首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Randomly amplified polymorphic DNA (RAPD) PCR was used to analyze the temporal and spatial intraspecific diversity of 208 Vibrio vulnificus strains isolated from Galveston Bay water and oysters at five different sites between June 2000 and June 2001. V. vulnificus was not detected during the winter months (December through February). The densities of V. vulnificus in water and oysters were positively correlated with water temperature. Cluster analysis of RAPD PCR profiles of the 208 V. vulnificus isolates revealed a high level of intraspecific diversity among the strains. No correlation was found between the intraspecific diversity among the isolates and sampling site or source of isolation. After not being detected during the winter months, the genetic diversity of V. vulnificus strains first isolated in March was 0.9167. Beginning in April, a higher level of intraspecific diversity (0.9933) and a major shift in population structure were observed among V. vulnificus isolates. These results suggest that a great genetic diversity of V. vulnificus strains exists in Galveston Bay water and oysters and that the population structure of this species is linked to changes in environmental conditions, especially temperature.  相似文献   

2.
Streptococcus pneumoniae can be divided into many strains, each a distinct set of isolates sharing similar core and accessory genomes, which co-circulate within the same hosts. Previous analyses suggested the short-term vaccine-associated dynamics of S. pneumoniae strains may be mediated through multi-locus negative frequency-dependent selection (NFDS), which maintains accessory loci at equilibrium frequencies. Long-term simulations demonstrated NFDS stabilised clonally-evolving multi-strain populations through preventing the loss of variation through drift, based on polymorphism frequencies, pairwise genetic distances and phylogenies. However, allowing symmetrical recombination between isolates evolving under multi-locus NFDS generated unstructured populations of diverse genotypes. Replication of the observed data improved when multi-locus NFDS was combined with recombination that was instead asymmetrical, favouring deletion of accessory loci over insertion. This combination separated populations into strains through outbreeding depression, resulting from recombinants with reduced accessory genomes having lower fitness than their parental genotypes. Although simplistic modelling of recombination likely limited these simulations’ ability to maintain some properties of genomic data as accurately as those lacking recombination, the combination of asymmetrical recombination and multi-locus NFDS could restore multi-strain population structures from randomised initial populations. As many bacteria inhibit insertions into their chromosomes, this combination may commonly underlie the co-existence of strains within a niche.Subject terms: Population genetics, Microbial ecology, Microbial genetics, Bacterial genetics, Phylogenetics  相似文献   

3.
Studies of predator–prey systems in both aquatic and terrestrial environments have shown that grazers structure the intraspecific diversity of prey species, given that the prey populations are phenotypically variable. Populations of phytoplankton have traditionally considered comprising only low intraspecific variation, hence selective grazing as a potentially structuring factor of both genetic and phenotypic diversity has not been comprehensively studied. In this study, we compared strain specific growth rates, production of polyunsaturated aldehydes, and chain length of the marine diatom Skeletonema marinoi in both grazer and non-grazer conditions by conducting monoclonal experiments. Additionally, a mesocosm experiment was performed with multiclonal experimental S. marinoi populations exposed to grazers at different levels of copepod concentration to test effects of grazer presence on diatom diversity in close to natural conditions. Our results show that distinct genotypes of a geographically restricted population exhibit variable phenotypic traits relevant to grazing interactions such as chain length and growth rates. Grazer presence affected clonal richness and evenness of multiclonal Skeletonema populations in the mesocosms, likely in conjunction with intrinsic interactions among the diatom strains. Only the production of polyunsaturated aldehydes was not affected by grazer presence. Our findings suggest that grazing can be an important factor structuring diatom population diversity in the sea and emphasize the importance of considering clonal differences when characterizing species and their role in nature.  相似文献   

4.
The benefits of “bet‐hedging” strategies have been assumed to be the main cause of phenotypic diversity in biological populations. However, in their recent work, Healey et al ( 2016 ) provide experimental support for negative frequency‐dependent selection (NFDS) as an alternative driving force of diversity. NFDS favors rare phenotypes over common ones, resulting in an evolutionarily stable mixture of phenotypes that is not necessarily optimal for population growth.  相似文献   

5.
Diversity has a key role in the dynamics and resilience of communities and both interspecific (species) and intraspecific (genotypic) diversity can have important effects on community structure and function. However, a critical and unresolved question for understanding the ecology of a community is to what extent these two levels of diversity are functionally substitutable? Here we show, for a mixed-species biofilm community composed of Pseudomonas aeruginosa, P. protegens and Klebsiella pneumoniae, that increased interspecific diversity reduces and functionally substitutes for intraspecific diversity in mediating tolerance to stress. Biofilm populations generated high percentages of genotypic variants, which were largely absent in biofilm communities. Biofilms with either high intra- or interspecific diversity were more tolerant to SDS stress than biofilms with no or low diversity. Unexpectedly, genotypic variants decreased the tolerance of biofilm communities when experimentally introduced into the communities. For example, substituting P. protegens wild type with its genotypic variant within biofilm communities decreased SDS tolerance by twofold, apparently due to perturbation of interspecific interactions. A decrease in variant frequency was also observed when biofilm populations were exposed to cell-free effluents from another species, suggesting that extracellular factors have a role in selection against the appearance of intraspecific variants. This work demonstrates the functional substitution of inter- and intraspecific diversity for an emergent property of biofilms. It also provides a potential explanation for a long-standing paradox in microbiology, in which morphotypic variants are common in laboratory grown biofilm populations, but are rare in diverse, environmental biofilm communities.  相似文献   

6.
Understanding the mechanisms that maintain genetic diversity within a population remains a primary challenge for evolutionary biology. Of the processes capable of maintaining variation, negative frequency-dependent selection (NFDS), under which rare phenotypes (or alleles) enjoy a high fitness advantage, is suggested to be the most powerful. However, few experimental studies have confirmed that this process operates in nature. Although a lot of suggestive evidence has separately been provided in various polymorphic systems, these are not enough to prove the existence of NFDS in each system. Here we present a general review of NFDS and point out some problems with previous works to develop reasonable alternative research strategies for testing NFDS. In the second half of this paper, we focused on NFDS in the common bluetail damselfly, Ischnura senegalensis, that shows female-limited genetic polymorphism. We show (1) the proximate causal mechanisms of the frequency-dependent process, (2) frequency-dependent inter-morph interaction, (3) rare morph advantage and (4) morph frequency oscillations in a natural population. These results provide unequivocal empirical support for NFDS in a natural system.  相似文献   

7.
Widely distributed species often show strong phylogeographic structure, with lineages potentially adapted to different biotic and abiotic conditions. The success of an invasion process may thus depend on the intraspecific identity of the introduced propagules. However, pest risk analyses are usually performed without accounting for intraspecific diversity. In this study, we developed bioclimatic models using MaxEnt and boosted regression trees approaches, to predict the potential distribution in Europe of six economically important Tephritid pests (Ceratitis fasciventris (Bezzi), Bactrocera oleae (Rossi), Anastrepha obliqua (Macquart), Anastrepha fraterculus (Wiedemann), Rhagoletis pomonella (Walsh) and Bactrocera cucurbitae (Coquillet)). We considered intraspecific diversity in our risk analyses by independently modeling the distributions of conspecific lineages. The six species displayed different potential distributions in Europe. A strong signal of intraspecific climate envelope divergence was observed in most species. In some cases, conspecific lineages differed strongly in potential distributions suggesting that taxonomic resolution should be accounted for in pest risk analyses. No models (lineage- and species-based approaches) predicted high climatic suitability in the entire invaded range of B. oleae—the only species whose intraspecific identity of invading populations has been elucidated—in California. Host availability appears to play the most important role in shaping the geographic range of this specialist pest. However, climatic suitability values predicted by species-based models are correlated with population densities of B. oleae globally reported in California. Our study highlights how classical taxonomic boundaries may lead to under- or overestimation of the potential pest distributions and encourages accounting for intraspecific diversity when assessing the risk of biological invasion.  相似文献   

8.
Self-incompatibility, a common attribute of plant development, forms a classical paradigm of balancing selection in natural populations, in particular negative frequency-dependent selection. Under negative frequency-dependent selection population genetics theory predicts that the S-locus, being in command of self-incompatibility, keeps numerous alleles in equal frequencies demonstrating a wide allelic range. Moreover, while natural populations exhibit a higher within population genetic diversity, a reduction of population differentiation and increase of effective migration rate is expected in comparison to neutral loci. Allelic frequencies were investigated in terms of distribution and genetic structure at the gametophytic self-incompatibility locus in five wild cherry (Prunus avium L.) populations. Comparisons were also made between the differentiation at the S-locus and at the SSR loci. Theoretical expectations under balancing selection were congruent to the results observed. The S-locus showed broad multiplicity (16 S-alleles), high genetic diversity, and allelic isoplethy. Genetic structure at the self-incompatibility locus was almost four times lower than at 11 nSSR loci. Analysis of molecular variance revealed that only 5?% of the total genetic variation concerns differentiation among populations. In conclusion, the wealth of S-allelic diversity found in natural wild cherry populations in Greece is useful not only in advancing basic population genetics research of self-incompatibility systems in wild cherry but also in the development of breeding programs.  相似文献   

9.
We investigated how density‐dependent processes and subsequent variation in nutritional condition of individuals influenced both timing and duration of sexual segregation and selection of resources. During 1999–2001, we experimentally created two population densities of North American elk (Cervus elaphus), a high‐density population at 20 elk/km2, and a low‐density population at 4 elk/km2 to test hypotheses relative to timing and duration of sexual segregation and variation in selection of resources. We used multi‐response permutation procedures to investigate patterns of sexual segregation, and resource selection functions to document differences in selection of resources by individuals in high‐ and low‐density populations during sexual segregation and aggregation. The duration of sexual segregation was 2 months longer in the high‐density population and likely was influenced by individuals in poorer nutritional condition, which corresponded with later conception and parturition, than at low density. Males and females in the high‐density population overlapped in selection of resources to a greater extent than in the low‐density population, probably resulting from density‐dependent effects of increased intraspecific competition and lower availability of resources.  相似文献   

10.
Landscape fragmentation usually has a considerable effect on the genetic and demographic viability of most species because it reduces population size and increases isolation among populations. This situation provokes loss of genetic diversity and increased inbreeding that can lead to population or species extinctions. Some studies also show that landscape fragmentation may have no effect on or even positive consequences for species genetic diversity. The protected tarantula, Brachypelma vagans, exhibits a particular situation in the Mexican Caribbean, which has experienced high lowland and coastal fragmentation because of recent increases in agricultural, urban and touristic development. This modified landscape structure creates favorable conditions for establishment of B. vagans populations in rural settlements. Populations of this tarantula have high densities of individuals, principally females and juveniles, and gene dispersion is assumed by the rare males. Within this context, we studied the influence of natural and anthropogenic fragmentation on the genetic diversity of six B. vagans populations (five continental, one insular), together with their spatial organization. Our approach used seven inter simple sequence repeat markers, which are highly polymorphic markers. The 76 loci selected revealed high genetic variability for continental populations and a low, but not critical situation, for the insular population. We detected a good level of gene exchange among continental populations, and an evident and recent isolation of the island population. This species exhibits a metapopulation structure in the lowlands with numerous local populations where mature females exhibit high birth site fidelity. We conclude that this protected species does not exhibit characteristics to warrant its current conservation status, and we propose complete revision of the ecological and genetic situation for B. vagans in particular, and for all species within the genus Brachypelma in general.  相似文献   

11.
The endangered Yangtze finless porpoise is found in the middle and lower reaches of the Yangtze River and its adjoining big lakes. To explore the major histocompatibility complex (MHC) genetic diversity and allelic distribution patterns across its range, we investigated variation at DQB exon 2. From 76 porpoises, we identified 18 DQB sequences. The freshwater Yangtze populations had much higher allelic diversity than marine populations. Among these freshwater populations, the middle-reach population had higher allelic diversity than the lower-reach population. The high DQB diversity level, relative to that of a neutral mtDNA locus, suggests that balancing selection is acting at the DQB gene and that rapid evolution and local positive selection play critical roles in generating and retaining high MHC diversity in the freshwater population. As the balancing selection might be driven by environmental pathogens, we suggest that maintaining MHC variation should be a high priority in the conservation and management of this endangered population, especially as an ex situ conservation strategy.  相似文献   

12.
The ecological success of ants has made them abundant in most environments, yet inter‐ and intraspecific competition usually limit nest density for a given population. Most invasive ant populations circumvent this limitation through a supercolonial structure, eliminating intraspecific competition through a loss of nestmate recognition and lack of aggression toward non‐nestmates. Native to South America, Brachymyrmex patagonicus has recently invaded many locations worldwide, with invasive populations described as extremely large and dense. Yet, in contrast with most invasive ants, this species exhibits a multicolonial structure, whereby each colony occupies a single nest. Here, we investigated the interplay between genetic diversity, chemical recognition, and aggressive behaviors in an invasive population of B. patagonicus. We found that, in its invasive range, this species reaches a high nest density with individual colonies located every 2.5 m and that colony boundaries are maintained through aggression toward non‐nestmates. This recognition and antagonism toward non‐nestmates is mediated by chemical differentiation between colonies, as different colonies exhibit distinct chemical profiles. We highlighted that the level of aggression between colonies is correlated with their degree of genetic difference, but not their overall chemical differentiation. This may suggest that only a few chemical compounds influence nestmate recognition in this species or that weak chemical differences are sufficient to elicit aggression. Overall, this study demonstrates that invasive ant populations can reach high densities despite a multicolonial structure with strong aggression between colonies, raising questions about the factors underlying their ecological success and mitigating negative consequences of competitive interactions.  相似文献   

13.
Ché M. Elkin  Mary L. Reid 《Oikos》2010,119(7):1070-1080
We tested whether mountain pine beetles Dendroctonus ponderosae, an insect herbivore that exhibits outbreak population dynamics, modifies its habitat selection behaviour in response to density‐dependent environmental shifts. Using an individual‐based habitat selection model, we formulated predictions of how beetle population density will influence breeding habitat selectivity. Our model predicted that beetles should be more selective at intermediate densities than at low or high densities. The mechanisms influencing optimal selectivity differed between low and high density populations. In low density populations, breeding site availability was the primary factor affecting selectivity, whereas intraspecific competition and the reliability of habitat quality cues were important in high density populations. We tested our model predictions in natural populations that encompassed a range of beetle population densities. Our empirical findings supported the two key predictions from our model. First, habitat quality was more variable in high density populations. Second, individuals in high density populations were less selective compared to beetles from intermediate density populations. Our results demonstrate that beetles alter their habitat selection behaviour in response to density‐dependent shifts. We propose that the behavioural changes we identified may influence the rate at which beetle populations transition between density states.  相似文献   

14.
Cultivation-dependent and -independent methods were combined to investigate the microdiversity of a Polynucleobacter subcluster population (Betaproteobacteria) numerically dominating the bacterioplankton of a small, humic freshwater pond. Complete coverage of the population by cultivation allowed the analysis of microdiversity beyond the phylogenetic resolution of ribosomal markers. Fluorescent in situ hybridization with two probes specific for the narrow subcluster C (PnecC bacteria) of the Polynucleobacter cluster revealed that this population contributed up to 60% to the total number of bacterioplankton cells. Microdiversity was investigated for a date at which the highest relative numbers of PnecC were observed. A clone library of fragments of the ribosomal operon (16S rRNA genes, complete 16S-23S internal transcribed spacer 1 [ITS1], partial 23S rRNA genes) amplified with universal bacterial primers was constructed. The library was stepwise screened for fragments from PnecC bacteria and for different ITS genotypes of PnecC bacteria. The isolated PnecC strains were characterized by sequencing of the 16S rRNA genes and the ITS1. Both the clone library and the established culture collection contained only the same three ITS genotypes, and one of them contributed 46% to the entire number of clones. Genomic fingerprinting of the isolates with several methods always resulted in the detection of only one fingerprint per ITS genotype. We conclude that a Polynucleobacter population with an extremely low intraspecific diversity and an uneven structure numerically dominated the bacterioplankton community in the investigated habitat. This low intraspecific diversity is in strong contrast to the high intraspecific diversities found in marine bacterial populations.  相似文献   

15.
Little is known about intraspecific variation in fitness performance in response to thermal stress among natural populations and how this relates to evolutionary aspects of species ecology. In this study, population growth rate (PGR; a composite fitness measure) varied among five natural Chironomus riparius populations sampled across a climatic gradient when subjected to three temperature treatments reflecting the typical range of summer habitat temperatures (20, 24 and 28 °C). The variation could be explained by a complex model including effects of genetic drift, genetic diversity and adaptation to average temperature during the warmest month, in addition to experimental temperature. All populations suffered a decrease in PGR from 20 to 28 °C and ΔPGR was significantly correlated with the respective average habitat temperature in the warmest month—populations from warmer areas showing lower ΔPGR. This implies that long-term exposure to higher temperatures in the warmest month (the key reproductive period for C. riparius) is likely to be a key selective force influencing fitness at higher temperatures. A comparison of phenotypic divergence and neutral genetic differentiation revealed that one phenotypic trait—the number of fertile egg masses per female—appeared to be under positive selection in some populations. Our findings support a role for response to temperature selection along a climatic gradient and suggest population history is a key determinant of intraspecific fitness variation. We stress the importance of integrating different types of data (climatic, experimental, genetic) in order to understand the effects of global climate change on biodiversity.  相似文献   

16.
While morphological variation across geographical clines has been well documented, it is often unclear whether such changes enhance individual performance to local environments. We examined whether the damselfish Acanthochromis polyacanthus display functional changes in swimming phenotype across a 40-km cline in wave-driven water motion on the Great Barrier Reef, Australia. A. polyacanthus populations displayed strong intraspecific variation in swimming morphology and performance that matched local levels of water motion: individuals on reefs subject to high water motion displayed higher aspect-ratio fins and faster swimming speeds than conspecifics on sheltered reefs. Remarkably, intraspecific variation within A. polyacanthus spanned over half the diversity seen among closely related damselfish species from the same region. We find that local selection driven by wave-induced abiotic stress is an overarching ecological mechanism shaping the inter- and intraspecific locomotor diversity of coral reef fishes.  相似文献   

17.
Changing drainage patterns have played a significant role in the evolution of western North American aquatic taxa. Relict dace, Relictus solitarius, is a Great Basin endemic cyprinid with a native range that is restricted to four valleys in eastern Nevada. Relictus solitarius now occupies spring systems that are the remnants of Pleistocene-era pluvial lakes, although it may have occurred in the area for much longer. Here we use mitochondrial DNA sequence data to assess range-wide genetic diversity of R. solitarius, and to estimate divergence times to determine whether pluvial drainages played an important role in shaping intraspecific genetic diversity. Genetic diversification within R. solitarius began during the early to mid-Pleistocene, separating populations within two sets of valleys (Butte/Ruby and Goshute/Steptoe). Additional diversification in each of the two sets of valleys occurred more recently, in the mid- to late-Pleistocene. Holocene desiccation has further isolated populations, and each population sampled contains unique mtDNA haplotypes. Pluvial drainage patterns did contribute to the genetic structure observed within R. solitarius, but most of the intraspecific diversification does not appear to be associated with the Last Glacial Maximum. Holocene desiccation has also contributed to the observed genetic structure. The relict dace populations we sampled are all unique, and we recommend that future management efforts should strive to preserve as much of the genetic diversity as possible.  相似文献   

18.
Background and AimsThe observed positive diversity effect on ecosystem functioning has rarely been assessed in terms of intraspecific trait variability within populations. Intraspecific phenotypic variability could stem both from underlying genetic diversity and from plasticity in response to environmental cues. The latter might derive from modifications to a plant’s epigenome and potentially last multiple generations in response to previous environmental conditions. We experimentally disentangled the role of genetic diversity and diversity of parental environments on population productivity, resistance against environmental fluctuations and intraspecific phenotypic variation.MethodsA glasshouse experiment was conducted in which different types of Arabidopsis thaliana populations were established: one population type with differing levels of genetic diversity and another type, genetically identical, but with varying diversity levels of the parental environments (parents grown in the same or different environments). The latter population type was further combined, or not, with experimental demethylation to reduce the potential epigenetic diversity produced by the diversity of parental environments. Furthermore, all populations were each grown under different environmental conditions (control, fertilization and waterlogging). Mortality, productivity and trait variability were measured in each population.Key ResultsParental environments triggered phenotypic modifications in the offspring, which translated into more functionally diverse populations when offspring from parents grown under different conditions were brought together in mixtures. In general, neither the increase in genetic diversity nor the increase in diversity of parental environments had a remarkable effect on productivity or resistance to environmental fluctuations. However, when the epigenetic variation was reduced via demethylation, mixtures were less productive than monocultures (i.e. negative net diversity effect), caused by the reduction of phenotypic differences between different parental origins.ConclusionsA diversity of environmental parental origins within a population could ameliorate the negative effect of competition between coexisting individuals by increasing intraspecific phenotypic variation. A diversity of parental environments could thus have comparable effects to genetic diversity. Disentangling the effect of genetic diversity and that of parental environments appears to be an important step in understanding the effect of intraspecific trait variability on coexistence and ecosystem functioning.  相似文献   

19.
Negative frequency‐dependent selection (NFDS), where rare types are favoured by selection, can maintain diversity. However, the ecological processes that mediate NFDS are often not known. Male guppies (Poecilia reticulata) exhibit extreme diversity of colour patterning and, in a previous field experiment, rare morphs had a survival advantage. Here, we test the hypothesis that predators impose NFDS because they are efficient at capturing familiar prey morphs, but are less efficient at capturing unfamiliar morphs. Over a series of trials, we presented Rivulus hartii, a natural predator of guppies, with male guppies with the same colour patterning (A trials); then, for a second series of trials, we presented the rivulus with guppies with a new colour pattern (B trials). The success of rivulus at capturing guppies on the first attack increased over successive A trials. First attack success decreased significantly for the early B trials, and then increased during successive B trials, eventually reaching the same level as in the best A trials. This experiment demonstrates that learning, perhaps through long‐term search image formation, plays a role in predation success on familiar vs. unfamiliar prey morphs. These results support the hypothesis that predator learning contributes to the maintenance of the extreme male guppy polymorphism seen in nature.  相似文献   

20.
The role of larval intraspecific competition in laboratory populations ofDrosophila subobscura was investigated. Mortality is density-independent during the first 3 days after hatching but becomes density dependent as development proceeds to pupation. Although total biomass per patch was independent of initial egg density, competition betweenDrosophila larvae leads to the formation of smaller pupae. This resulted in a population that was dominated by suppressed individuals. Development rate ofD. subobscura larvae was not affected by high larval densities. Smaller pupae give rise to females with fewer eggs in their ovarioles. A simple simulation model, predicting the effects of intraspecific competition on the fecundity of the nextDrosophila generation is described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号