首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tribenuron-methyl is the active substance of the herbicide used for weed control in crops. The aim of this study was to investigate differences in the metabolic response of seeds, seedlings and leaves of Centaurea cyanus L., depending on the degree of resistance to tribenuron-methyl. Changes in the values of selected biochemical and physiological parameters (germination index, chemical composition, photochemical efficiency of photosystem II and the emission spectra of blue-green fluorescence) presented herein make it possible to determine the differences between cornflower biotypes with various types of resistance to the tested herbicide. Moreover, differences in the chemical composition of dry seeds between biotypes susceptible and resistant to tribenuron-methyl were observed before using the herbicide. The degree of resistance to the herbicide—resistant or susceptible, but not the types of this resistance-mutational or metabolic, can be distinguished on the basis of the presented parameters. These findings allow for early diagnosis of the resistance of cornflower to tribenuron-methyl. Additionally, we suggest that the described parameters might be used as physiochemical markers for early estimation of weed resistance to various types of herbicide. The presented conclusions are especially important for agricultural practice.  相似文献   

2.
Plant herbicides inhibit specific enzymes of biosynthetic metabolism, such as acetyl-coenzyme A carboxylase (ACCase) and acetolactate synthase (ALS). Herbicide resistance can be caused by point mutations at the binding domains, catalytic sites and other regions within multimeric enzymes. Direct-injection electrospray mass spectrometry was used for high-throughput metabolic fingerprinting for finding significant differences among biotypes in response to herbicide application. A Mexican biotype of wild oat (Avena fatua) that displays multiple resistances to ACCase- and ALS-inhibiting herbicides was characterized. The dose–response test showed that the double-resistant biotype had a resistance index of 3.58 for pinoxaden and 3.53 for mesosulfuron-methyl. Resistance was accompanied by characteristic mutations at the site of action: an I-1781-L substitution occurred in the ACCase enzyme and an S-653-N mutation was identified within the ALS enzyme. Other mutations were also detected in the genes of the Mexican biotypes. The ionomic fingerprint showed that the multiple-resistant biotype had a markedly different metabolic pattern under control conditions and that this difference was accentuated after herbicide treatment. This demonstrates that single changes of amino acid sequences can produce several holistic modifications in the metabolism of resistant plants compared to susceptible plants. We conclude that in addition to genetic resistance, additional mechanisms of metabolic adaptation and detoxification can occur in multiple-resistant weed plants.  相似文献   

3.
Strong selection from herbicides has led to the rapid evolution of herbicide‐resistant weeds, greatly complicating weed management efforts worldwide. In particular, overreliance on glyphosate, the active ingredient in RoundUp®, has spurred the evolution of resistance to this herbicide in ≥40 species. Previously, we reported that Conyza canadensis (horseweed) has evolved extreme resistance to glyphosate, surviving at 40× the original 1× effective dosage. Here, we tested for underlying fitness effects of glyphosate resistance to better understand whether resistance could persist indefinitely in this self‐pollinating, annual weed. We sampled seeds from a single maternal plant (“biotype”) at each of 26 horseweed populations in Iowa, representing nine susceptible biotypes (S), eight with low‐level resistance (LR), and nine with extreme resistance (ER). In 2016 and 2017, we compared early growth rates and bolting dates of these biotypes in common garden experiments at two sites near Ames, Iowa. Nested ANOVAs showed that, as a group, ER biotypes attained similar or larger rosette size after 6 weeks compared to S or LR biotypes, which were similar to each other in size. Also, ER biotypes bolted 1–2 weeks earlier than S or LR biotypes. These fitness‐related traits also varied among biotypes within the same resistance category, and time to bolting was inversely correlated with rosette size across all biotypes. Disease symptoms affected 40% of all plants in 2016 and 78% in 2017, so we did not attempt to measure lifetime fecundity. In both years, the frequency of disease symptoms was greatest in S biotypes and similar in LR versus ER biotypes. Overall, our findings indicate there are no early growth penalty and possibly no lifetime fitness penalty associated with glyphosate resistance, including extremely strong resistance. We conclude that glyphosate resistance is likely to persist in horseweed populations, with or without continued selection pressure from exposure to glyphosate.  相似文献   

4.
Many biotypes of Lolium rigidum Gaud, (annual ryegrass) have developed resistance to herbicides; however, few have developed resistance to phenylurea herbicides. Two biotypes with different histories of herbicide selection pressure were six to eight times less sensitive to the phenylurea herbicide, chlorotoluron, than a susceptible biotype. Resistance was not due to differences in the herbicide target site as oxygen evolution by thylakoids isolated from resistant and susceptible biotypes was similarly inhibited by diuron and chlorotoluron. There was no difference in the uptake and distribution of chlorotoluron into resistant and susceptible plants. There was a twofold greater rate of chlorotoluron detoxification in resistant plants with N-demethylation being a major detoxification reaction. Resistant plants treated with a 3-h pulse of 120 M chlorotoluron recovered net carbon fixation after 42 h, half the time taken by susceptible plants. The mixed-function oxidase inhibitor 1-aminobenzotriazole (70 M) intensified the effects of chlorotoluron in resistant plants when applied in combination with the herbicide for 7 d. 1-Aminobenzotriazole also inhibited the metabolism of chlorotoluron in both resistant and susceptible plants. The cytochrome P-450 inhibitor, piperonyl butoxide piperonyl butoxide, interacted with chlorotoluron when applied to plants growing in soil. Chlorotoluron applied with reduced plant dry weight to a greater extent than chlorotoluron alone. It appears, therefore, that enhanced detoxification is the major mechanism of resistance to chlorotoluron in the resistant biotypes studied.Abbreviations ABT 1-aminobenzotriazole - VLR1 Victorian L. rigidum biotype 1 — herbicide susceptible - VLR69 Victorian L. rigidum biotype 69 — herbicide resistant - WLR2 Western Australian L. rigidum biotype 2 — herbicide resistant M.W.M.B, was supported by an Australian Postgraduate Research Award and a supplementary scholarship from the Grains Research and Development Corporation. We are very grateful to Dr. E. Ebert, Ciba Geigy, Basal, Switzerland for providing [14C]chlorotoluron and standards of chlorotoluron metabolites. We express our gratitude to Dr. John Huppatz of the CSIRO Division of Plant Industry for providing ABT. We also thank Ciba Geigy Australia for providing technical-grade chlorotoluron and formulated phenylurea herbicides.  相似文献   

5.
6.
Paraquat resistance in conyza   总被引:6,自引:2,他引:4       下载免费PDF全文
A biotype of Conyza bonariensis (L.) Cronq. (identical to Conyza linefolia in other publications) originating in Egypt is resistant to the herbicide 1,1′-dimethyl-4,4′-bipyridinium ion (paraquat). Penetration of the cuticle by [14C]paraquat was greater in the resistant biotype than the susceptible (wild) biotype; therefore, resistance was not due to differences in uptake. The resistant and susceptible biotypes were indistinguishable by measuring in vitro photosystem I partial reactions using paraquat, 6,7-dihydrodipyrido [1,2-α:2′,1′-c] pyrazinediium ion (diquat), or 7,8-dihydro-6H-dipyrido [1,2-α:2′,1′-c] [1,4] diazepinediium ion (triquat) as electron acceptors. Therefore, alteration at the electron acceptor level of photosystem I is not the basis for resistance. Chlorophyll fluorescence measured in vivo was quenched in the susceptible biotype by leaf treatment with the bipyridinium herbicides. Resistance to quenching of in vivo chlorophyll fluorescence was observed in the resistant biotype, indicating that the herbicide was excluded from the chloroplasts. Movement of [14C] paraquat was restricted in the resistant biotype when excised leaves were supplied [14C]paraquat through the petiole. We propose that the mechanism of resistance to paraquat is exclusion of paraquat from its site of action in the chloroplast by a rapid sequestration mechanism. No differential binding of paraquat to cell walls isolated from susceptible and resistant biotypes could be detected. The exact site and mechanism of paraquat binding to sequester the herbicide remains to be determined.  相似文献   

7.
Rice cultivars resistant to broad‐spectrum herbicides have been developed and their commercial release is imminent, especially for imidazolinone and glufosinate resistant varieties in the USA and Latin America. Glyphosate‐resistant rice should follow within a few years. Rice growers throughout the world could benefit from the introduction of herbicide‐resistant rice cultivars that would allow in‐crop, selective control of weedy Oryza species. Other perceived benefits are the possibility to control ‘hard‐to‐kill’ weed species and weed populations that have already evolved resistance to herbicides currently used in rice production, especially those of the Echinochloa species complex. Weed management could also be improved by more efficient post‐emergence control. Introduction of herbicide resistant rice could also bring areas heavily infested with weedy rice that have been abandoned back to rice production, allow longer term crop rotations, reduce consumption of fossil fuels, promote the replacement of traditional chemicals by more environmentally benign products, and provide more rice grain without adding new land to production. There are also concerns, however, about the impact of releasing herbicide‐resistant rice on weed problems. Of most concern is the possibility of rapid transfer of the resistance trait to compatible weedy Oryza species. Development of such herbicide resistant weedy rice populations would substantially limit the chemical weed management options for farmers. Herbicide‐resistant rice volunteers also could become problematic, and added selection pressure to weed populations could aggravate already serious weed resistance problems. Because of the risk of weedy Oryza species becoming resistant to broad‐spectrum herbicides, mitigating measures to prevent gene flow, eventually attainable by both conventional breeding and molecular genetics, have been proposed. With commercialisation of the first herbicide resistant varieties planned for 2001, these mitigating measures will not be available for use with this first generation of herbicide resistant rice products. Release of herbicide resistant rice should depend on a thorough risk assessment especially in areas infested with con‐specific weedy rice or intercrossing weedy Oryza species. Regulators will have to balance risks and benefits based on local needs and conditions before allowing commercialisation of herbicide‐resistant rice varieties. If accepted, these varieties should be considered as components of integrated weed management, and a rational herbicide use and weedy rice control should be promoted to prevent losing this novel tool.  相似文献   

8.
Evolution of herbicide resistance in weeds is a growing problem across the world, and it has been suggested that low herbicide rates may be contributing to this problem. An individual-based simulation model that represents weed population dynamics and the evolution of polygenic herbicide resistance was constructed and used to investigate whether using lower herbicide rates or standard rates at reduced efficacy could reduce the sustainability of cropping systems by causing faster increases in weed population density as herbicide resistance develops. A number of different possible genetic bases for resistance were considered, including monogenic resistance and polygenic resistance conferred by several genes. The results show that cutting herbicide rates does not affect the rate at which weed densities reach critical levels when resistance is conferred exclusively by a single dominant gene. In some polygenic situations, cutting herbicide rates substantially reduces sustainability, due to a combination of faster increase in resistance gene frequency and reduced kill rates in all genotypes, while in other polygenic situations the effect is small. Differences in sustainability depend on combined strength of the resistance genes, variability in phenotypic susceptibility and rate delivered, level of control due to alternative measures, and degree of genetic dominance and epistasis. In the situation where resistance can be conferred by both a single dominant major gene or a number of co-dominant minor genes in combination, the difference made by low rates depends on the relative initial frequency of the major and minor genes. These results show that careful consideration of herbicide rate and understanding the genetic basis of resistance are important aspects of weed management.  相似文献   

9.
The germination ecology of Ambrosia artemisiifolia and A. trifida glyphosate susceptible biotypes sampled in marginal areas, was compared with that of the same species but different biotypes suspected of glyphosate resistance, common and giant ragweed, respectively. The suspected resistant biotypes were sampled in Roundup Ready® soybean fields. Within each weed species, the seeds of the biotype sampled in marginal area were significantly bigger and heavier than those of the biotype sampled in the soybean fields. A. artemisiifolia biotypes exhibited a similar dormancy and germination, while differences between A. trifida biotypes were observed. A. artemisiifolia biotypes showed similar threshold temperature for germination, whereas, the threshold temperature of the susceptible A. trifida biotype was half as compared to that of the resistant A. trifida biotype. No significant differences in emergence as a function of sowing depth were observed between susceptible A. artemisiifolia and suspected resistant A. trifida biotype, while at a six-cm seedling depth the emergence of the A. artemisiifolia susceptible biotype was 2.5 times higher than that of the A. trifida suspected resistant biotype. This study identified important differences in seed germination between herbicide resistant and susceptible biotypes and relates this information to the ecology of species adapted to Roundup Ready® fields. Information obtained in this study supports sustainable management strategies, with continued use of glyphosate as a possibility.  相似文献   

10.
Acetolactate synthase (ALS) is responsible for a rate-limiting step in the synthesis of essential branched-chain amino acids. Resistance to ALS-inhibiting herbicides, such as trifloxysulfuron sodium (Envoke®), can be due to mutations in the target gene itself. Alternatively, plants may exhibit herbicide tolerance through reduced uptake and translocation or increased metabolism of the herbicide. The diverse family of cytochrome P450 proteins has been suggested to be a source of novel herbicide metabolism in both weed and crop plants. In this study we generated a mapping population between resistant and susceptible cotton (Gossypium hirsutum L.) cultivars. We found that both cultivars possess identical and sensitive ALS sequences; however, the segregation of resistance in the F2 progeny was consistent with a single dominant gene. Here we report the closely linked genetic markers and approximate physical location on chromosome 20 of the source of Envoke herbicide susceptibility in the cotton cultivar Paymaster HS26. There are no P450 proteins in the corresponding region of the G. raimondii Ulbr. genome, suggesting that an uncharacterized molecular mechanism is responsible for Envoke herbicide tolerance in G. hirsutum. Identification of this genetic mechanism will provide new opportunities for exploiting sulfonylurea herbicides for management of both weeds and crop plants.  相似文献   

11.
Paraquat-resistant hairy fleabane (Conyza bonariensis L. Cronq.) has been extensively studied, with some contention. A single, dominant gene pleiotropically controls levels of oxidant-detoxifying enzymes and tolerance to many photooxidants, to photoinhibition, and possibly to other stresses. The weed forms a rosette on humid short days and flowers in dry long days and, thus, needs plasticity to photooxidant stresses. In a series of four experiments over 20 months, the resistant and susceptible biotypes were cultured in constant 10-h low-light short days at 25[deg]C. Resistance was measured as recovery from paraquat. The concentration required to achieve 50% inhibition of the resistant biotype was about 30 times that of the susceptible one just after germination, increased to >300 times that of the susceptibles at 10 weeks of growth, and then decreased to 20-fold, remaining constant except for a brief increase while bolting. Resistance increased when plants were induced to flower by long days. The levels of plastid superoxide dismutase and of glutathione reductase were generally highest in resistant plants compared to those of the susceptibles at the times of highest paraquat resistance, but they were imperceptibly different from the susceptible type at the times of lower paraquat resistance. Photoinhibition tolerance measured as quantum yield of oxygen evolution at ambient temperatures was highest when the relative amounts of enzymes were highest in the resistant biotype. Resistance to photoinhibition was not detected by chlorophyll a fluorescence. Enzyme levels, photoinhibition tolerance, and paraquat resistance all increased during flowering in both biotypes. Imperceptibly small increases in enzyme levels would be needed for 20-fold resistance, based on the moderate enzyme increases correlated with 300-fold resistance. Thus, it is feasible that either these enzymes play a role in the first line of defense against photooxidants, or another, yet unknown mechanism(s) facilitate(s) the lower level of resistance, or the enzymes and unknown mechanisms act together.  相似文献   

12.
Paraquat resistance in the grass weed Hordeum glaucum Steud. has been proposed to result from herbicide sequestration away from the growing points. In the present study, we used roots as a model system to investigate cellular transport of paraquat in resistant (R) and susceptible (S) H. glaucum biotypes. Both time- and concentration-dependent kinetics of paraquat influx across the root cell plasma membrane were similar in the S and R biotype. However, compartmentation analysis indicated greater herbicide accumulation in root vacuoles of the R seedlings. In contrast, the amount of paraquat accumulated in the cytoplasm of S was double that found in R biotype. While paraquat efflux from the cytoplasm back into the external solution was similar in the two biotypes, efflux across the tonoplast from the vacuole back into the cytoplasm was 5 times slower in the R than in the S biotype. At the end of a 48-h efflux period, nearly 7-fold more herbicide was retained in the roots of the R compared with those of the S biotype. These results suggest that paraquat resistance in H. glaucum may be due to the herbicide sequestration in the vacuole.  相似文献   

13.
WLR1, a biotype of Lolium rigidum Gaud. that had been treated with the sulfonylurea herbicide chlorsulfuron in 7 consecutive years, was found to be resistant to both the wheat-selective and the nonselective sulfonylurea and imidazolinone herbicides. Biotype SLR31, which became cross-resistant to chlorsulfuron following treatment with the aryloxyphenoxypropionate herbicide diclofop-methyl, was resistant to the wheat-selective, but not the nonselective, sulfonylurea and imidazolinone herbicides. The concentrations of herbicide required to reduce in vitro acetolactate synthase (ALs) activity 50% with respect to control assays minus herbicide for biotype WLR1 was greater than those for susceptible biotype VLR1 by a factor of >30, >30, 7,4, and 2 for the herbicides chlorsulfuron, sulfometuron-methyl, imazapyr, imazathapyr, and imazamethabenz, respectively. ALS activity from biotype SLR31 responded in a similar manner to that of the susceptible biotype VLR1. The resistant biotypes metabolized chlorsulfuron more rapidly than the susceptible biotype. Metabolism of 50% of [phenyl-U-14C]chlorsulfuron in the culms of two-leaf seedlings required 3.7 h in biotype SLR31, 5.1 h in biotype WLR1, and 7.1 h in biotype VLR1. In all biotypes the metabolism of chlorsulfuron in the culms was more rapid than that in the leaf lamina. Resistance to ALS inhibitors in L. rigidum may involve at least two mechanisms, increased metabolism of the herbicide and/or a herbicide-insensitive ALS.  相似文献   

14.
A biotype of Avena sterilis ssp. ludoviciana is highly resistantto a range of herbicides which inhibit a key enzyme in fattyacid synthesis, acetyl-CoA carboxylase (ACCase). Possible mechanismsof herbicide resistance were investigated in this biotype. Acetyl-CoAcarboxylase from the resistant biotype is less sensitive toinhibition by herbicides to which resistance is expressed. I50values for herbicide inhibition of ACCase were 52 to 6 timesgreater in the resistant biotype than in the susceptible biotype.This was the only major difference found between the resistantand susceptible biotypes. The amount of ACCase in the meristemsof the resistant and susceptible is similar during ontogenyand no difference was found in distribution of ACCase betweenthe two biotypes. Uptake, translocation and metabolism of [14C]diclofop-methylwere not different between the two biotypes. In vivo, ACCaseactivity in the meristems of the susceptible biotype was greatlyinhibited by herbicide application whereas only 25% inhibitionoccurred in the resistant biotype. Depolarisation of plasmamembrane potential by 50 µM diclofop acid was observedin both biotypes and neither biotype showed recovery of themembrane potential following removal of the herbicide. Hence,a modified form of ACCase appears to be the major determinantof resistance in this resistant wild oat biotype. (Received February 10, 1994; Accepted March 11, 1994)  相似文献   

15.
The herbicidally active aryloxyphenoxypropionates diclofop acid, haloxyfop acid, and fluazifop acid and the cyclohexanedione sethoxydim depolarized membranes in coleoptiles of eight biotypes of herbicide-susceptible and herbicide-resistant annual ryegrass (Lolium rigidum). Membrane polarity was reduced from −100 millivolts to −30 to −50 millivolts. Membranes repolarized after removal of the compounds only in biotypes with resistance to the compound added. Repolarization was not observed in herbicide-susceptible L. rigidum, nor was it observed in biotypes resistant to triazine, triazole, triazinone, phenylurea, or sulfonylurea herbicides but not resistant to aryloxyphenoxypropionates and cyclohexanediones. Chlorsulfuron, a sulfonylurea herbicide, at a saturating concentration of 1 micromolar, reduced membrane polarity in all biotypes studied by only 15 millivolts. The recovery of membrane potential following the removal of chlorsulfuron was restricted to chlorsulfuron-susceptible and -resistant biotypes that did not exhibit diclofop resistance. These differences in membrane responses are correlated with resistance to dicloflop rather than with resistance to chlorsulfuron. It is suggested that the differences may reflect altered membrane properties of diclofop-resistant biotypes. Further circumstantial evidence for dissimilarity of properties of membranes from diclofop-resistant and diclofop-susceptible ryegrass is provided by observations that K+/Na+ ratios were significantly higher in coleoptiles from diclofop-resistant biotypes than in coleoptiles from susceptible plants. Intact and excised roots from susceptible biotypes were capable of acidifying the external medium, whereas roots from resistant biotypes were unable to do so. The ineluctable conclusion is that in L. rigidum the phenomena of membrane repolarization and resistance to aryloxyphenoxypropionate and cyclohexanedione herbicides are correlated.  相似文献   

16.
Zhang XQ  Powles SB 《Planta》2006,223(3):550-557
Acetyl-CoA carboxylase (ACCase) (EC.6.4.1.2) is an essential enzyme in fatty acid biosynthesis and, in world agriculture, commercial herbicides target this enzyme in plant species. In nearly all grass species the plastidic ACCase is strongly inhibited by commercial ACCase inhibiting herbicides [aryloxyphenoxypropionate (APP) and cyclohexanedione (CHD) herbicide chemicals]. Many ACCase herbicide resistant biotypes (populations) of L. rigidum have evolved, especially in Australia. In many cases, resistance to ACCase inhibiting herbicides is due to a resistant ACCase enzyme. Two ACCase herbicide resistant L. rigidum biotypes were studied to identify the molecular basis of ACCase inhibiting herbicide resistance. The carboxyl-transferase (CT) domain of the plastidic ACCase gene was amplified by PCR and sequenced. Amino acid substitutions in the CT domain were identified by comparison of sequences from resistant and susceptible plants. The amino acid residues Gln-102 (CAG codon) and Ile-127 (ATA codon) were substituted with a Glu residue (GAG codon) and Leu residue (TTA codon), respectively, in both resistant biotypes. Amino acid positions 102 and 127 within the fragment sequenced from L. rigidum corresponded to amino acid residues 1756 and 1781, respectively, in the A. myosuroides full ACCase sequence. Allele-specific PCR results further confirmed the mutations linked with resistance in these populations. The Ile-to-Leu substitution at position 1781 has been identified in other resistant grass species as endowing resistance to APP and CHD herbicides. The Gln-to-Glu substitution at position 1756 has not previously been reported and its role in herbicide resistance remains to be established.  相似文献   

17.
Response of two biotypes of black-grass (Alopecurus myosuroidesHuds.) to the herbicide, chlorotoluron, was characterized inglasshouse and laboratory studies. ED50values, defined as theamount (kg active ingredient ha-1) of chlorotoluron requiredto reduce fresh mass by 50% under standard conditions, weredetermined for a resistant biotype (39.3 kg a.i. ha-1) collectedfrom Peldon, Essex, UK and a susceptible biotype (0.93 kg a.i.ha-1) obtained commercially, giving a resistance factor of 42.The resistance factor was calculated as the ratio of ED50valuesand describes the increase in amount of herbicide needed toreduce fresh mass by 50% in the resistant, compared to the susceptible,biotype. Resistance was further characterized by measurementsof whole plant growth and photosynthesis. Relative growth rate,number of tillers, leaf area and mean fresh mass were the samein untreated plants of both biotypes, and rates of photosynthesisat both high and low photon flux were similar, with no differencein apparent quantum yield. Photosynthesis by whole plants wasstudied over a 24 h period following chlorotoluron treatment.Resistant plants showed no reduction in photosynthesis overthis period, whereas photosynthesis by susceptible plants ceased10 h after treatment and did not recover. Alopecurus myosuroides ; black-grass; herbicide resistance; chlorotoluron  相似文献   

18.
The mechanism of resistance to paraquat was investigated in biotypes of Hordeum glaucum Steud. and H. leporinum Link. with high levels of resistance. Inhibition of photosynthetic O2 evolution after herbicide application was used to monitor the presence of paraquat at the active site. Inhibition of photosynthetic O2 evolution after paraquat application was delayed in both resistant biotypes compared with the susceptible biotypes; however, this differential was more pronounced in the case of H. glaucum than in H. leporinum. Similar results could be obtained with the related herbicide diquat. Examination of the concentration dependence of paraquat-induced inhibition of O2 evolution showed that the resistant H. glaucum biotype was less affected by herbicide compared with the susceptible biotype 3 h after treatment at most rates. The resistant H. leporinum biotype, in contrast, was as inhibited as the susceptible biotype except at the higher rates. In all cases photosynthetic O2 evolution was dramatically inhibited 24 h after treatment. Measurement of the amount of paraquat transported to the young tissue of these plants 24 h after treatment showed 57% and 53% reductions in the amount of herbicide transported in the case of the resistant H. glaucum and H. leporinum biotypes, respectively, compared with the susceptible biotypes. This was associated with 62% and 66% decreases in photosynthetic O2 evolution of young leaves in the susceptible H. glaucum and H. leporinum biotypes, respectively, a 39% decrease in activity for the resistant H. leporinum biotype, but no change in the resistant H. glaucum biotype. Photosynthetic O2 evolution of leaf slices from resistant H. glaucum was not as inhibited by paraquat compared with the susceptible biotype; however, those of resistant and susceptible biotypes of H. leporinum were equally inhibited by paraquat. Paraquat resistance in these two biotypes appears to be a consequence of reduced movement of the herbicide in the resistant plants; however, the mechanism involved is not the same in H. glaucum as in H. leporinum.  相似文献   

19.
Non-target-site herbicide resistance: a family business   总被引:5,自引:0,他引:5  
We have witnessed a dramatic increase in the frequency and diversity of herbicide-resistant weed biotypes over the past two decades, which poses a threat to the sustainability of agriculture at both local and global levels. In addition, non-target-site mechanisms of herbicide resistance seem to be increasingly implicated. Non-target-site herbicide resistance normally involves the biochemical modification of the herbicide and/or the compartmentation of the herbicide (and its metabolites). In contrast to herbicide target site mutations, fewer non-target mechanisms have been elucidated at the molecular level because of the inherently complicated biochemical processes and the limited genomic information available for weedy species. To further understand the mechanisms of non-target-site resistance, we propose an integrated genomics approach to dissect systematically the functional genomics of four gene families in economically important weed species.  相似文献   

20.
Paraquat-resistant biotypes of the closely-related weed species Hordeum leporinum Link and H. glaucum Steud. are highly resistant to paraquat when grown during the normal winter growing season. However, when grown and treated with paraquat in summer, these biotypes are markedly less resistant to paraquat. This reduced resistance to paraquat in summer is primarily a result of increased temperature following herbicide treatment. The mechanism governing this decrease in resistance at high temperature was examined in H. leporinum. No differences were observed between susceptible and resistant biotypes in the interaction of paraquat with isolated thylakoids when assayed at 15, 25, or 35 °C. About 98 and 65% of applied paraquat was absorbed through the leaf cuticle of both biotypes at 15 and 30 °C, respectively. Following application to leaves, more herbicide was translocated in a basipetal direction in the susceptible biotype compared to the resistant biotype at 15 °C. However, at 30 °C more paraquat was translocated in a basipetal direction in the resistant biotype. Photosynthetic activity of young leaf tissue from within the leaf sheath which had not been directly exposed to paraquat was measured 24 h after treatment of plants with para. quat. This activity was inhibited in the susceptible biotype when plants were maintained at either 15 °C or 30 °C after treatment. In contrast, photosynthetic activity of such tissue of the resistant biotype was not inhibited when plants were maintained at 15 °C after treatment, but was inhibited at 30 °C. The mechanism of resistance in this biotype of H. leporinum correlates with decreased translocation of paraquat and decreased penetration to the active site. This mechanism is temperature sensitive and breaks down at higher temperatures.We are grateful to Zeneca Agrochemicals, Jealotts Hill, Berkshire, UK who provided [14C]paraquat. E.P. was supported through a Ph.D. scholarship from the Australian International Development Assistance Bureau and C.P. was the recipient of an Australian Research Council Postdoctoral Fellowship.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号