Valley after the fall of the Classic centres or a population replacement of the Mesoamerican groups by migrants from the north and the consequent setting up of the Mexica society. Here, we show that the main changes in the facial phenotype occur during the Classic-Postclassic transition, rather than in the rise of the Mexica. Furthermore, Mexica facial morphology seems to be already present in the early phases of the Postclassic epoch and is not related to the northern facial pattern. A combination of geometric morphometrics with Relethford-Blangero analyses of within- versus among-group variation indicates that Postclassic groups are more variable than expected. This result suggests that intense gene exchange was likely after the fall of the Classic and maybe responsible for the Postclassic facial phenotype. The source population for the Postclassic groups could be located somewhere in western Mesoamerica, since North Mexico and Central Mesoamerican Preclassic and Classic groups are clearly divergent from the Postclassic ones. Similarity among Preclassic and Classic groups and those from Aridoamerica could be reflecting the ancestral phenotypic pattern characteristic of the groups that first settled Mesoamerica.  相似文献   

2.
The genetic characterization of Native Mexicans is important to understand multiethnic based features influencing the medical genetics of present Mexican populations, as well as to the reconstruct the peopling of the Americas. We describe the Y-chromosome genetic diversity of 197 Native Mexicans from 11 populations and 1,044 individuals from 44 Native American populations after combining with publicly available data. We found extensive heterogeneity among Native Mexican populations and ample segregation of Q-M242* (46%) and Q-M3 (54%) haplogroups within Mexico. The northernmost sampled populations falling outside Mesoamerica (Pima and Tarahumara) showed a clear differentiation with respect to the other populations, which is in agreement with previous results from mtDNA lineages. However, our results point toward a complex genetic makeup of Native Mexicans whose maternal and paternal lineages reveal different narratives of their population history, with sex-biased continental contributions and different admixture proportions. At a continental scale, we found that Arctic populations and the northernmost groups from North America cluster together, but we did not find a clear differentiation within Mesoamerica and the rest of the continent, which coupled with the fact that the majority of individuals from Central and South American samples are restricted to the Q-M3 branch, supports the notion that most Native Americans from Mesoamerica southwards are descendants from a single wave of migration. This observation is compatible with the idea that present day Mexico might have constituted an area of transition in the diversification of paternal lineages during the colonization of the Americas.  相似文献   

3.
Mesoamerica, defined as the broad linguistic and cultural area from middle southern Mexico to Costa Rica, might have played a pivotal role during the colonization of the American continent. The Mesoamerican isthmus has constituted an important geographic barrier that has severely restricted gene flow between North and South America in pre-historical times. Although the Native American component has been already described in admixed Mexican populations, few studies have been carried out in native Mexican populations. In this study, we present mitochondrial DNA (mtDNA) sequence data for the first hypervariable region (HVR-I) in 477 unrelated individuals belonging to 11 different native populations from Mexico. Almost all of the Native Mexican mtDNAs could be classified into the four pan-Amerindian haplogroups (A2, B2, C1, and D1); only two of them could be allocated to the rare Native American lineage D4h3. Their haplogroup phylogenies are clearly star-like, as expected from relatively young populations that have experienced diverse episodes of genetic drift (e.g., extensive isolation, genetic drift, and founder effects) and posterior population expansions. In agreement with this observation, Native Mexican populations show a high degree of heterogeneity in their patterns of haplogroup frequencies. Haplogroup X2a was absent in our samples, supporting previous observations where this clade was only detected in the American northernmost areas. The search for identical sequences in the American continent shows that, although Native Mexican populations seem to show a closer relationship to North American populations, they cannot be related to a single geographical region within the continent. Finally, we did not find significant population structure in the maternal lineages when considering the four main and distinct linguistic groups represented in our Mexican samples (Oto-Manguean, Uto-Aztecan, Tarascan, and Mayan), suggesting that genetic divergence predates linguistic diversification in Mexico.  相似文献   

4.
The Maya of Central America constitute the only truly literate pre-Columbian civilization. Analysis of ancient Maya hieroglyphic texts and accompanying images dating from the Classic period (A.D. 200–900) documents the presence of a central and pervasive institution of governance: ahaw. The material symbol systems of the Lowland Maya of the protoliterate Late Preclassic period (350 B.C.-A.D. 100), as evinced in monumental decorated buildings and in portable art, suggest that these Maya innovated ahaw, the institution of kingship. The authority of ahaw rested upon direct descent and spiritual communion with the ancestors of all Maya, the Ancestral Heroes. Along with noble lineage, ahaw claimed charismatic power through the performance of shamanistic ritual. The Late Preclassic antecedents of the shamanistic parameters of ahaw are discussed in light of Classic and Postclassic ritual expressions.  相似文献   

5.
This study examines the mtDNA diversity of the proposed descendants of the multiethnic Hohokam and Anasazi cultural traditions, as well as Uto-Aztecan and Southern-Athapaskan groups, to investigate hypothesized migrations associated with the Southwest region. The mtDNA haplogroups of 117 Native Americans from southwestern North America were determined. The hypervariable segment I (HVSI) portion of the control region of 53 of these individuals was sequenced, and the within-haplogroup diversity of 18 Native American populations from North, Central, and South America was analyzed. Within North America, populations in the West contain higher amounts of diversity than in other regions, probably due to a population expansion and high levels of gene flow among subpopulations in this region throughout prehistory. The distribution of haplogroups in the Southwest is structured more by archaeological tradition than by language. Yumans and Pimans exhibit substantially greater genetic diversity than the Jemez and Zuni, probably due to admixture and genetic isolation, respectively. We find no evidence of a movement of mtDNA lineages northward into the Southwest from Central Mexico, which, in combination with evidence from nuclear markers, suggests that the spread of Uto-Aztecan was facilitated by predominantly male migration. Southern Athapaskans probably experienced a bottleneck followed by extensive admixture during the migration to their current homeland in the Southwest.  相似文献   

6.
Given the importance of Y‐chromosome haplogroup Q to better understand the source populations of contemporary Native Americans, we studied 8 biallelic and 17 microsatellite polymorphisms on the background of 128 Q Y‐chromosomes from geographically targeted populations. The populations examined in this study include three from the Tuva Republic in Central Asia (Bai‐Tai, Kungurtug, and Toora‐Hem, n = 146), two from the northeastern tip of Siberia (New Chaplino and Chukchi, n = 32), and two from Mesoamerica (Mayans from Yucatan, Mexico n = 72, and Mayans from the Guatemalan Highlands, n = 43). We also see evidence of a dramatic Mesoamerican post‐migration population growth in the ubiquitous and diverse Y‐STR profiles of the Mayan and other Mesoamerican populations. In the case of the Mayans, this demographic growth was most likely fueled by the agricultural‐ and trade‐based subsistence adopted during the Pre‐Classic, Classic and Post‐Classic periods of their empire. The limited diversity levels observed in the Altaian and Tuvinian regions of Central Asia, the lowest of all populations examined, may be the consequence of bottleneck events fostered by the spatial isolation and low effective population size characteristic of a nomadic lifestyle. Furthermore, our data illustrate how a sociocultural characteristic such as mode of subsistence may be of impact on the genetic structure of populations. We analyzed our genetic data using Multidimensional Scaling Analysis of populations, Principal Component Analysis of individuals, Median‐joining networks of M242, M346, L54, and M3 individuals, age estimations based on microsatellite variation utilizing genealogical and evolutionary mutation rates/generation times and estimation of Y‐ STR average gene diversity indices. Am J Phys Anthropol, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

7.

Background

Guatemala is a multiethnic and multilingual country located in Central America. The main population groups separate ‘Ladinos’ (mixed Native American-African-Spanish), and Native indigenous people of Maya descent. Among the present-day Guatemalan Maya, there are more than 20 different ethnic groups separated by different languages and cultures. Genetic variation of these communities still remains largely unexplored. The principal aim of this study is to explore the genetic variability of the Maya and ‘Ladinos’ from Guatemala by means of uniparental and ancestry informative markers (AIMs).

Results

Analyses of uniparental genetic markers indicate that Maya have a dominant Native American ancestry (mitochondrial DNA [mtDNA]: 100%; Y-chromosome: 94%). ‘Ladino’, however, show a clear gender-bias as indicated by the large European ancestry observed in the Y-chromosome (75%) compared to the mtDNA (0%). Autosomal polymorphisms (AIMs) also mirror this marked gender-bias: (i) Native American ancestry: 92% for the Maya vs. 55% for the ‘Ladino’, and (ii) European ancestry: 8% for the Maya vs. 41% for the ‘Ladino’. In addition, the impact of the Trans-Atlantic slave trade on the present-day Guatemalan population is very low (and only occurs in the ‘Ladino’; mtDNA: 9%; AIMs: 4%), in part mirroring the fact that Guatemala has a predominant orientation to the Pacific Ocean instead of a Caribbean one. Sequencing of entire Guatemalan mitogenomes has led to improved Native American phylogeny via the addition of new haplogroups that are mainly observed in Mesoamerica and/or the North of South America.

Conclusions

The data reveal the existence of a fluid gene flow in the Mesoamerican area and a predominant unidirectional flow towards South America, most likely occurring during the Pre-Classic (1800 BC-200 AD) and the Classic (200–1000 AD) Eras of the Mesoamerican chronology, coinciding with development of the most distinctive and advanced Mesoamerican civilization, the Maya. Phylogenetic features of mtDNA data also suggest a demographic scenario that is compatible with moderate local endogamy and isolation in the Maya combined with episodes of gene exchange between ethnic groups, suggesting an ethno-genesis in the Guatemalan Maya that is recent and supported on a cultural rather than a biological basis.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1339-1) contains supplementary material, which is available to authorized users.  相似文献   

8.
OBJECTIVE--To determine whether the sex differences in access to cardiac surgery observed in the United States exist in the United Kingdom. DESIGN--Retrospective analysis of routinely collected data. SETTING--South West Thames and North West Thames regional health authorities. SUBJECTS--8564 patients discharged from hospital with a principal diagnosis of coronary heart disease in 1987-8 in South West Thames region and 15243 discharges in North West Thames region in 1990-1. MAIN OUTCOME MEASURES--Performance of angiography or coronary artery bypass surgery. RESULTS--In all age groups and among patients with a principal diagnosis of either angina or chronic ischaemia men were significantly more likely than women to undergo revascularisation in both regions. Using multiple logistic regression to control for potential clinical and demographic confounders, the male to female odds ratio for revascularisation among all cases was 1.59 (95% confidence interval 1.25 to 2.03) in South West Thames region and 1.47 (1.32 to 1.63) in North West Thames region. CONCLUSION--There appears to be a systematic difference in the treatment received by men and women in the United Kingdom. The reasons for this are uncertain.  相似文献   

9.
Late Preclassic (300 BC-AD 100) turkey remains identified at the archaeological site of El Mirador (Petén, Guatemala) represent the earliest evidence of the Mexican turkey (Meleagris gallopavo) in the ancient Maya world. Archaeological, zooarchaeological, and ancient DNA evidence combine to confirm the identification and context. The natural pre-Hispanic range of the Mexican turkey does not extend south of central Mexico, making the species non-local to the Maya area where another species, the ocellated turkey (Meleagris ocellata), is indigenous. Prior to this discovery, the earliest evidence of M. gallopavo in the Maya area dated to approximately one thousand years later. The El Mirador specimens therefore represent previously unrecorded Preclassic exchange of animals from northern Mesoamerica to the Maya cultural region. As the earliest evidence of M. gallopavo found outside its natural geographic range, the El Mirador turkeys also represent the earliest indirect evidence for Mesoamerican turkey rearing or domestication. The presence of male, female and sub-adult turkeys, and reduced flight morphology further suggests that the El Mirador turkeys were raised in captivity. This supports an argument for the origins of turkey husbandry or at least captive rearing in the Preclassic.  相似文献   

10.
Statures for 64 adult male Yucatec Maya (18+ years old, sons of campesinos) were measured in 1968 and compared with mean statures presented in results for previous studies. There were no significant changes in mean stature since 1895. If the sample is divided into 5-year age groups, no secular trend is evident. Using osteological information from as early as the Late Preclassic, stature of adult Maya males has decreased 119 mm in a little more than 20 centuries (?0.06 cm/decade). Comparing the results with measurements from other Mesoamerican groups, only one – the Otomí – show evidence of significant secular change. It is possible that modern economic development schemes in Mesoamerica are too recent or ineffective to have had an effect on stature.  相似文献   

11.
The broad geographic range of many Neotropical rain forest tree species implies excellent dispersal abilities or range establishment that preceded the formation of current dispersal barriers. In order to initiate historical analyses of such widespread Neotropical trees, we sequenced the nuclear ribosomal spacer (ITS) region of Symphonia globulifera L. f. (Clusiaceae) from populations spanning the Neotropics and western Africa. This rain forest tree has left unmistakable Miocene fossils in Mesoamerica (15.5-18.2 Ma) and in South America ( approximately 15 Ma). Although marine dispersal of S. globulifera is considered improbable, our study establishes three marine dispersal events leading to the colonization of Mesoamerica, the Amazon basin, and the West Indies, thus supporting the paleontological data. Our phylogeographic analysis revealed the spatial extent of the three Neotropical S. globulifera clades, which represent trans-Andes (Mesoamerica+west Ecuador), cis-Andes (Amazonia+Guiana), and the West Indies. Strong phylogeographic structure found among trans-Andean populations of S. globulifera stands in contrast to an absence of ITS nucleotide variation across the Amazon basin and indicates profound regional differences in the demographic history of this rain forest tree. Drawing from these results, we provide a historical biogeographic hypothesis to account for differences in the patterns of beta diversity within Mesoamerican and Amazonian forests.  相似文献   

12.
The large and diverse population of Latin America is potentially a powerful resource for elucidating the genetic basis of complex traits through admixture mapping. However, no genome-wide characterization of admixture across Latin America has yet been attempted. Here, we report an analysis of admixture in thirteen Mestizo populations (i.e. in regions of mainly European and Native settlement) from seven countries in Latin America based on data for 678 autosomal and 29 X-chromosome microsatellites. We found extensive variation in Native American and European ancestry (and generally low levels of African ancestry) among populations and individuals, and evidence that admixture across Latin America has often involved predominantly European men and both Native and African women. An admixture analysis allowing for Native American population subdivision revealed a differentiation of the Native American ancestry amongst Mestizos. This observation is consistent with the genetic structure of pre-Columbian populations and with admixture having involved Natives from the area where the Mestizo examined are located. Our findings agree with available information on the demographic history of Latin America and have a number of implications for the design of association studies in population from the region.  相似文献   

13.
Culture and genetics rely on two distinct but not isolated transmission systems. Cultural processes may change the human selective environment and thereby affect which individuals survive and reproduce. Here, we evaluated whether the modes of subsistence in Native American populations and the frequencies of the ABCA1*Arg230Cys polymorphism were correlated. Further, we examined whether the evolutionary consequences of the agriculturally constructed niche in Mesoamerica could be considered as a gene-culture coevolution model. For this purpose, we genotyped 229 individuals affiliated with 19 Native American populations and added data for 41 other Native American groups (n?=?1905) to the analysis. In combination with the SNP cluster of a neutral region, this dataset was then used to unravel the scenario involved in 230Cys evolutionary history. The estimated age of 230Cys is compatible with its origin occurring in the American continent. The correlation of its frequencies with the archeological data on Zea pollen in Mesoamerica/Central America, the neutral coalescent simulations, and the F(ST)-based natural selection analysis suggest that maize domestication was the driving force in the increase in the frequencies of 230Cys in this region. These results may represent the first example of a gene-culture coevolution involving an autochthonous American allele.  相似文献   

14.
Before the arrival of the Spaniards in Nicaragua, diverse Native American groups inhabited the territory. In colonial times, Native Nicaraguan populations interacted with Europeans and slaves from Africa. To ascertain the extent of this genetic admixture and provide genetic evidence about the origin of the Nicaraguan ancestors, we analyzed the mitochondrial control region (HVSI and HVSII), 17 Y chromosome STRs, and 15 autosomal STRs in 165 Mestizo individuals from Nicaragua. To carry out interpopulation comparisons, HVSI sequences from 29 American populations were compiled from the literature. The results reveal a close relationship between Oto‐manguean, Uto‐Aztecan, Mayan groups from Mexico, and a Chibchan group to Nicaraguan lineages. The Native American contribution to present‐day Nicaraguan Mestizos accounts for most of the maternal lineages, whereas the majority of Nicaraguan Y chromosome haplogroups can be traced back to a West Eurasian origin. Pairwise Fst distances based on Y‐STRs between Nicaragua and European, African and Native American populations show that Nicaragua is much closer to Europeans than the other populations. Additionally, admixture proportions based on autosomal STRs indicate a predominantly Spanish contribution. Our study reveals that the Nicaraguan Mestizo population harbors a high proportion of European male and Native American female substrate. Finally, the amount of African ancestry is also interesting, probably because of the contribution of Spanish conquerors with NorthAfrican genetic traces or that of West African slaves. Am J Phys Anthropol, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

15.
Genetic diversity of present American populations results from very complex demographic events involving different types and degrees of admixture. Through the analysis of lineage markers such as mtDNA and Y chromosome it is possible to recover the original Native American haplotypes, which remained identical since the admixture events due to the absence of recombination. However, the decrease in the effective population sizes and the consequent genetic drift effects suffered by these populations during the European colonization resulted in the loss or under-representation of a substantial fraction of the Native American lineages. In this study, we aim to clarify how the diversity and distribution of uniparental lineages vary with the different demographic characteristics (size, degree of isolation) and the different levels of admixture of extant Native groups in Colombia. We present new data resulting from the analyses of mtDNA whole control region, Y chromosome SNP haplogroups and STR haplotypes, and autosomal ancestry informative insertion-deletion polymorphisms in Colombian individuals from different ethnic and linguistic groups. The results demonstrate that populations presenting a high proportion of non-Native American ancestry have preserved nevertheless a substantial diversity of Native American lineages, for both mtDNA and Y chromosome. We suggest that, by maintaining the effective population sizes high, admixture allowed for a decrease in the effects of genetic drift due to Native population size reduction and thus resulting in an effective preservation of the Native American non-recombining lineages.  相似文献   

16.
Mitochondrial DNA (mtDNA) was extracted and analyzed from the skeletal remains of 44 individuals, representing four prehistoric populations, and compared to that from two other prehistoric and several contemporary Native American populations to investigate biological relationships and demographic history in northeastern North America. The mtDNA haplogroup frequencies of ancient human remains from the Morse (Red Ocher tradition, 2,700 BP) and Orendorf (Mississippian tradition, 800 BP) sites from the Central Illinois River Valley, and the Great Western Park (Western Basin tradition, 800 BP) and Glacial Kame (2,900 BP) populations from southwestern Ontario, change over time while maintaining a regional continuity between localities. Haplotype patterns suggest that some ancestors of present day Native Americans in northeastern North America have been in that region for at least 3,000 years but have experienced extensive gene flow throughout time, resulting, at least in part, from a demic expansion of ancestors of modern Algonquian-speaking people. However, genetic drift has also been a significant force, and together with a major population crash after European contact, has altered haplogroup frequencies and caused the loss of many haplotypes.  相似文献   

17.
The North West region of India is extremely important to understand the peopling of India, as it acted as a corridor to the foreign invaders from Eurasia and Central Asia. A series of these invasions along with multiple migrations led to intermixture of variable populations, strongly contributing to genetic variations. The present investigation was designed to explore the genetic diversities and affinities among the five major ethnic groups from North West India; Brahmin, Jat Sikh, Bania, Rajput and Gujjar. A total of 327 individuals of the abovementioned ethnic groups were analyzed for 4 Alu insertion marker loci (ACE, PV92, APO and D1) and a Single Nucleotide Polymorphism (SNP) rs2234693 in the intronic region of the ESR1 gene. Statistical analysis was performed to interpret the genetic structure and diversity of the population groups. Genotypes for ACE, APO, ESR1 and PV92 loci were found to be in Hardy–Weinberg equilibrium in all the ethnic groups, while significant departures were observed at the D1 locus in every investigated population after Bonferroni's correction. The average heterozygosity for all the loci in these ethnic groups was fairly substantial ranging from 0.3927 ± 0.1877 to 0.4333 ± 0.1416. Inbreeding coefficient indicated an overall 10% decrease in heterozygosity in these North West Indian populations. The gene differentiation among the populations was observed to be of the order of 0.013. Genetic distance estimates revealed that Gujjars were close to Banias and Jat Sikhs were close to Rajputs. Overall the study favored the recent division of the populations of North West India into largely endogamous groups. It was observed that the populations of North West India represent a more or less homogenous genetic entity, owing to their common ancestral history as well as geographical proximity.  相似文献   

18.
The European and African contribution to the pre-existing Native American background has influenced the complex genetic pool of Colombia. Because colonisation was not homogeneous in this country, current populations are, therefore, expected to have different proportions of Native American, European and African ancestral contributions. The aim of this work was to examine 11 urban admixed populations and a Native American group, called Pastos, for 32 X chromosome indel markers to expand the current knowledge concerning the genetic background of Colombia. The results revealed a highly diverse genetic background comprising all admixed populations, harbouring important X chromosome contributions from all continental source populations. In addition, Colombia is genetically sub-structured, with different proportions of European and African influxes depending on the regions. The samples from the North Pacific and Caribbean coasts have a high African ancestry, showing the highest levels of diversity. The sample from the South Andean region showed the lowest diversity and significantly higher proportion of Native American ancestry than the other samples from the North Pacific and Caribbean coasts, Central-West and Central-East Andean regions, and the Orinoquian region. The results of admixture analysis using X-chromosomal markers suggest that the high proportion of African ancestry in the North Pacific coast was primarily male driven. These men have joined to females with higher Native American and European ancestry (likely resulting from a classic colonial asymmetric mating type: European male x Amerindian female). This high proportion of male-mediated African contributions is atypical of colonial settings, suggesting that the admixture occurred during a period when African people were no longer enslaved. In the remaining regions, the African contribution was primarily female-mediated, whereas the European counterpart was primarily male driven and the Native American ancestry contribution was not gender biased.  相似文献   

19.
The Caribbean basin is home to some of the most complex interactions in recent history among previously diverged human populations. Here, we investigate the population genetic history of this region by characterizing patterns of genome-wide variation among 330 individuals from three of the Greater Antilles (Cuba, Puerto Rico, Hispaniola), two mainland (Honduras, Colombia), and three Native South American (Yukpa, Bari, and Warao) populations. We combine these data with a unique database of genomic variation in over 3,000 individuals from diverse European, African, and Native American populations. We use local ancestry inference and tract length distributions to test different demographic scenarios for the pre- and post-colonial history of the region. We develop a novel ancestry-specific PCA (ASPCA) method to reconstruct the sub-continental origin of Native American, European, and African haplotypes from admixed genomes. We find that the most likely source of the indigenous ancestry in Caribbean islanders is a Native South American component shared among inland Amazonian tribes, Central America, and the Yucatan peninsula, suggesting extensive gene flow across the Caribbean in pre-Columbian times. We find evidence of two pulses of African migration. The first pulse—which today is reflected by shorter, older ancestry tracts—consists of a genetic component more similar to coastal West African regions involved in early stages of the trans-Atlantic slave trade. The second pulse—reflected by longer, younger tracts—is more similar to present-day West-Central African populations, supporting historical records of later transatlantic deportation. Surprisingly, we also identify a Latino-specific European component that has significantly diverged from its parental Iberian source populations, presumably as a result of small European founder population size. We demonstrate that the ancestral components in admixed genomes can be traced back to distinct sub-continental source populations with far greater resolution than previously thought, even when limited pre-Columbian Caribbean haplotypes have survived.  相似文献   

20.
The New World Junonia butterflies are a possible ring species with a circum‐Caribbean distribution. Previous reports suggest a steady transition between North and South American forms in Mesoamerica, but in Cuba the forms were thought to co‐exist without interbreeding representing the overlapping ends of the ring. Three criteria establish the existence of a ring species: a ring‐shaped geographic distribution, gene flow among intervening forms and genetic isolation in the region of range overlap. We evaluated mitochondrial cytochrome oxidase I haplotypes in Junonia from nine species in the Western Hemisphere to test the Junonia ring species hypothesis. Junonia species are generally not monophyletic with respect to COI haplotypes, which are shared across species. However, two major COI haplotype groups exist. Group A predominates in South America, and Group B predominates in North and Central America. Therefore, COI haplotypes can be used to assess the degree of genetic influence a population receives from each continent. Junonia shows a ring‐shaped distribution around the Caribbean, and evidence is consistent with gene flow among forms of Junonia, including those from Mesoamerica. However, we detected no discontinuity in gene flow in Cuba or elsewhere in the Caribbean consistent with genetic isolation in the region of overlap. Although sampling is still very limited in the critical region, the only remaining possibility for a circum‐Caribbean discontinuity in gene flow is at the Isthmus of Panama, where there may be a transition from 98% Group B haplotypes in Costa Rica to 85–100% Group A haplotypes in South America.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号