首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The spindle checkpoint ensures that newly born cells receive one copy of each chromosome by preventing chromosomes from segregating until they are all correctly attached to the spindle. The checkpoint monitors tension to distinguish between correctly aligned chromosomes and those with both sisters attached to the same spindle pole. Tension arises when sister kinetochores attach to and are pulled toward opposite poles, stretching the chromatin around centromeres and elongating kinetochores. We distinguished between two hypotheses for where the checkpoint monitors tension: between the kinetochores, by detecting alterations in the distance between them, or by responding to changes in the structure of the kinetochore itself. To distinguish these models, we inhibited chromatin stretch by tethering sister chromatids together by binding a tetrameric form of the Lac repressor to arrays of the Lac operator located on either side of a centromere. Inhibiting chromatin stretch did not activate the spindle checkpoint; these cells entered anaphase at the same time as control cells that express a dimeric version of the Lac repressor, which cannot cross link chromatids, and cells whose checkpoint has been inactivated. There is no dominant checkpoint inhibition when sister kinetochores are held together: cells expressing the tetrameric Lac repressor still arrest in response to microtubule-depolymerizing drugs. Tethering chromatids together does not disrupt kinetochore function; chromosomes are successfully segregated to opposite poles of the spindle. Our results indicate that the spindle checkpoint does not monitor inter-kinetochore separation, thus supporting the hypothesis that tension is measured within the kinetochore.  相似文献   

2.
Pericentric chromatin is organized into an intramolecular loop in mitosis   总被引:7,自引:0,他引:7  
BACKGROUND: Cohesin proteins link sister chromatids and provide the basis for tension between bioriented sister chomatids in mitosis. Cohesin is concentrated at the centromere region of the chromosome despite the fact that sister centromeres can be separated by 800 nm in vivo. The function of cohesin at sites of separated DNA is unknown. RESULTS: We provide evidence that the kinetochore promotes the organization of pericentric chromatin into a cruciform in mitosis such that centromere-flanking DNA adopts an intramolecular loop, whereas sister-chromatid arms are paired intermolecularly. Visualization of cohesin subunits by fluorescence microscopy revealed a cylindrical structure that encircles the central spindle and spans the distance between sister kinetochores. Kinetochore assembly at the apex of the loop initiates intrastrand loop formation that extends approximately 25 kb (12.5 kb on either side of the centromere). Two centromere loops (one from each sister chromatid) are stretched between the ends of sister-kinetochore microtubules along the spindle axis. At the base of the loop there is a transition to intermolecular sister-chromatid pairing. CONCLUSIONS: The C loop conformation reveals the structural basis for sister-kinetochore clustering in budding yeast and for kinetochore biorientation and thus resolves the paradox of maximal interstrand separation in regions of highest cohesin concentration.  相似文献   

3.
Stanvitch G  Moore LL 《Genetics》2008,178(1):83-97
The back-to-back geometry of sister kinetochores is essential in preventing loss or damage of chromosomes during mitosis. Kinetochore orientation is generated in part by a process of resolving kinetochores at the centromere (centromere resolution) prior to spindle interactions. Because few of the genes required for centromere resolution are known, we used Caenorhabditis elegans to screen for conditional mutants defective in orienting sister kinetochores during mitosis. C. elegans is ideal for such screens because its chromosomes are holocentric. Here we identified an essential gene, cin-4, required for centromere resolution and for removal of cohesin from sites near sister kinetochores during mitosis. Given that compromised cohesin function restores centromere resolution in the absence of cin-4, CIN-4 likely acts to remove cohesin from the CENP-A chromatin enabling centromere resolution. CIN-4 has a high amino acid identity to the catalytic domain of topoisomerase II, suggesting a partial gene duplication of the C. elegans topoisomerase II gene, top-2. Similar to CIN-4, TOP-2 is also required for centromere resolution; however, the loss of TOP-2 is phenotypically distinct from the loss of CIN-4, suggesting that CIN-4 and TOP-2 are topoisomerase II isoforms that perform separate essential functions in centromere structure and function.  相似文献   

4.
A solid foundation: functional specialization of centromeric chromatin   总被引:17,自引:0,他引:17  
Centromeres provide a distinctive mechanical function for the chromosomes as the site of kinetochore assembly and force generation in mitosis and meiosis. Recent studies show that a unique form of chromatin, based on the histone-H3-like protein CENP-A and homologues, provides a conserved foundation for this mechanical chromatin domain. CENP-A plays a role in templating kinetochore assembly and may be a central element in the epigenetic maintenance of centromere identity. Cohesion at the centromere, intimately linked to kinetochore assembly, is required for integrating spindle forces exerted across the centromere and for establishing the bipolar geometry of sister kinetochores.  相似文献   

5.
Centromeres: old tales and new tools   总被引:2,自引:0,他引:2  
The centromere is a specialised region of the eukaryotic chromosome that directs the equal segregation of sister chromatids into two daughter cells during mitosis. In mitosis, the kinetochores mediate (1) microtubule capture and chromosome alignment at a metaphase plate; (2) the correction of improper microtubule attachments; (3) the maintenance of an active checkpoint until bi-orientation is achieved by the whole complement of chromosomes; (4) the establishment of tension within the centromere which, in turn, contributes to silencing of the spindle checkpoint and triggers the onset of anaphase. In this review, we will analyse how centromeres are organised with respect to chromatin types and arrangements.  相似文献   

6.
When chromosomes are aligned and bioriented at metaphase, the elastic stretch of centromeric chromatin opposes pulling forces exerted on sister kinetochores by the mitotic spindle. Here we show that condensin ATPase activity is an important regulator of centromere stiffness and function. Condensin depletion decreases the stiffness of centromeric chromatin by 50% when pulling forces are applied to kinetochores. However, condensin is dispensable for the normal level of compaction (rest length) of centromeres, which probably depends on other factors that control higher-order chromatin folding. Kinetochores also do not require condensin for their structure or motility. Loss of stiffness caused by condensin-depletion produces abnormal uncoordinated sister kinetochore movements, leads to an increase in Mad2(+) kinetochores near the metaphase plate and delays anaphase onset.  相似文献   

7.
The accuracy of chromosome segregation is enhanced by the spindle assembly checkpoint (SAC). The SAC is thought to monitor two distinct events: attachment of kinetochores to microtubules and the stretch of the centromere between the sister kinetochores that arises only when the chromosome becomes properly bioriented. We examined human cells undergoing mitosis with unreplicated genomes (MUG). Kinetochores in these cells are not paired, which implies that the centromere cannot be stretched; however, cells progress through mitosis. A SAC is present during MUG as cells arrest in response to nocodazole, taxol, or monastrol treatments. Mad2 is recruited to unattached MUG kinetochores and released upon their attachment. In contrast, BubR1 remains on attached kinetochores and exhibits a level of phosphorylation consistent with the inability of MUG spindles to establish normal levels of centromere tension. Thus, kinetochore attachment to microtubules is sufficient to satisfy the SAC even in the absence of interkinetochore tension.  相似文献   

8.
Baumann C  Körner R  Hofmann K  Nigg EA 《Cell》2007,128(1):101-114
We identify PICH (Plk1-interacting checkpoint "helicase"), a member of the SNF2 ATPase family, as an interaction partner and substrate of Plk1. Following phosphorylation of PICH on the Cdk1 site T1063, Plk1 is recruited to PICH and controls its localization. Starting in prometaphase, PICH accumulates at kinetochores and inner centromeres. Moreover, it decorates threads that form during metaphase before increasing in length and progressively diminishing during anaphase. PICH-positive threads connect sister kinetochores and are dependent on tension, sensitive to DNase, and exacerbated in response to premature loss of cohesins or inhibition of topoisomerase II, suggesting that they represent stretched centromeric chromatin. Depletion of PICH causes the selective loss of Mad2 from kinetochores and completely abrogates the spindle checkpoint, resulting in massive chromosome missegregation. These data identify PICH as a novel essential component of checkpoint signaling. We propose that PICH binds to catenated centromere-related DNA to monitor tension developing between sister kinetochores.  相似文献   

9.
BACKGROUND: Proteins conserved from yeast to human hold two sister chromatids together. The failure to form cohesion in the S phase results in premature separation of chromatids in G2/M. Mitotic kinetochores free from microtubules or the lack of tension are known to activate spindle checkpoint. RESULTS: The loss of chromatid cohesion in fission yeast mutants (mis4-242 and rad21-K1) leads to the activation of Mad2- and Bub1-dependent checkpoint, possibly due to a diminished microtubule-kinetochore interaction. Bub1, a checkpoint kinase, localizes briefly at early mitotic kinetochores in wild-type, whereas the cohesion mutation greatly increases the duration of kinetochore localization. Bub1 is bound to the central centromere region of mitotic cells. These cohesion mutants are hypersensitive to a tubulin poison and are synthetic lethal with dis1 and bir1/cut17, which are defective in microtubule-kinetochore interaction. The formation of specialized centromere chromatin containing CENP-A does not require cohesion. Dominant-negative noncleavable Rad21 fails to activate checkpoint but blocks sister chromatid separation and full spindle elongation in anaphase. CONCLUSIONS: Mis4 and Rad21 (budding yeast Scc2 and Scc1 homologs, respectively) act in establishing the normal spindle-kinetochore interaction in early mitosis and inhibit sister chromatid separation until the cleavage of Rad21 in anaphase. Checkpoint directly or indirectly monitors the states of cohesion in early mitosis. Full spindle extension occurs with unequal nuclear division in cohesion mutants in the absence of Mad2.  相似文献   

10.
Craig JM  Choo KH 《Chromosoma》2005,114(4):252-262
Eukaryotic chromosomes have many challenges to overcome between DNA replication and sister chromatid segregation. If these challenges are not met, cell death or unregulated cell division (cancer) may result. During prophase, chromosomes condense, the nuclear membrane breaks down and cohesins are removed from chromosome arms. In prometaphase, initial spindle attachments are made by sister kinetochores followed by correction of erroneous attachments, centromere oscillation between spindle poles and congression towards the cell's equator. In metaphase, all chromosomes attain stable bipolar spindle attachments and align at the metaphase plate, ready for the metaphase–anaphase transition when all ties between sister chromatids are broken. This review concentrates on recent developments that have revealed the intricacies of these processes. We now know more about how the mechanisms of cohesin removal differ between prophase and the metaphase–anaphase transition, the processes for detection and correction of improper spindle-kinetochore attachments and the concept that tension between sister kinetochores is the driving factor for satisfying the spindle checkpoint. We are also beginning to gain some understanding of the mechanisms behind the co-segregation of sister chromatids at the first meiotic division. Review related to the 15th International Chromosome Conference (ICC XV), held in September 2004, Brunel University, London, UK  相似文献   

11.
How sister kinetochores attach to microtubules from opposite spindle poles during mitosis (bi-orientation) remains poorly understood. In yeast, the ortholog of the Aurora B-INCENP protein kinase complex (Ipl1-Sli15) may have a role in this crucial process, because it is necessary to prevent attachment of sister kinetochores to microtubules from the same spindle pole. We investigated IPL1 function in cells that cannot replicate their chromosomes but nevertheless duplicate their spindle pole bodies (SPBs). Kinetochores detach from old SPBs and reattach to old and new SPBs with equal frequency in IPL1+ cells, but remain attached to old SPBs in ipl1 mutants. This raises the possibility that Ipl1-Sli15 facilitates bi-orientation by promoting turnover of kinetochore-SPB connections until traction of sister kinetochores toward opposite spindle poles creates tension in the surrounding chromatin.  相似文献   

12.
The eukaryote centromere was initially defined cytologically as the primary constriction on vertebrate chromosomes and functionally as a chromosomal feature with a relatively low recombination frequency. Structurally, the centromere is the foundation for sister chromatid cohesion and kinetochore formation. Together these provide the basis for interaction between chromosomes and the mitotic spindle, allowing the efficient segregation of sister chromatids during cell division. Although centromeric (CEN) DNA is highly variable between species, in all cases the functional centromere forms in a chromatin domain defined by the substitution of histone H3 with the centromere specific H3 variant centromere protein A (CENP-A), also known as CENH3. Kinetochore formation and function are dependent on a variety of regional epigenetic modifications that appear to result in a loop chromatin conformation providing exterior CENH3 domains for kinetochore construction, and interior heterochromatin domains essential for sister chromatid cohesion. In addition pericentric heterochromatin provides a structural element required for spindle assembly checkpoint function. Advances in our understanding of CENH3 biology have resulted in a model where kinetochore location is specified by the epigenetic mark left after dilution of CENH3 to daughter DNA strands during S phase. This results in a self-renewing and self-reinforcing epigenetic state favorable to reliably mark centromere location, as well as to provide the optimal chromatin configuration for kinetochore formation and function.  相似文献   

13.
Sister chromatid cohesion provides the mechanistic basis, together with spindle microtubules, for generating tension between bioriented chromosomes in metaphase. Pericentric chromatin forms an intramolecular loop that protrudes bidirectionally from the sister chromatid axis. The centromere lies on the surface of the chromosome at the apex of each loop. The cohesin and condensin structural maintenance of chromosomes (SMC) protein complexes are concentrated within the pericentric chromatin, but whether they contribute to tension-generating mechanisms is not known. To understand how pericentric chromatin is packaged and resists tension, we map the position of cohesin (SMC3), condensin (SMC4), and pericentric LacO arrays within the spindle. Condensin lies proximal to the spindle axis and is responsible for axial compaction of pericentric chromatin. Cohesin is radially displaced from the spindle axis and confines pericentric chromatin. Pericentric cohesin and condensin contribute to spindle length regulation and dynamics in metaphase. Together with the intramolecular centromere loop, these SMC complexes constitute a molecular spring that balances spindle microtubule force in metaphase.  相似文献   

14.
The spindle checkpoint delays the onset of anaphase until all pairs of sister chromatids are attached to the mitotic spindle. The checkpoint could monitor the attachment of microtubules to kinetochores, the tension that results from the two sister chromatids attaching to opposite spindle poles, or both. We tested the role of tension by allowing cells to enter mitosis without a prior round of DNA replication. The unreplicated chromatids are attached to spindle microtubules but are not under tension since they lack a sister chromatid that could attach to the opposite pole. Because the spindle checkpoint is activated in these cells, we conclude that the absence of tension at the yeast kinetochore is sufficient to activate the spindle checkpoint in mitosis.  相似文献   

15.
Centromeric (CEN) chromatin is placed under mechanical tension and stretches as kinetochores biorient on the mitotic spindle. This deformation could conceivably provide a readout of biorientation to error correction mechanisms that monitor kinetochore–spindle interactions, but whether CEN chromatin acts in a tensiometer capacity is unresolved. Here, we report observations linking yeast Topoisomerase II (Top2) to both CEN mechanics and assessment of interkinetochore tension. First, in top2-4 and sumoylation-resistant top2-SNM mutants CEN chromatin stretches extensively during biorientation, resulting in increased sister kinetochore separation and preanaphase spindle extension. Our data indicate increased CEN stretching corresponds with alterations to CEN topology induced in response to tension. Second, Top2 potentiates aspects of the tension checkpoint. Mutations affecting the Mtw1 kinetochore protein activate Ipl1 kinase to detach kinetochores and induce spindle checkpoint arrest. In mtw1top2-4 and mtw1top2-SNM mutants, however, kinetochores are resistant to detachment and checkpoint arrest is attenuated. For top2-SNM cells, CEN stretching and checkpoint attenuation occur even in the absence of catenation linking sister chromatids. In sum, Top2 seems to play a novel role in CEN compaction that is distinct from decatenation. Perturbations to this function may allow weakened kinetochores to stretch CENs in a manner that mimics tension or evades Ipl1 surveillance.  相似文献   

16.
Molecular analysis of kinetochore-microtubule attachment in budding yeast   总被引:27,自引:0,他引:27  
He X  Rines DR  Espelin CW  Sorger PK 《Cell》2001,106(2):195-206
The complex series of movements that mediates chromosome segregation during mitosis is dependent on the attachment of microtubules to kinetochores, DNA-protein complexes that assemble on centromeric DNA. We describe the use of live-cell imaging and chromatin immunoprecipitation in S. cerevisiae to identify ten kinetochore subunits, among which are yeast homologs of microtubule binding proteins in animal cells. By analyzing conditional mutations in several of these proteins, we show that they are required for the imposition of tension on paired sister kinetochores and for correct chromosome movement. The proteins include both molecular motors and microtubule associated proteins (MAPs), implying that motors and MAPs function together in binding chromosomes to spindle microtubules.  相似文献   

17.
In mitotic vertebrate tissue cells, chromosome congression to the spindle equator in prometaphase and segregation to the poles in anaphase depend on the movements of kinetochores at their kinetochore microtubule attachment sites. To test if kinetochores sense tension to control their states of movement poleward (P) and away from the pole (AP), we applied an external force to the spindle in preanaphase newt epithelial cells by stretching chromosome arms with microneedles. For monooriented chromosomes (only one kinetochore fiber), an abrupt stretch of an arm away from the attached pole induced the single attached kinetochore to persist in AP movement at about 2 μm/min velocity, resulting in chromosome movement away from the pole. When the stretch was reduced or the needle removed, the kinetochore switched to P movement at about 2 μm/min and pulled the chromosome back to near the premanipulation position within the spindle. For bioriented chromosomes (sister kinetochores attached to opposite poles) near the spindle equator, stretching one arm toward a pole placed the kinetochore facing away from the direction of stretch under tension and the sister facing toward the stretch under reduced tension or compression. Kinetochores under increased tension exhibited prolonged AP movement while kinetochores under reduced tension or compression exhibited prolonged P movement, moving the centromeres at about 2 μm/min velocities off the metaphase plate in the direction of stretch. Removing the needle resulted in centromere movement back to near the spindle equator at similar velocities. These results show that tension controls the direction of kinetochore movement and associated kinetochore microtubule assembly/disassembly to position centromeres within the spindle of vertebrate tissue cells. High tension induces persistent AP movement while low tension induces persistent P movement. The velocity of P and AP movement appears to be load independent and governed by the molecular mechanisms which attach kinetochores to the dynamic ends of kinetochore microtubules.  相似文献   

18.
The spindle checkpoint transiently prevents cell cycle progression of cells that have incurred errors or failed to complete steps during mitosis, including those involving kinetochore function. The molecular nature of the primary signal transmitted from defective kinetochores and how it is detected by the spindle checkpoint are unknown. We report biochemical evidence that Bub1, a component of the spindle checkpoint, associates with centromere (CEN) DNA via Skp1, a core kinetochore component in budding yeast. The Skp1's interaction with Bub1 is required for the mitotic delay induced by kinetochore tension defects, but not for the arrest induced by spindle depolymerization, kinetochore assembly defects, or Mps1 overexpression. We propose that the Skp1-Bub1 interaction is important for transmitting a signal to the spindle checkpoint pathway when insufficient tension is present at kinetochores.  相似文献   

19.
Cohesin maintains sister chromatid cohesion until its Rad21/Scc1/Mcd1 is cleaved by separase during anaphase. DNA topoisomerase II (topo II) maintains the proper topology of chromatid DNAs and is essential for chromosome segregation. Here we report direct observations of mitotic progression in individual HeLa cells after functional disruptions of hRad21, NIPBL, a loading factor for hRad21, and topo II alpha,beta by RNAi and a topo II inhibitor, ICRF-193. Mitosis is delayed in a Mad2-dependent manner after disruption of either or both cohesin and topo II. In hRad21 depletion, interphase pericentric architecture becomes aberrant, and anaphase is virtually permanently delayed as preseparated chromosomes are misaligned on the metaphase spindle. Topo II disruption perturbs centromere organization leading to intense Bub1, but no Mad2, on kinetochores and sustains a Mad2-dependent delay in anaphase onset with persisting securin. Thus topo II impinges upon centromere/kinetochore function. Disruption of topo II by RNAi or ICRF-193 overrides the mitotic delay induced by cohesin depletion: sister centromeres are aligned and anaphase spindle movements occur. The ensuing accumulation of catenations in preseparated sister chromatids may overcome the reduced tension arising from cohesin depletion, causing the override. Cohesin and topo II have distinct, yet coordinated functions in metaphase alignment.  相似文献   

20.
In higher eukaryotic cells, the spindle forms along with chromosome condensation in mitotic prophase. In metaphase, chromosomes are aligned on the spindle with sister kinetochores facing toward the opposite poles. In anaphase A, sister chromatids separate from each other without spindle extension, whereas spindle elongation takes place during anaphase B. We have critically examined whether such mitotic stages also occur in a lower eukaryote, Schizosaccharomyces pombe. Using the green fluorescent protein tagging technique, early mitotic to late anaphase events were observed in living fission yeast cells. S. pombe has three phases in spindle dynamics, spindle formation (phase 1), constant spindle length (phase 2), and spindle extension (phase 3). Sister centromere separation (anaphase A) rapidly occurred at the end of phase 2. The centromere showed dynamic movements throughout phase 2 as it moved back and forth and was transiently split in two before its separation, suggesting that the centromere was positioned in a bioriented manner toward the poles at metaphase. Microtubule-associating Dis1 was required for the occurrence of constant spindle length and centromere movement in phase 2. Normal transition from phase 2 to 3 needed DNA topoisomerase II and Cut1 but not Cut14. The duration of each phase was highly dependent on temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号