首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Respiratory syncytial virus (RSV) infects nearly all infants by age 2 and is a leading cause of bronchiolitis. RSV may employ several mechanisms to induce immune dysregulation, including dendritic cell (DC) modulation during the immune response to RSV.

Methods and Findings

Expansion of cDC and pDC by Flt3L treatment promoted an anti-viral response with reduced pathophysiology characterized by decreased airway hyperreactivity, reduced Th2 cytokines, increased Th1 cytokines, and a reduction in airway inflammation and mucus overexpression. These protective aspects of DC expansion could be completely reversed by depleting pDCs during the RSV infection. Expansion of DCs by Flt3L treatment enhanced in CD8+ T cell responses, which was reversed by depletion of pDC.

Conclusions

These results indicate that a balance between cDC and pDC in the lung and its lymph nodes is crucial for the outcome of a pulmonary infection. Increased pDC numbers induced by Flt3L treatment have a protective impact on the nature of the overall immune environment.  相似文献   

2.

Background

Respiratory syncytial virus (RSV) is a leading cause of bronchiolitis and pneumonia in young children worldwide, and no vaccine is currently available. Inactivated RSV vaccines tested in the 1960''s led to vaccine-enhanced disease upon viral challenge, which has undermined RSV vaccine development. RSV infection is increasingly being recognized as an important pathogen in the elderly, as well as other individuals with compromised pulmonary immunity. A safe and effective inactivated RSV vaccine would be of tremendous therapeutic benefit to many of these populations.

Principal Findings

In these preclinical studies, a mouse model was utilized to assess the efficacy of a novel, nanoemulsion-adjuvanted, inactivated mucosal RSV vaccine. Our results demonstrate that NE-RSV immunization induced durable, RSV-specific humoral responses, both systemically and in the lungs. Vaccinated mice exhibited increased protection against subsequent live viral challenge, which was associated with an enhanced Th1/Th17 response. In these studies, NE-RSV vaccinated mice displayed no evidence of Th2 mediated immunopotentiation, as has been previously described for other inactivated RSV vaccines.

Conclusions

These studies indicate that nanoemulsion-based inactivated RSV vaccination can augment viral-specific immunity, decrease mucus production and increase viral clearance, without evidence of Th2 immune mediated pathology.  相似文献   

3.

Background

Severe respiratory syncytial virus infection (RSV) during infancy has been shown to be a major risk factor for the development of subsequent wheeze. However, the reasons for this link remain unclear. The objective of this research was to determine the consequences of early exposure to RSV and allergen in the development of subsequent airway hyperreactivity (AHR) using a developmental time point in the mouse that parallels that of the human neonate.

Methods

Weanling mice were sensitized and challenged with ovalbumin (Ova) and/or infected with RSV. Eight days after the last allergen challenge, various pathophysiological endpoints were examined.

Results

AHR in response to methacholine was enhanced only in weanling mice exposed to Ova and subsequently infected with RSV. The increase in AHR appeared to be unrelated to pulmonary RSV titer. Total bronchoalveolar lavage cellularity in these mice increased approximately two-fold relative to Ova alone and was attributable to increases in eosinophil and lymphocyte numbers. Enhanced pulmonary pathologies including persistent mucus production and subepithelial fibrosis were observed. Interestingly, these data correlated with transient increases in TNF-α, IFN-γ, IL-5, and IL-2.

Conclusion

The observed changes in pulmonary structure may provide an explanation for epidemiological data suggesting that early exposure to allergens and RSV have long-term physiological consequences. Furthermore, the data presented here highlight the importance of preventative strategies against RSV infection of atopic individuals during neonatal development.  相似文献   

4.

Background

The integrin CD11c is known as a marker for dendritic cells and has recently been described on T cells following lymphotropic choriomeningitis virus infection, a systemic infection affecting a multitude of organs. Here, we characterise CD11c bearing T cells in a murine model of localised pulmonary infection with respiratory syncytial virus (RSV).

Methods

Mice were infected intranasally with RSV and expression of β2 integrins and T lymphocyte activation markers were monitored by flow cytometry. On day 8 post RSV infection CD11c+ CD8+ and CD11c- CD8+ T cells were assessed for cytokine production, cytotoxic activity and migration. Expression of CD11c mRNA in CD8+ T cells was assessed by quantitative PCR.

Results

Following RSV infection CD11c+ CD8+ T cells were detectable in the lung from day 4 onwards and accounted for 45.9 ± 4.8% of CD8+ T cells on day 8 post infection, while only few such cells were present in mediastinal lymph nodes, spleen and blood. While CD11c was virtually absent from CD8+ T cells in the absence of RSV infection, its mRNA was expressed in CD8+ T cells of both naïve and RSV infected mice. CD11c+, but not CD11c-, CD8+ T cells showed signs of recent activation, including up-regulation of CD11a and expression of CD11b and CD69 and were recruited preferentially to the lung. In addition, CD11c+ CD8+ T cells were the major subset responsible for IFNγ production, induction of target cell apoptosis in vitro and reduction of viral titres in vivo.

Conclusion

CD11c is a useful marker for detection and isolation of pulmonary antiviral cytotoxic T cells following RSV infection. It identifies a subset of activated, virus-specific, cytotoxic T cells that exhibit potent antiviral effects in vivo.  相似文献   

5.

Background

Early-life respiratory viral infections, notably with respiratory syncytial virus (RSV), increase the risk of subsequent development of childhood asthma. The purpose of this study was to assess whether early-life infection with a species-specific model of RSV and subsequent allergen exposure predisposed to the development of features of asthma.

Methods

We employed a unique combination of animal models in which BALB/c mice were neonatally infected with pneumonia virus of mice (PVM, which replicates severe RSV disease in human infants) and following recovery, were intranasally sensitised with ovalbumin. Animals received low-level challenge with aerosolised antigen for 4 weeks to elicit changes of chronic asthma, followed by a single moderate-level challenge to induce an exacerbation of inflammation. We then assessed airway inflammation, epithelial changes characteristic of remodelling, airway hyperresponsiveness (AHR) and host immunological responses.

Results

Allergic airway inflammation, including recruitment of eosinophils, was prominent only in animals that had recovered from neonatal infection with PVM and then been sensitised and chronically challenged with antigen. Furthermore, only these mice exhibited an augmented Th2-biased immune response, including elevated serum levels of anti-ovalbumin IgE and IgG1 as well as increased relative expression of Th2-associated cytokines IL-4, IL-5 and IL-13. By comparison, development of AHR and mucous cell change were associated with recovery from PVM infection, regardless of subsequent allergen challenge. Increased expression of IL-25, which could contribute to induction of a Th2 response, was demonstrable in the lung following PVM infection. Signalling via the IL-4 receptor α chain was crucial to the development of allergic inflammation, mucous cell change and AHR, because all of these were absent in receptor-deficient mice. In contrast, changes of remodelling were evident in mice that received chronic allergen challenge, regardless of neonatal PVM infection, and were not dependent on signalling via the IL-4 receptor.

Conclusion

In this mouse model, interaction between early-life viral infection and allergen sensitisation/challenge is essential for development of the characteristic features of childhood asthma, including allergic inflammation and a Th2-biased immune response.  相似文献   

6.

Background

Respiratory syncytial virus (RSV) is the leading cause of respiratory infections in children, elderly, and immunocompromised individuals. Severe infection is associated with short- and long-term morbidity including pneumonia, recurrent wheezing, and abnormal pulmonary function, and several lines of evidence indicate that impaired adaptive immune responses during infection are critical in the pathophysiology of RSV-mediated disease. Myeloid Dendritic cells (mDCs) play a pivotal role in shaping antiviral immune responses in the respiratory tract; however, few studies have examined the interactions between RSV and individual mDC subsets. In this study, we examined the effect of RSV on the functional response of primary mDC subsets (BDCA-1+ and BDCA-3+) isolated from peripheral blood.

Methods

BDCA-1+ and BDCA-3+ mDCs were isolated from the peripheral blood of healthy adults using FACS sorting. Donor-matched BDCA-1+ and BDCA-3+ mDCs were infected with RSV at a multiplicity of infection (MOI) of 5 for 40 hours. After infection, cells were analyzed for the expression of costimulatory molecules (CD86, CD80, and PD-L1), cytokine production, and the ability to stimulate allogenic CD4+ T cell proliferation.

Results

Both BDCA-1+ and BDCA-3+ mDCs were susceptible to infection with RSV and demonstrated enhanced expression of CD86, and the inhibitory costimulatory molecules CD80 and PD-L1. Compared to BDCA-3+ mDCs, RSV-infected BDCA-1+ mDC produced a profile of cytokines and chemokines predominantly associated with pro-inflammatory responses (IL-1β, IL-6, IL-12, MIP-1α, and TNF-α), and both BDCA-1+ and BDCA-3+ mDCs were found to produce IL-10. Compared to uninfected mDCs, RSV-infected BDCA-1+ and BDCA-3+ mDCs demonstrated a reduced capacity to stimulate T cell proliferation.

Conclusions

RSV infection induces a distinct pattern of costimulatory molecule expression and cytokine production by BDCA-1+ and BDCA-3+ mDCs, and impairs their ability to stimulate T cell proliferation.The differential expression of CD86 and pro-inflammatory cytokines by highly purified mDC subsets in response to RSV provides further evidence that BDCA-1+ and BDCA-3+ mDCs have distinct roles in coordinating the host immune response during RSV infection. Findings of differential expression of PD-L1 and IL-10 by infected mDCs, suggests possible mechanisms by which RSV is able to impair adaptive immune responses.  相似文献   

7.

Background

Respiratory Syncytial Virus (RSV) infection is usually restricted to the respiratory epithelium. Few studies have documented the presence of RSV in the systemic circulation, however there is no consistent information whether virus detection in the blood correlates with disease severity.

Methods

Balb/c mice were inoculated with live RSV, heat-inactivated RSV or medium. A subset of RSV-infected mice was treated with anti-RSV antibody 72 h post-inoculation. RSV RNA loads were measured by PCR in peripheral blood from day 1-21 post-inoculation and were correlated with upper and lower respiratory tract viral loads, the systemic cytokine response, lung inflammation and pulmonary function. Immunohistochemical staining was used to define the localization of RSV antigens in the respiratory tract and peripheral blood.

Results

RSV RNA loads were detected in peripheral blood from day 1 to 14 post-inoculation, peaked on day 5 and significantly correlated with nasal and lung RSV loads, airway obstruction, and blood CCL2 and CXCL1 expression. Treatment with anti-RSV antibody reduced blood RSV RNA loads and improved airway obstruction. Immunostaining identified RSV antigens in alveolar macrophages and peripheral blood monocytes.

Conclusions

RSV RNA was detected in peripheral blood upon infection with live RSV, followed a time-course parallel to viral loads assessed in the respiratory tract and was significantly correlated with RSV-induced airway disease.  相似文献   

8.

Background

CD8 T cells assist in the clearance of respiratory syncytial virus (RSV) infection from the lungs. However, disease after RSV infection is in part caused by excessive T cell activity, and a balance is therefore needed between beneficial and harmful cellular immune responses. The chemokine CCL3 (MIP1α) is produced following RSV infection and is broadly chemotactic for both T cells and natural killer (NK) cells. We therefore investigated its role in RSV disease.

Methodology/Principal Findings

CCL3 was produced biphasically, in both the early (day 1) and late (day 6–7) stages of infection. CCL3 depletion did not alter the recruitment of natural killer (NK) cells to the lungs during the early stage, but depletion did affect the later adaptive phase. While fewer T cells were recruited to the lungs of either CCL3 knockout or anti-CCL3 treated RSV infected mice, more RSV-specific pro-inflammatory T cells were recruited to the lung when CCL3 responses were impaired. This increase in RSV-specific pro-inflammatory T cells was accompanied by increased weight loss and illness after RSV infection.

Conclusions/Significance

CCL3 regulates the balance of T cell populations in the lung and can alter the outcome of RSV infection. Understanding the role of inflammatory mediators in the recruitment of pathogenic T cells to the lungs may lead to novel methods to control RSV disease.  相似文献   

9.
Gao DY  Jin GD  Yao BL  Zhang DH  Gu LL  Lu ZM  Gong Q  Lone YC  Deng Q  Zhang XX 《PloS one》2010,5(12):e14237

Background

The hepatitis C virus (HCV) Alternate Reading Frame Protein (ARFP or F protein) presents a double-frame shift product of the HCV core gene. We and others have previously reported that the specific antibodies against the F protein could be raised in the sera of HCV chronically infected patients. However, the specific CD4+ T cell responses against the F protein during HCV infection and the pathological implications remained unclear. In the current study, we screened the MHC class II-presenting epitopes of the F protein through HLA-transgenic mouse models and eventually validated the specific CD4+ T cell responses in HCV chronically infected patients.

Methodology

DNA vaccination in HLA-DR1 and-DP4 transgenic mouse models, proliferation assay to test the F protein specific T cell response, genotyping of Chronic HCV patients and testing the F-peptide stimulated T cell response in the peripheral blood mononuclear cell (PBMC) by in vitro expansion and interferon (IFN)- γ intracellular staining.

Principal Findings

At least three peptides within HCV F protein were identified as HLA-DR or HLA-DP4 presenting epitopes by the proliferation assays in mouse models. Further study with human PBMCs evidenced the specific CD4+ T cell responses against HCV F protein as well in patients chronically infected with HCV.

Conclusion

The current study provided the evidence for the first time that HCV F protein could elicit specific CD4+ T cell response, which may provide an insight into the immunopathogenesis during HCV chronic infection.  相似文献   

10.

Background

Recently, CD4+IL-17A+ T helper 17 (Th17) cells were identified and reported in several diseased states, including autoimmunity, infection and various peripheral nervous system tumors. However, the presence of Th17 in glia-derived tumors of the central nervous system has not been studied.

Methodology/Principal Findings

In this report, we demonstrate that mRNA expression for the Th17 cell cytokine IL-17A, as well as Th17 cells, are present in human glioma. The mRNA expression for IL-17A in glioma was recapitulated in an immunocompetent mouse model of malignant glioma. Furthermore, the presence of Th17 cells was confirmed in both human and mouse glioma. Interestingly, some Th17 cells present in mouse glioma co-expressed the Th1 and Th2 lineage markers, IFN-γ and IL-4, respectively, but predominantly co-expressed the Treg lineage marker FoxP3.

Conclusions

These data confirm the presence of Th17 cells in glia-derived CNS tumors and provide the rationale for further investigation into the role of Th17 cells in malignant glioma.  相似文献   

11.

Background

Th1 and Th17 responses are known to play an important role in immunity to pulmonary tuberculosis (PTB), although little is known about their role in extrapulmonary forms of tuberculosis (TB).

Methods

To identify the role of Th1, Th17, and Th22 cells in multi-focal TB lymphadenitis (TBL), we examined mycobacteria–specific immune responses in the whole blood of individuals with PTB (n = 20) and compared them with those with TBL (n = 25).

Results

Elevated frequencies of CD4+ T cells expressing IFN- γ, TNF-α, and IL-2 were present in individuals with TBL compared with those with PTB at baseline and in response to ESAT-6 and CFP-10. Similarly, increased frequencies of CD4+ T cells expressing IL-17A, IL-17F, and IFN-γ were also present in individuals with TBL at baseline and following ESAT-6 and CFP-10 stimulation although no significant difference in frequency of Th22 cells was observed. Finally, frequencies of Th1 (but not Th17) cells exhibited a significantly negative correlation with natural regulatory T cell frequencies at baseline.

Conclusions

Multi-focal TB lymphadenitis is therefore characterized by elevated frequencies of Th1 and Th17 cells, indicating that Th1 and Th17 responses in TB disease are probably correlates of disease severity rather than of protective immunity.  相似文献   

12.

Background

In mammalian vertebrates, the cytokine interleukin (IL)-12 consists of a heterodimer between p35 and p40 subunits whereas interleukin-23 is formed by a heterodimer between p19 and p40 subunits. During an immune response, the balance between IL-12 and IL-23 can depend on the nature of the pathogen associated molecular pattern (PAMP) recognized by, for example TLR2, leading to a preferential production of IL-23. IL-23 production promotes a Th17-mediated immune response characterized by the production of IL-17A/F and several chemokines, important for neutrophil recruitment and activation. For the cold blooded vertebrate common carp, only the IL-12 subunits have been described so far.

Methodology/Principal Findings

Common carp is the natural host of two protozoan parasites: Trypanoplasma borreli and Trypanosoma carassii. We found that these parasites negatively affect p35 and p40a gene expression in carp. Transfection studies of HEK293 and carp macrophages show that T. carassii-derived PAMPs are agonists of carp TLR2, promoting p19 and p40c gene expression. The two protozoan parasites induce different immune responses as assessed by gene expression and histological studies. During T. carassii infections, in particular, we observed a propensity to induce p19 and p40c gene expression, suggestive of the formation of IL-23. Infections with T. borreli and T. carassii lead to an increase of IFN-γ2 gene expression whereas IL-17A/F2 gene expression was only observed during T. carasssii infections. The moderate increase in the number of splenic macrophages during T. borreli infection contrasts the marked increase in the number of splenic neutrophilic granulocytes during T. carassii infection, along with an increased gene expression of metalloproteinase-9 and chemokines.

Conclusion/Significance

This is the first study that provides evidence for a Th17-like immune response in fish in response to infection with a protozoan parasite.  相似文献   

13.

Background

Two different Th2 subsets have been defined recently on the basis of IL-5 expression – an IL-5+Th2 subset and an IL-5Th2 subset in the setting of allergy. However, the role of these newly described CD4+ T cells subpopulations has not been explored in other contexts.

Methods

To study the role of the Th2 subpopulation in a chronic, tissue invasive parasitic infection (lymphatic filariasis), we examined the frequency of IL-5+IL-4+IL-13+ CD4+ T cells and IL-5IL-4 IL-13+ CD4+ T cells in asymptomatic, infected individuals (INF) and compared them to frequencies (Fo) in filarial-uninfected (UN) individuals and to those with filarial lymphedema (CP).

Results

INF individuals exhibited a significant increase in the spontaneously expressed and antigen-induced Fo of both Th2 subpopulations compared to the UN and CP. Interestingly, there was a positive correlation between the Fo of IL-5+Th2 cells and the absolute eosinophil and neutrophil counts; in addition there was a positive correlation between the frequency of the CD4+IL-5Th2 subpopulation and the levels of parasite antigen – specific IgE and IgG4 in INF individuals. Moreover, blockade of IL-10 and/or TGFβ demonstrated that each of these 2 regulatory cytokines exert opposite effects on the different Th2 subsets. Finally, in those INF individuals cured of infection by anti-filarial therapy, there was a significantly decreased Fo of both Th2 subsets.

Conclusions

Our findings suggest that both IL-5+ and IL-5Th2 cells play an important role in the regulation of immune responses in filarial infection and that these two Th2 subpopulations may be regulated by different cytokine-receptor mediated processes.  相似文献   

14.

Background

Within one week following peroral high dose infection with Toxoplasma (T.) gondii, susceptible mice develop non-selflimiting acute ileitis due to an underlying Th1-type immunopathology. The role of the innate immune receptor nucleotide-oligomerization-domain-2 (NOD2) in mediating potential extra-intestinal inflammatory sequelae including the brain, however, has not been investigated so far.

Methodology/Principal Findings

Following peroral infection with 100 cysts of T. gondii strain ME49, NOD2-/- mice displayed more severe ileitis and higher small intestinal parasitic loads as compared to wildtype (WT) mice. However, systemic (i.e. splenic) levels of pro-inflammatory cytokines such as TNF-α and IFN-γ were lower in NOD2-/- mice versus WT controls at day 7 p.i. Given that the immunopathological outcome might be influenced by the intestinal microbiota composition, which is shaped by NOD2, we performed a quantitative survey of main intestinal bacterial groups by 16S rRNA analysis. Interestingly, Bifidobacteria were virtually absent in NOD2-/- but not WT mice, whereas differences in remaining bacterial species were rather subtle. Interestingly, more distinct intestinal inflammation was accompanied by higher bacterial translocation rates to extra-intestinal tissue sites such as liver, spleen, and kidneys in T. gondii infected NOD2-/- mice. Strikingly, intracerebral inflammatory foci could be observed as early as seven days following T. gondii infection irrespective of the genotype of animals, whereas NOD2-/- mice exhibited higher intracerebral parasitic loads, higher F4/80 positive macrophage and microglia numbers as well as higher IFN-γ mRNA expression levels as compared to WT control animals.

Conclusion/Significance

NOD2 signaling is involved in protection of mice from T. gondii induced acute ileitis. The parasite-induced Th1-type immunopathology at intestinal as well as extra-intestinal sites including the brain is modulated in a NOD2-dependent manner.  相似文献   

15.

Background

Factors determining the onset and severity of chronic obstructive pulmonary disease remain poorly understood. Previous studies demonstrated that airway surface dehydration in βENaC-overexpressing (βENaC-Tg) mice on a mixed genetic background caused either neonatal mortality or chronic obstructive lung disease suggesting that the onset of lung disease was modulated by the genetic background.

Methods

To test this hypothesis, we backcrossed βENaC-Tg mice onto two inbred strains (C57BL/6 and BALB/c) and studied effects of the genetic background on neonatal mortality, airway ion transport and airway morphology. Further, we crossed βENaC-Tg mice with CFTR-deficient mice to validate the role of CFTR in early lung disease.

Results

We demonstrate that the C57BL/6 background conferred increased CFTR-mediated Cl secretion, which was associated with decreased mucus plugging and mortality in neonatal βENaC-Tg C57BL/6 compared to βENaC-Tg BALB/c mice. Conversely, genetic deletion of CFTR increased early mucus obstruction and mortality in βENaC-Tg mice.

Conclusions

We conclude that a decrease or absence of CFTR function in airway epithelia aggravates the severity of early airway mucus obstruction and related mortality in βENaC-Tg mice. These results suggest that genetic or environmental factors that reduce CFTR activity may contribute to the onset and severity of chronic obstructive pulmonary disease and that CFTR may serve as a novel therapeutic target.  相似文献   

16.

Background

Idiopathic pulmonary fibrosis is a devastating as yet untreatable disease. We demonstrated recently the predominant role of the NLRP3 inflammasome activation and IL-1β expression in the establishment of pulmonary inflammation and fibrosis in mice.

Methods

The contribution of IL-23 or IL-17 in pulmonary inflammation and fibrosis was assessed using the bleomycin model in deficient mice.

Results

We show that bleomycin or IL-1β-induced lung injury leads to increased expression of early IL-23p19, and IL-17A or IL-17F expression. Early IL-23p19 and IL-17A, but not IL-17F, and IL-17RA signaling are required for inflammatory response to BLM as shown with gene deficient mice or mice treated with neutralizing antibodies. Using FACS analysis, we show a very early IL-17A and IL-17F expression by RORγt+ γδ T cells and to a lesser extent by CD4αβ+ T cells, but not by iNKT cells, 24 hrs after BLM administration. Moreover, IL-23p19 and IL-17A expressions or IL-17RA signaling are necessary to pulmonary TGF-β1 production, collagen deposition and evolution to fibrosis.

Conclusions

Our findings demonstrate the existence of an early IL-1β-IL-23-IL-17A axis leading to pulmonary inflammation and fibrosis and identify innate IL-23 and IL-17A as interesting drug targets for IL-1β driven lung pathology.  相似文献   

17.

Objective

There is limited epidemiological data on the seasonality of respiratory syncytial virus (RSV) infection in subtropical climates, such as in Taiwan. This study aimed to assess RSV seasonality among children ≤24 months of age in Taiwan. We also assessed factors (gestational age [GA], chronologic age [CA], and bronchopulmonary dysplasia [BPD]) associated with RSV-associated hospitalization in preterm infants to confirm the appropriateness of the novel Taiwanese RSV prophylactic policy.

Study Design

From January 2000 to August 2010, 3572 children aged ≤24-months were admitted to Taipei Mackay Memorial Hospital due to RSV infection. The monthly RSV-associated hospitalization rate among children aged ≤24 months was retrospectively reviewed. Among these children, 378 were born preterm. The associations between GA, CA, and BPD and the incidence of RSV-associated hospitalization in the preterm infants were assessed.

Results

In children aged ≤24 months, the monthly distribution of RSV-associated hospitalization rates revealed a prolonged RSV season with a duration of 10 months. Infants with GAs ≤32 weeks and those who had BPD had the highest rates of RSV hospitalization (P<0.001). Preterm infants were most vulnerable to RSV infection within CA 9 months.

Conclusions

Given that Taiwan has a prolonged (10-month) RSV season, the American Academy of Pediatrics'' recommendations for RSV prophylaxis are not directly applicable. The current Taiwanese guidelines for RSV prophylaxis, which specify palivizumab injection (a total six doses until CA 8–9 months) for preterm infants (those born before 286/7 weeks GA or before 356/7 weeks GA with BPD), are appropriate. This prophylaxis strategy may be applicable to other countries/regions with subtropical climates.  相似文献   

18.
K Ni  S Li  Q Xia  N Zang  Y Deng  X Xie  Z Luo  Y Luo  L Wang  Z Fu  E Liu 《PloS one》2012,7(7):e41104

Background

Regulatory T cells (Treg cells), which are essential for regulation of immune response to respiratory syncytial virus (RSV) infection, are promoted by pharyngeal commensal pneumococcus. The effects of pharyngeal microflora disruption by antibiotics on airway responsiveness and relative immune responses after RSV infection have not been clarified.

Methods

Female BALB/c mice (aged 3 weeks) were infected with RSV and then treated with either oral antibiotics or oral double distilled water (ddH2O) from 1 d post infection (pi). Changes in pharyngeal microflora were analyzed after antibiotic treatment for 7 d and 14 d. At 8 d pi and 15 d pi, the inflammatory cells in bronchoalveolar lavage fluid (BALF) were investigated in combination with tests of pulmonary histopathology, airway hyperresponsiveness (AHR), pulmonary and splenic Treg cells responses. Pulmonary Foxp3 mRNA expression, IL-10 and TGF-β1 in BALF and lung homogenate were investigated at 15 d pi. Ovalbumin (OVA) challenge was used to induce AHR after RSV infection.

Results

The predominant pharyngeal commensal, Streptococcus, was cleared by antibiotic treatment for 7 d. Same change also existed after antibiotic treatment for 14 d. After RSV infection, AHR was promoted by antibiotic treatment at 15 d pi. Synchronous decreases of pulmonary Treg cells, Foxp3 mRNA and TGF-β1 were detected. Similar results were observed under OVA challenge.

Conclusions

After RSV infection, antibiotic treatment cleared pharyngeal commensal bacteria such as Streptococcus, which consequently, might induce AHR and decrease pulmonary Treg cells.  相似文献   

19.

Background

Environmental exposure to respiratory syncytial virus (RSV) is a leading cause of respiratory infections in infants, but it remains unknown whether this infection is transmitted transplacentally from the lungs of infected mothers to the offspring. We sought to test the hypothesis that RSV travels from the respiratory tract during pregnancy, crosses the placenta to the fetus, persists in the lung tissues of the offspring, and modulates pre- and postnatal expression of growth factors, thereby predisposing to airway hyperreactivity.

Methodology

Pregnant rats were inoculated intratracheally at midterm using recombinant RSV expressing red fluorescent protein (RFP). Viral RNA was amplified by RT-PCR and confirmed by sequencing. RFP expression was analyzed by flow cytometry and viral culture. Developmental and pathophysiologic implications of prenatal infection were determined by analyzing the expression of genes encoding critical growth factors, particularly neurotrophic factors and receptors. We also measured the expression of key neurotransmitters and postnatal bronchial reactivity in vertically infected lungs, and assessed their dependence on neurotrophic signaling using selective biological or chemical inhibition.

Principal Findings

RSV genome was found in 30% of fetuses, as well as in the lungs of 40% of newborns and 25% of adults. RFP expression was also shown by flow cytometry and replicating virus was cultured from exposed fetuses. Nerve growth factor and its TrkA receptor were upregulated in RSV- infected fetal lungs and co-localized with increased cholinergic innervation. Acetylcholine expression and smooth muscle response to cholinergic stimulation increased in lungs exposed to RSV in utero and reinfected after birth, and blocking TrkA signaling inhibited both effects.

Conclusions/Significance

Our data show transplacental transmission of RSV from mother to offspring and persistence of vertically transmitted virus in lungs after birth. Exposure to RSV in utero is followed by dysregulation of neurotrophic pathways predisposing to postnatal airway hyperreactivity upon reinfection with the virus.  相似文献   

20.

Background

Childhood hospitalization related to asthma remains at historically high levels, and its incidence is on the rise world-wide. Previously, we have demonstrated that aldose reductase (AR), a regulatory enzyme of polyol pathway, is a major mediator of allergen-induced asthma pathogenesis in mouse models. Here, using AR null (AR-/-) mice we have investigated the effect of AR deficiency on the pathogenesis of ragweed pollen extract (RWE)-induced allergic asthma in mice and also examined the efficacy of enteral administration of highly specific AR inhibitor, fidarestat.

Methods

The wild type (WT) and AR-/- mice were sensitized and challenged with RWE to induce allergic asthma. AR inhibitor, fidarestat was administered orally. Airway hyper-responsiveness was measured in unrestrained animals using whole body plethysmography. Mucin levels and Th2 cytokine in broncho-alveolar lavage (BAL) were determined using mouse anti-Muc5A/C ELISA kit and multiplex cytokine array, respectively. Eosinophils infiltration and goblet cells were assessed by H&E and periodic acid Schiff (PAS)-staining of formalin-fixed, paraffin-embedded lung sections. T regulatory cells were assessed in spleen derived CD4+CD25+ T cells population.

Results

Deficiency of AR in mice led to significantly decreased PENH, a marker of airway hyper-responsiveness, metaplasia of airway epithelial cells and mucus hyper-secretion following RWE-challenge. This was accompanied by a dramatic decrease in infiltration of eosinophils into sub-epithelium of lung as well as in BAL and release of Th2 cytokines in response to RWE-challenge of AR-/- mice. Further, enteral administration of fidarestat significantly prevented eosinophils infiltration, airway hyper-responsiveness and also markedly increased population of T regulatory (CD4+CD25+FoxP3+) cells as compared to RWE-sensitized and challenged mice not treated with fidarestat.

Conclusion

Our results using AR-/- mice strongly suggest the role of AR in allergic asthma pathogenesis and effectiveness of oral administration of AR inhibitor in RWE-induced asthma in mice supports the use of AR inhibitors in the treatment of allergic asthma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号