首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
BackgroundIschemic stroke (IS) is a major neurological condition associated with extremely high morbidity and mortality worldwide. Oxymatrine (OMT), a quinolizidine alkaloid extracted from the root of Sophora flavescens, has neuroprotective properties and protects against IS. However, whether its protective effect involves alterations in the integrity of the blood-brain barrier (BBB) is unknown.PurposeHere, we used in vivo and in vitro models of IS to evaluate the protective effects of OMT and to establish whether its effects are mediated via the modulation of the BBB function.MethodsWe assessed the effects of OMT by using neurological function scores, triphenyltetrazolium chloride staining, Nissl staining, and terminal deoxynucleotidyl transferase dUTP nick end labeling.ResultsOMT significantly prevented cellular damage, improved neurological function, and reduced BBB permeability in a mouse model of cerebral ischemia-reperfusion. Additionally, OMT protected the function of the tight junctions of bEend.3 cells against the consequences of oxygen-glucose deprivation. Furthermore, intracranial lentivirus injection of short hairpin RNA targeting Cav1 decreased caveolin-1 expression and inhibited the neuroprotective effects of OMT.ConclusionsOMT attenuated ischemia-reperfusion injury-induced damage to the BBB, and this neuroprotective action was at least partially dependent on the expression levels of CAV1 and MMP9 proteins. Therefore, OMT may offer effective protection against BBB injury induced by ischemia-reperfusion episodes.  相似文献   

2.
Traumatic brain injury (TBI) is a major reason of cerebrovascular and neurological damage. Premorbid conditions such as tobacco smoking (TS) can worsen post-TBI injuries by promoting vascular endothelial impairments. Indeed, TS-induced oxidative stress (OS) and inflammation can hamper the blood-brain barrier (BBB) endothelium. This study evaluated the subsequence of chronic TS exposure on BBB endothelial cells in an established in vitro model of traumatic cell injury. Experiments were conducted on confluent TS-exposed mouse brain microvascular endothelial cells (mBMEC-P5) following scratch injury. The expression of BBB integrity–associated tight junction (TJ) proteins was assessed by immunofluorescence imaging (IF), Western blotting (WB) and quantitative RT-PCR. We evaluated reactive oxygen species (ROS) generation, the nuclear factor 2–related (Nrf2) with its downstream effectors and several inflammatory markers. Thrombomodulin expression was used to assess the endothelial haemostatic response to injury and TS exposure. Our results show that TS significantly decreased Nrf2, thrombomodulin and TJ expression in the BBB endothelium injury models while increased OS and inflammation compared to parallel TS-free cultures. These data suggest that chronic TS exposure exacerbates traumatic endothelial injury and abrogates the protective antioxidative cell responses. The downstream effect was a more significant decline of BBB endothelial viability, which could aggravate subsequent neurological impairments.  相似文献   

3.
In the central nervous system (CNS) complex endothelial tight junctions (TJs) form a restrictive paracellular diffusion barrier, the blood-brain barrier (BBB). Pathogenic changes within the CNS are frequently accompanied by the loss of BBB properties, resulting in brain edema. In order to investigate whether BBB leakiness can be monitored by a loss of TJ proteins from cellular borders, we used an in vitro BBB model where brain endothelial cells in co-culture with astrocytes form a tight permeability barrier for 3H-inulin and 14C-sucrose. Removal of astrocytes from the co-culture resulted in an increased permeability to small tracers across the brain endothelial cell monolayer and an opening of the TJs to horseradish peroxidase as detected by electron microscopy. Strikingly, opening of the endothelial TJs was not accompanied by any visible change in the molecular composition of endothelial TJs as junctional localization of the TJ-associated proteins claudin-3, claudin-5, occludin, ZO-1 or ZO-2 or the adherens junction-associated proteins -catenin or p120cas did not change. Thus, opening of BBB TJs is not readily accompanied by the complete loss of the junctional localization of TJ proteins.This work is dedicated to the memory of Werner Risau (died 13.12.1998), who initiated this collaboration  相似文献   

4.
5.
Cerebral fungal infections represent an important public health concern, where a key element of pathophysiology is the ability of the fungi to cross the blood-brain barrier (BBB). Yet the mechanism used by micro-organisms to cross such a barrier and invade the brain parenchyma remains unclear. This study investigated the effects of gliotoxin (GTX), a mycotoxin secreted by Aspergillus fumigatus, on the BBB using brain microvascular endothelial cells (BMECs) derived from induced pluripotent stem cells (iPSCs). We observed that both acute (2 h) and prolonged (24 h) exposure to GTX at the level of 1 μM or higher compromised BMECs monolayer integrity. Notably, acute exposure was sufficient to disrupt the barrier function in iPSC-derived BMECs, resulting in decreased transendothelial electrical resistance (TEER) and increased fluorescein permeability. Further, our data suggest that such disruption occurred without affecting tight junction complexes, via alteration of cell-matrix interactions, alterations in F-actin distribution, through a protein kinase C-independent signaling. In addition to its effect on the barrier function, we have observed a low permeability of GTX across the BBB. This fact can be partially explained by possible interactions of GTX with membrane proteins. Taken together, this study suggests that GTX may contribute in cerebral invasion processes of Aspergillus fumigatus by altering the blood-brain barrier integrity without disrupting tight junction complexes.  相似文献   

6.
《Cytotherapy》2022,24(5):489-499
Background and aimsWe have previously reported that outgrowth endothelial cells (OECs) restore cerebral endothelial cell integrity through effective homing to the injury site. This study further investigates whether treatment with OECs can restore blood–brain barrier (BBB) function in settings of ischemia-reperfusion injury both in vitro and in vivo.MethodsAn in vitro model of human BBB was established by co-culture of astrocytes, pericytes, and human brain microvascular endothelial cells (HBMECs) before exposure to oxygen-glucose deprivation alone or followed by reperfusion (OGD±R) in the absence or presence of exogenous OECs. Using a rodent model of middle cerebral artery occlusion (MCAO), we further assessed the therapeutic potential of OECs in vivo.ResultsOwing to their prominent antioxidant, proliferative, and migratory properties, alongside their inherent capacity to incorporate into brain vasculature, treatments with OECs attenuated the extent of OGD±R injury on BBB integrity and function, as ascertained by increases in transendothelial electrical resistance and decreases in paracellular flux across the barrier. Similarly, intravenous delivery of OECs also led to better barrier protection in MCAO rats as evidenced by significant decreases in ipsilateral brain edema volumes on day 3 after treatment. Mechanistic studies subsequently showed that treatment with OECs substantially reduced oxidative stress and apoptosis in HBMECs subjected to ischemic damages.ConclusionThis experimental study shows that OEC-based cell therapy restores BBB integrity in an effective manner by integrating into resident cerebral microvascular network, suppressing oxidative stress and cellular apoptosis.  相似文献   

7.
The blood-brain barrier (BBB) formed by brain microvascular endothelial cells (BMVEC) regulates the passage of molecules and leukocytes in and out of the brain. Oxidative stress is a major underlying cause of neurodegenerative and neuroinflammatory disorders and BBB injury associated with them. Using human BMVEC grown on porous membranes covered with basement membrane (BM) matrix (BBB models), we demonstrated that reactive oxygen species (ROS) augmented permeability and monocyte migration across BBB. ROS activated matrix metalloproteinases (MMP-1, -2, and -9) and decreased tissue inhibitors of MMPs (TIMP-1 and -2) in a protein tyrosine kinase (PTK)-dependent manner. Increase in MMPs and PTK activities paralleled degradation of BM protein and enhanced tyrosine phosphorylation of tight junction (TJ) protein. These effects and enhanced permeability/monocyte migration were prevented by inhibitors of MMPs, PTKs, or antioxidant suggesting that oxidative stress caused BBB injury via degradation of BM protein by activated MMPs and by PTK-mediated TJ protein phosphorylation. These findings point to new therapeutic interventions ameliorating BBB dysfunction in neurological disorders such as stroke or neuroinflammation.  相似文献   

8.
Apolipoprotein E (apoE) is a major apolipoprotein in the brain. The ε4 allele of apoE is a major risk factor for Alzheimer disease, and apoE deficiency in mice leads to blood-brain barrier (BBB) leakage. However, the effect of apoE isoforms on BBB properties are as yet unknown. Here, using an in vitro BBB model consisting of brain endothelial cells and pericytes prepared from wild-type (WT) mice, and primary astrocytes prepared from human apoE3- and apoE4-knock-in mice, we show that the barrier function of tight junctions (TJs) was impaired when the BBB was reconstituted with primary astrocytes from apoE4-knock-in mice (apoE4-BBB model). The phosphorylation of occludin at Thr residues and the activation of protein kinase C (PKC)η in mBECs were attenuated in the apoE4-BBB model compared with those in the apoE3-BBB model. The differential effects of apoE isoforms on the activation of PKCη, the phosphorylation of occludin at Thr residues, and TJ integrity were abolished following the treatment with an anti-low density lipoprotein receptor-related protein 1 (LRP1) antibody or a LRP1 antagonist receptor-associated protein. Consistent with the results of in vitro studies, BBB permeability was higher in apoE4-knock-in mice than in apoE3-knock-in mice. Our studies provide evidence that TJ integrity in BBB is regulated by apoE in an isoform-dependent manner.  相似文献   

9.
The blood-brain barrier (BBB) formed by brain microvascular endothelial cells (BMVEC), pericytes and astrocytes controls the transport of ions, peptides and leukocytes in and out of the brain. Tight junctions (TJ) composed of TJ proteins (occludin, claudins and zonula occludens) ensure the structural integrity of the BMVEC monolayer. Neuropathologic studies indicated that the BBB was impaired in alcohol abusers; however, the underlying mechanism of BBB dysfunction remains elusive. Using primary human BMVEC, we previously demonstrated that oxidative stress induced by ethanol (EtOH) metabolism in BMVEC activated myosin light chain kinase (MLCK), resulting in the enhanced phosphorylation of either cytoskeletal or TJ proteins, and in BBB impairment. We proposed that EtOH metabolites stimulated inositol 1,4,5-triphosphate receptor (IP(3)R)-operated intracellular calcium (Ca(2+)) release, thereby causing the activation of MLCK in BMVEC. Indeed, treatment of primary human BMVEC with EtOH or its metabolites resulted in the increased expression of IP(3)R protein and IP(3)R-gated intracellular Ca(2+) release. These functional changes paralleled MLCK activation, phosphorylation of cytoskeletal/TJ proteins, loss of BBB integrity, and enhanced leukocyte migration across BMVEC monolayers. Inhibition of either EtOH metabolism or IP(3)R activation prevented BBB impairment. These findings suggest that EtOH metabolites act as signaling molecules for the activation of MLCK via the stimulation of IP(3)R-gated intracellular Ca(2+) release in BMVEC. These putative events can lead to BBB dysfunction in the setting of alcoholism, and to neuro-inflammatory disorders promoting leukocyte migration across the BBB.  相似文献   

10.
Re-canalization of cerebral vessels in ischemic stroke is pivotal to rescue dysfunctional brain areas that are exposed to moderate hypoxia within the penumbra from irreversible cell death. Goal of the present study was to evaluate the effect of moderate hypoxia followed by reoxygenation (MHR) on the evolution of reactive oxygen species (ROS) and blood-brain barrier (BBB) integrity in brain endothelial cells (BEC). BBB integrity was assessed in BEC in vitro and in microvessels of the guinea pig whole brain in situ preparation. Probes were exposed to MHR (2 hours 67-70 mmHg O2, 3 hours reoxygenation, BEC) or towards occlusion of the arteria cerebri media (MCAO) with or without subsequent reperfusion in the whole brain preparation. In vitro BBB integrity was evaluated using trans-endothelial electrical resistance (TEER) and transwell permeability assays. ROS in BEC were evaluated using 2′,7′-dichlorodihydrofluorescein diacetate (DCF), MitoSox and immunostaining for nitrotyrosine. Tight-junction protein (TJ) integrity in BEC, stainings for nitrotyrosine and FITC-albumin extravasation in the guinea pig brain preparation were assessed by confocal microscopy. Diphenyleneiodonium (DPI) was used to investigate NADPH oxidase dependent ROS evolution and its effect on BBB parameters in BEC. MHR impaired TJ proteins zonula occludens 1 (ZO-1) and claudin 5 (Cl5), decreased TEER, and significantly increased cytosolic ROS in BEC. These events were blocked by the NADPH oxidase inhibitor DPI. MCAO with or without subsequent reoxygenation resulted in extravasation of FITC-albumin and ROS generation in the penumbra region of the guinea pig brain preparation and confirmed BBB damage. BEC integrity may be impaired through ROS in MHR on the level of TJ and the BBB is also functionally impaired in moderate hypoxic conditions followed by reperfusion in a complex guinea pig brain preparation. These findings suggest that the BBB is susceptible towards MHR and that ROS play a key role in this process.  相似文献   

11.
Brain edema remains a challenging obstacle in the management of acute liver failure (ALF). Cytotoxic mechanisms associated with brain edema have been well recognized, but evidence for vasogenic mechanisms in the pathogenesis of brain edema in ALF has been lacking. Recent reports have not only shown a role of matrix metalloproteinase-9 in the pathogenesis of brain edema in experimental ALF but have also found significant alterations in the tight junction elements including occludin and claudin-5, suggesting a vasogenic injury in the blood-brain barrier (BBB) integrity. This article reviews and explores the role of the paracellular tight junction proteins in the increased selective BBB permeability that leads to brain edema in ALF.  相似文献   

12.

Background

Development and maintenance of the blood-brain and blood-retinal barrier is critical for the homeostasis of brain and retinal tissue. Despite decades of research our knowledge of the formation and maintenance of the blood-brain (BBB) and blood-retinal (BRB) barrier is very limited. We have established an in vivo model to study the development and maintenance of these barriers by generating a transgenic zebrafish line that expresses a vitamin D-binding protein fused with enhanced green fluorescent protein (DBP-EGFP) in blood plasma, as an endogenous tracer.

Results

The temporal establishment of the BBB and BRB was examined using this transgenic line and the results were compared with that obtained by injection of fluorescent dyes into the sinus venosus of embryos at various stages of development. We also examined the expression of claudin-5, a component of tight junctions during the first 4 days of development. We observed that the BBB of zebrafish starts to develop by 3 dpf, with expression of claudin-5 in the central arteries preceding it at 2 dpf. The hyaloid vasculature in the zebrafish retina develops a barrier function at 3 dpf, which endows the zebrafish with unique advantages for studying the BRB.

Conclusion

Zebrafish embryos develop BBB and BRB function simultaneously by 3 dpf, which is regulated by tight junction proteins. The Tg(l-fabp:DBP-EGFP) zebrafish will have great advantages in studying development and maintenance of the blood-neural barrier, which is a new application for the widely used vertebrate model.  相似文献   

13.
Maintaining blood-brain barrier integrity and minimizing neuronal injury are critical components of any therapeutic intervention following ischemic stroke. However, a low level of vitamin D hormone is a risk factor for many vascular diseases including stroke. The neuroprotective effects of 1,25(OH)2D3 (vitamin D) after ischemic stroke have been studied, but it is not known whether it prevents ischemic injury to brain endothelial cells, a key component of the neurovascular unit. We analyzed the effect of 1,25(OH)2D3 on brain endothelial cell barrier integrity and tight junction proteins after hypoxia/reoxygenation in a mouse brain endothelial cell culture model that closely mimics many of the features of the blood-brain barrier in vitro. Following hypoxic injury in bEnd.3 cells, 1,25(OH)2D3 treatment prevented the decrease in barrier function as measured by transendothelial electrical resistance and permeability of FITC-dextran (40 kDa), the decrease in the expression of the tight junction proteins zonula occludin-1, claudin-5, and occludin, the activation of NF—kB, and the increase in matrix metalloproteinase-9 expression. These responses were blocked when the interaction of 1,25(OH) )2D3 with the vitamin D receptor (VDR) was inhibited by pyridoxal 5’-phosphate treatment. Our findings show a direct, VDR-mediated, protective effect of 1,25(OH) )2D3 against ischemic injury-induced blood-brain barrier dysfunction in cerebral endothelial cells.  相似文献   

14.
Our laboratory has shown that λ-carrageenan-induced peripheral inflammatory pain (CIP) can alter tight junction (TJ) protein expression and/or assembly leading to changes in blood-brain barrier xenobiotic permeability. However, the role of reactive oxygen species (ROS) and subsequent oxidative stress during CIP is unknown. ROS (i.e., superoxide) are known to cause cellular damage in response to pain/inflammation. Therefore, we examined oxidative stress-associated effects at the blood-brain barrier (BBB) in CIP rats. During CIP, increased staining of nitrosylated proteins was detected in hind paw tissue and enhanced presence of protein adducts containing 3-nitrotyrosine occurred at two molecular weights (i.e., 85 and 44 kDa) in brain microvessels. Tempol, a pharmacological ROS scavenger, attenuated formation of 3-nitrotyrosine-containing proteins in both the hind paw and in brain microvessels when administered 10 min before footpad injection of λ-carrageenan. Similarly, CIP increased 4-hydroxynoneal staining in brain microvessels and this effect was reduced by tempol. Brain permeability to [(14)C]sucrose and [(3)H]codeine was increased, and oligomeric assemblies of occludin, a critical TJ protein, were altered after 3 h CIP. Tempol attenuated both [(14)C]sucrose and [(3)H]codeine brain uptake as well as protected occludin oligomers from disruption in CIP animals, suggesting that ROS production/oxidative stress is involved in modulating BBB functional integrity during pain/inflammation. Interestingly, tempol administration reduced codeine analgesia in CIP animals, indicating that oxidative stress during pain/inflammation may affect opioid delivery to the brain and subsequent efficacy. Taken together, our data show for the first time that ROS pharmacological scavenging is a viable approach for maintaining BBB integrity and controlling central nervous system drug delivery during acute inflammatory pain.  相似文献   

15.

Background

Tight-junction (TJ) protein degradation is a decisive step in hypoxic blood-brain barrier (BBB) breakdown in stroke. In this study we elucidated the impact of acute cerebral ischemia on TJ protein arrangement and the role of the apoptotic effector protease caspase-3 in this context.

Methodology/Principal Findings

We used an in vitro model of the neurovascular unit and the guinea pig whole brain preparation to analyze with immunohistochemical methods the BBB properties and neurovascular integrity. In both methodological approaches we observed rapid TJ protein disruptions after 30 min of oxygen and glucose deprivation or middle cerebral artery occlusion, which were accompanied by strong caspase-3 activation in brain endothelial cells (BEC). Surprisingly only few DNA-fragmentations were detected with TUNEL stainings in BEC. Z-DEVD-fmk, an irreversible caspase-3 inhibitor, partly blocked TJ disruptions and was protective on trans-endothelial electrical resistance.

Conclusions/Significance

Our data provide evidence that caspase-3 is rapidly activated during acute cerebral ischemia predominantly without triggering DNA-fragmentation in BEC. Further we detected fast TJ protein disruptions which could be partly blocked by caspase-3 inhibition with Z-DEVD-fmk. We suggest that the basis for clinically relevant BBB breakdown in form of TJ disruptions is initiated within minutes during ischemia and that caspase-3 contributes to this process.  相似文献   

16.
Brain endothelial cells (ECs) are an important component of the blood-brain barrier (BBB) and play key roles in restricting entrance of possible toxic components and pathogens into the brain. However, identifying endothelial genes that regulate BBB homeostasis remains a time-consuming process. Although somatic genome editing has emerged as a powerful tool for discovery of essential genes regulating tissue homeostasis, its application in brain ECs is yet to be demonstrated in vivo. Here, we used an adeno-associated virus targeting brain endothelium (AAV-BR1) combined with the CRISPR/Cas9 system (AAV-BR1-CRISPR) to specifically knock out genes of interest in brain ECs of adult mice. We first generated a mouse model expressing Cas9 in ECs (Tie2Cas9). We selected endothelial β-catenin (Ctnnb1) gene, which is essential for maintaining adult BBB integrity, as the target gene. After intravenous injection of AAV-BR1-sgCtnnb1-tdTomato in 4-week-old Tie2Cas9 transgenic mice resulted in mutation of 36.1% of the Ctnnb1 alleles, thereby leading to a dramatic decrease in the level of CTNNB1 in brain ECs. Consequently, Ctnnb1 gene editing in brain ECs resulted in BBB breakdown. Taken together, these results demonstrate that the AAV-BR1-CRISPR system is a useful tool for rapid identification of endothelial genes that regulate BBB integrity in vivo.  相似文献   

17.
The blood-brain barrier (BBB) maintains brain homeostasis by limiting entry of substances to the central nervous system through interaction of transmembrane and intracellular proteins that make up endothelial cell tight junctions (TJs). Recently it was shown that the BBB can be modulated by disease pathologies including inflammatory pain. This study examined the effects of chronic inflammatory pain on the functional and molecular integrity of the BBB. Inflammatory pain was induced by injection of complete Freund's adjuvant (CFA) into the right plantar hindpaw in female Sprague-Dawley rats under halothane anesthesia; control animals were injected with saline. Edema and hyperalgesia were assessed by plethysmography and infrared paw-withdrawal latency. At 72 h postinjection, significant edema formation and hyperalgesia were noted in the CFA-treated rats. Examination of permeability of the BBB by in situ perfusion of [14C]sucrose while rats were under pentobarbital anesthesia demonstrated that CFA treatment significantly increased brain sucrose uptake. Western blot analysis of BBB TJ proteins showed no change in expression of zonula occludens-1 (an accessory protein) or actin (a cytoskeletal protein) with CFA treatment. Expression of the transmembrane TJ proteins occludin and claudin-3 and -5 significantly changed with CFA treatment with a 60% decrease in occludin, a 450% increase in claudin-3, and a 615% increase in claudin-5 expression. This study demonstrates that during chronic inflammatory pain, alterations in BBB function are associated with changes in specific transmembrane TJ proteins.  相似文献   

18.
Traumatic brain injury (TBI) is one of the main concerns worldwide as there is still no comprehensive therapeutic intervention. Astrocytic water channel aquaporin-4 (AQP-4) system is closely related to the brain edema, water transport at blood-brain barrier (BBB) and astrocyte function in the central nervous system (CNS). Minocycline, a broad-spectrum semisynthetic tetracycline antibiotic, has shown anti-inflammation, anti-apoptotic, vascular protection and neuroprotective effects on TBI models. Here, we tried to further explore the underlying mechanism of minocycline treatment for TBI, especially the relationship of minocycline and AQP4 during TBI treatment. In present study, we observed that minocycline efficaciously reduces the elevation of AQP4 in TBI mice. Furthermore, minocycline significantly reduced neuronal apoptosis, ameliorated brain edema and BBB disruption after TBI. In addition, the expressions of tight junction protein and astrocyte morphology alteration were optimized by minocycline administration. Similar results were found after treating with TGN-020 (an inhibitor of AQP4) in TBI mice. Moreover, these effects were reversed by cyanamide (CYA) treatment, which notably upregulated AQP4 expression level in vivo. In primary cultured astrocytes, small-interfering RNA (siRNA) AQP4 treatment prevented glutamate-induced astrocyte swelling. To sum up, our study suggests that minocycline improves the functional recovery of TBI through reducing AQP4 level to optimize BBB integrity and astrocyte function, and highlights that the AQP4 may be an important therapeutic target during minocycline treating for TBI.  相似文献   

19.
The blood-brain barrier (BBB) is created by a combination of endothelial cells with tight junctions and astrocytes. One of the key tight junction proteins, zona occludens-1 (ZO-1), has been reported to be stimulated in its expression by insulin and IGF-1. To assess the role of insulin and IGF-1 in endothelial cells in the BBB we have utilized mice with a vascular endothelial cell-specific knockout of the insulin receptor (VENIRKO) and IGF-1 receptor (VENIFARKO). Both of these mice show a normal BBB based on no increase in leakage of Evans blue dye in the brain of these mice basally or after cold injury. Furthermore, the structural integrity of the BBB and blood-retinal barrier (BRB) was intact using the vascular markers lectin B-4 and ZO-1, and both proteins were properly co-localized in both brain and retinal vascular tissue of these mice. These observations indicate that neither insulin nor IGF-1 signaling in vascular endothelial cells is required for development and maintenance of BBB or BRB.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号